Abstract: Global environmental changes are currently altering key ecosystem services that soils provide.
Therefore, it is necessary to have up to date soil information on local, regional and global scales to monitor the state of soils and ensure that these ecosystem services continue to be provided. In this context, digital soil mapping (DSM) aims to provide and advance methods for data collection and analyses tailored towards detailed large-scale mapping and monitoring of soil properties. In particular, remote and proximal sensing methodologies hold considerable potential to facilitate soil mapping at larger temporal and spatial scales as feasible with conventional soil mapping methods [Mulder, 2013]. Existing remote and proximal sensing methods support three main components in DSM: (1) Remote sensing data support the segmentation of the landscape into homogeneous soil-landscape units whose soil composition can be determined by sampling. |
0
|
|