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Abstract: Global environmental changes are currently altering key ecosystem services that soils provide.
Therefore, it is necessary to have up to date soil information on local, regional and global scales to
monitor the state of soils and ensure that these ecosystem services continue to be provided. In this
context, digital soil mapping (DSM) aims to provide and advance methods for data collection and analyses
tailored towards detailed large-scale mapping and monitoring of soil properties. In particular, remote and
proximal sensing methodologies hold considerable potential to facilitate soil mapping at larger temporal
and spatial scales as feasible with conventional soil mapping methods [Mulder, 2013]. Existing remote
and proximal sensing methods support three main components in DSM: (1) Remote sensing data support
the segmentation of the landscape into homogeneous soil-landscape units whose soil composition can be
determined by sampling. (2) Remote and proximal sensing methods allow for inference of soil properties
using physically-based and empirical methods. (3) Remote sensing data supports spatial interpolation of
sparsely sampled soil property data as a primary or secondary data source [Mulder, 2013]. Overall, remote
and proximal sensed data are an important and essential source for DSM as they provide valuable data
for soil mapping in a time and cost efficient manner. This document provides general insights into diverse
aspects of soil related remote sensing, including DSM, remote sensing technologies and soil properties. In
this context, we present the underlying concept of DSM and introduce approaches to predict the spatial
distribution of soil properties. Furthermore, we introduce remote and proximal sensing technologies and
the methodologies to extract soil properties in support of DSM. In this overview we consider established
techniques within active, passive, optical and microwave remote sensing as well as proximal sensing that
use key soil properties as proxies for soil conditions and characteristics. In addition, we discuss the
opportunities, progress and limitations of remote and proximal sensing data in support of DSM and
conclude by a gap analysis of current remote sensing technologies and products. Proximal sensing has
been successfully used to derive quantitative and qualitative soil information [Viscarra Rossel et al.,
2006b]. Most reported studies revealed the high potential of proximal sensing to estimate soil properties
based on clear absorption features at the laboratory and local scale [Ben-Dor et al., 2008]. However, for
large-scale mapping of soil properties, methods need to be extended beyond the plot scale. Important
qualitative and, to a lesser extent, quantitative soil information can be obtained from remote sensing data.
Airborne and spaceborne remote sensing provides qualitative information on soil properties having clear
diagnostic absorption features at a regional to global scale. However, remote sensing-derived information
has a lower accuracy and feasibility to obtain information compared to proximal sensing. The main
limiting factors are (1) the coarse spatial and spectral resolution, (2) the low signal-to-noise ratio of
high-resolution remote sensing data and (3) the bands of multispectral satellite sensors have not been
positioned at diagnostic wavelengths. Future improvement to detect soil properties on a regional to global
scale with high accuracy can be expected from recently launched Sentinel-1 and upcoming Sentinel-2,
SWAP, and EnMAP missions. Despite the large potential of using proximal and remote sensing methods
in support of DSM, advances are necessary to fully develop large-scale methodologies and soil products.
Currently, DSM-studies make limited use of existing analysis and geostatistical methods to exploit the full
potential of proximal and remote sensing data [Ben-Dor et al., 2009; Dewitte et al., 2012]. Improvements
may be expected in the fields of developing more quantitative methods, enhanced geostatistical analysis
that allow working with large remote sensing datasets. Further research priorities involve the development
of operational tools to quantify soil properties, multiple sensor integration, spatiotemporal modelling and



improved transferability of soil mapping approaches to other landscapes. This will allow us in the near
future to deliver more accurate and comprehensive information about soils, soil resources and ecosystem
services provided by soils at regional and, ultimately, global scale.
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Summary 

Global environmental changes are currently altering key ecosystem services that soils 

provide. Therefore, it is necessary to have up to date soil information on local, regional and 

global scales to monitor the state of soils and ensure that these ecosystem services continue to 

be provided. In this context, digital soil mapping (DSM) aims to provide and advance 

methods for data collection and analyses tailored towards detailed large-scale mapping and 

monitoring of soil properties. In particular, remote and proximal sensing methodologies hold 

considerable potential to facilitate soil mapping at larger temporal and spatial scales as 

feasible with conventional soil mapping methods [Mulder, 2013]. Existing remote and 

proximal sensing methods support three main components in DSM: (1) Remote sensing data 

support the segmentation of the landscape into homogeneous soil-landscape units whose soil 

composition can be determined by sampling. (2) Remote and proximal sensing methods allow 

for inference of soil properties using physically-based and empirical methods. (3) Remote 

sensing data supports spatial interpolation of sparsely sampled soil property data as a primary 

or secondary data source [Mulder, 2013]. Overall, remote and proximal sensed data are an 

important and essential source for DSM as they provide valuable data for soil mapping in a 

time and cost efficient manner. 

This document provides general insights into diverse aspects of soil related remote 

sensing, including DSM, remote sensing technologies and soil properties. In this context, we 

present the underlying concept of DSM and introduce approaches to predict the spatial 

distribution of soil properties. Furthermore, we introduce remote and proximal sensing 

technologies and the methodologies to extract soil properties in support of DSM. In this 

overview we consider established techniques within active, passive, optical and microwave 

remote sensing as well as proximal sensing that use key soil properties as proxies for soil 

conditions and characteristics. In addition, we discuss the opportunities, progress and 

limitations of remote and proximal sensing data in support of DSM and conclude by a gap 

analysis of current remote sensing technologies and products. 

Proximal sensing has been successfully used to derive quantitative and qualitative soil 

information [Viscarra Rossel et al., 2006b]. Most reported studies revealed the high potential 

of proximal sensing to estimate soil properties based on clear absorption features at the 

laboratory and local scale [Ben-Dor et al., 2008]. However, for large-scale mapping of soil 

properties, methods need to be extended beyond the plot scale. Important qualitative and, to a 

lesser extent, quantitative soil information can be obtained from remote sensing data. 

Airborne and spaceborne remote sensing provides qualitative information on soil properties 

having clear diagnostic absorption features at a regional to global scale. However, remote 

sensing-derived information has a lower accuracy and feasibility to obtain information 

compared to proximal sensing. The main limiting factors are (1) the coarse spatial and 

spectral resolution, (2) the low signal-to-noise ratio of high-resolution remote sensing data 

and (3) the bands of multispectral satellite sensors have not been positioned at diagnostic 

wavelengths. Future improvement to detect soil properties on a regional to global scale with 
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high accuracy can be expected from recently launched Sentinel-1 and upcoming Sentinel-2, 

SWAP, and EnMAP missions. 

Despite the large potential of using proximal and remote sensing methods in support of 

DSM, advances are necessary to fully develop large-scale methodologies and soil products. 

Currently, DSM-studies make limited use of existing analysis and geostatistical methods to 

exploit the full potential of proximal and remote sensing data [Ben-Dor et al., 2009; Dewitte 

et al., 2012]. Improvements may be expected in the fields of developing more quantitative 

methods, enhanced geostatistical analysis that allow working with large remote sensing 

datasets. Further research priorities involve the development of operational tools to quantify 

soil properties, multiple sensor integration, spatiotemporal modelling and improved 

transferability of soil mapping approaches to other landscapes. This will allow us in the near 

future to deliver more accurate and comprehensive information about soils, soil resources and 

ecosystem services provided by soils at regional and, ultimately, global scale. 
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Abbreviations and Definitions 

Abbreviation Description 

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer 

BRDF Bidirectional reflectance distribution function 

CEC Cation Exchange Capacity 

DEM Digital Elevation Model 

DSM Digital Soil Mapping 

DTM Digital Terrain Model (including vegetation heights) 

EM Electromagnetic spectrum 

FIR Far infrared 

GIS Geographic Information System 

GPR Ground Penetrating Radar 

GPS Global Positioning System 

MESMA Multiple Endmember Spectral Mixture Analysis 

MLR Multiple Linear Regression 

MODIS Moderate Resolution Imaging Spectroradiometer 

NABODAT Swiss National Soil Information System 

PLSR Partial Least Square Regression 

PFT Plant Functional Types 

PS Proximal Sensing 

RS Remote Sensing 

SAM Spectral Angle Mapper 

SAR Synthetic Aperture Radar 

SMAP Soil Moisture Active Passive (NASA satellite) 

SMOS Soil Moisture Ocean Salinity (ESA Earth Explorer Satellite) 

SOC Soil Organic Carbon 

SWI Soil Water Index 

SWIR Shortwave infrared 

TIR Thermal infrared 

VNIR Visible and near infrared 

 

 

Term Definition 

CLORPT / 

SCORPAN 

Mnemonics for empirical quantitative descriptions of relationships 

between soil and environmental factors in adaptation of Hans 

Jenny’s five factors of soil formation. These relations are used as soil 

spatial prediction functions for the purpose of Digital soil mapping. 

Diffuse Reflectance 

Spectroscopy 

A non-invasive technique that measures the characteristic reflectance 

spectrum produced as light passed through a medium. This spectrum 
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contains information about the optical properties and structure of the 

medium being measured. 

Digital Elevation 

Model 

Digital Elevation Models is a digital model or 3D representation of a 

terrain's surface. The term digital surface model represents the earth's 

surface and includes all objects, whereas the digital terrain model 

represents the bare ground surface without any objects like plants 

and buildings. 

Digital Soil Mapping The creation and population of spatial soil information by the use of 

field and laboratory observational methods coupled with spatial and 

non-spatial soil inference systems. 

Ellenberg indicators The Ellenberg indicator values scale the flora of a region along 

gradients reflecting light, temperature, moisture, soil pH, fertility and 

salinity gradients. This way, the flora can be used to monitor 

environmental change and thereby changes in the soil. 

Imaging 

Spectrometry 

Imaging spectroscopy, also known as hyperspectral imaging, is 

defined as a passive remote sensing technology that is acquiring 

simultaneous images in many spectrally contiguous, registered bands 

such that for each pixel a reflectance spectrum can be derived. 

Landsat NASA Earth Observation Satellite Programme 

Magnetic 

susceptibility  

Method to analyse the occurrence and distribution of occurrence of 

ferromagnetic minerals (e.g., magnetite, greigite) in soils 

Multispectral 

Imaging 

Acquiring image data at several discrete, discontinuous regions 

across the visible and infrared electromagnetic spectrum. 

Plant Functional 

Types 

A system commonly used by climatologists and biologists to classify 

plants according to their physical, phylogenetic and phenological 

characteristics as part of an overall effort to develop a vegetation 

model for use in land use studies and climate models. 

Proximal Sensing Remotely sensed measurements that are taken at the field or 

laboratory level. 

Remote Sensing Process of inferring information from distant measurements of the 

upwelling emitted or reflected electromagnetic radiation, typically 

from satellite or airborne platforms. 

Revisit Time Time between two satellite image acquisitions for a given location 

Sentinel Earth Observation satellite missions that are integral part of the 

European Copernicus Programme 

Spectral Unmixing Spectral unmixing decomposes a source spectrum into a set of given 

known spectra, or endmember spectra, to determine the relative 

abundance of materials depicted in multi- or hyperspectral imagery.  
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1 Introduction 

1.1 Motivation on remote sensing of soils 

Over the past decades, the Earth’s surface has witnessed major changes in land use and 

land cover. These changes are likely to continue, driven by demographic pressure and by 

climate change. As part of the Earth’s spheres, the pedosphere is responding and contributing 

to these environmental changes [Macías and Arbestain, 2010]. Observed changes in the 

functioning of the pedosphere renewed the recognition that soil resources provide key 

ecosystem services and play a fundamental role for assuring food security 

[GlobalSoilPartnership, 2011; Grunwald, 2011; Mulder, 2013]. In this context, monitoring 

tools are needed for maintaining a sustainable ecological status and improving soil 

conservation. The implementation of sustainable agricultural, hydrological, and 

environmental management requires an improved understanding of the soil, at increasingly 

higher resolutions. Information on spatial and temporal variations in soil properties are 

required for use in conservations efforts, climate and ecosystem modelling, as well as 

engineering, agricultural, forestry applications, erosion and runoff simulations [King et al., 

2005]; Soils are a vital natural resource that provide multiple ecosystem services. 

Conventional soil sampling and laboratory analyses cannot efficiently provide the needed 

information, because these analyses are generally time consuming, costly, and limited in 

retrieving the temporal and spatial variability. In this context, remote sensing (RS) is now in a 

strong position to provide meaningful spatial data for studying soil properties on various 

spatial scales using different parts of the electromagnetic spectrum. 

1.2 Scope and structure of this document 

This document provides general insights into diverse aspects of soil related RS and PS, 

including of DSM. Key abbreviations and definitions of terms can be found in beginning of 

this document. In Chapter 2, we introduce key principles of DSM, explain basic concepts of 

RS and PS technologies and present an overview of remote sensing based soil products. In 

this context, we consider established techniques within active, passive, optical and microwave 

RS and PS that infer key soil properties, as well as proxies for soil conditions and 

characteristics. For a comprehensive review, Chapter 3 provides in-depth information on 

remote sensing of soils and builds upon the issues and topics presented in Chapter 2. Here, we 

review in particular DSM approaches, remote sensing technologies and related soil products. 

Furthermore, we emphasize in Chapter 4 on remote sensing opportunities and limitations, 

with respect to DSM and soil products. We conclude the discussion of technological 

constraints and potentials by outlining future trends and challenges for soil mapping using 

digital approaches. In Chapter 5, we summarize and highlight the use of remote and proximal 

sensing for soil survey, based on the main conclusions and recommendations. Furthermore, 

we provide next to the in-text references (Chapter 6) an overview of the key literature on 

remote sensing of soil (Chapter 7), as a guideline for further reading. Finally, we highlight 
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some digital resources in Chapter 8, to which we referred previously or might be of general 

interest to the reader.  
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2 Overview on remote sensing of soils  

2.1 Digital soil mapping 

The advent of new technologies along with vast amounts of data and the need for effective 

soil characterization led to digital soil mapping (DSM). Digital soil mapping is defined as: 

‘the creation and population of spatial soil information by the use of field and laboratory 

observational methods coupled with spatial and non-spatial soil inference systems 

[Lagacherie et al., 2007; McBratney et al., 2003]’ [Carré et al., 2007]. DSM relies on 

quantitative methods to integrate diverse soil observations from field, laboratory and remote 

sensing and proximal sensing data [Grunwald, 2010] for inferring spatial patterns of soils 

across various spatial and temporal scales. Using a broad range of data sources and methods, 

DSM aims to provide up-to-date and accurate soil maps to meet the current and future need 

for soil information [Mulder, 2013] (Fig. 1). 

New tools in the field of statistics and spawned new areas, such as data mining and 

machine learning have been exploited [Hastie et al., 2009], to take advantage of large soil and 

environmental data stores for improved soil data and information. In addition, the increasing 

power of tools such as Geographic Information Systems (GIS), Global Positioning System 

(GPS), remote and proximal sensors (RS and PS) and data sources such as those provided by 

digital elevation models (DEM) increased the potential of mapping soils over vast areas. 

Consequently, worldwide, organizations are investigating the possibility of applying the new 

information technology and science to assess soil properties, resources and class maps. This 

recent approach of soil surveying combines limited field and laboratory observations with the 

vast amount of RS data using GIS and advanced quantitative predictive models for DSM 

[McBratney et al., 2003]. For further details on DSM see section 3.1 and 4.3. 
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Fig. 1. Compilation of a classical soil map (A) and Digital Soil Maps (B, C, D) characterizing soil 

susceptibility to landslides and runoff (B), water reserves (C) and microbial biomass (D) of soils in 

France [GisSol, 2011]. 

2.2 Remote sensing technologies 

Remote sensing (RS) is the process of inferring surface parameters from distant 

measurements of the upwelling emitted or reflected electromagnetic radiation from the land 

surface. The radiation reflected or emitted by soil varies according to a range of chemical and 

physical characteristics of the soil matrix [Anderson and Croft, 2009; Barnes et al., 2003; 

Mulder et al., 2011; Schmugge et al., 2002]. Therefore, it is possible to discriminate between 

different soil surfaces and to infer soil properties based on the measured radiation [Dewitte et 

al., 2012]. 

In this document, we use the term “remote sensing” (RS) for airborne and spaceborne 

acquisitions, whereas “proximal sensing” (PS) refers to ground-based laboratory and field 

measurements. Soil PS generally measures soil surface properties in a high spatial and 

spectral resolution from a short-range. Depending on the source of energy utilized in the data 

acquisition, RS sensors may be classified as being active or passive. Active sensors produce 

their own energy for sensing objects, whereas the passive satellite sensors depend on external 

energy sources (e.g., sun or earth). 
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There are various RS systems, operating in various portions of the electromagnetic 

spectrum, which are suitable for soil spectroscopy. Most passive systems operate in the 

visible, near-infrared (VNIR), shortwave infrared (SWIR), thermal infrared (TIR), and 

microwave portions of the electromagnetic (EM) spectrum, such as multispectral instruments 

and imaging spectrometers. The majority of active sensors operate in the microwave portion 

of the EM spectrum. Here, wavelengths are unaffected by typical meteorological conditions, 

making it the sensor of choice when continuity of data must be ensured. 

In comparison to ground-based sensors, air- and space born sensors have larger ground 

coverage. RADAR and passive microwave systems have, until recently, only been capable of 

providing data for regional- or catchment-scale assessment of soil properties. Airborne 

systems (LiDAR, multi-spectral and hyperspectral) have demonstrated capabilities for 

monitoring at finer spatial resolutions and over smaller extents, including identifying key 

variables relevant to soil science (e.g., mineralogy, moisture and elevation). At the finest 

spatial scale, PS techniques, such as laboratory laser profiling, already demonstrated their 

application for assessment of various soil parameters [Jester and Klik, 2005]. 

In addition, moderate and coarse resolution sensors provide more frequent coverage than 

high-resolution sensors, such as the Landsat, ASTER and SPOT sensors. The higher 

frequency helps to assess (1) daily or weekly variation in surface conditions, (2) improves the 

methods for the delineation of soil units and the estimation of soil properties and (3) the 

assessment of soil threats such as soil erosion by water and by wind and landslides. 

The advantages of RS for non-destructive spatial assessment of soils have been 

recognized since the 1920s, when aerial photos where used to map boundaries of different 

soil series [Bushnell, 1932]. Over the last decades, a high number of sensors have been 

applied to improve the retrieval of direct and indirect soil parameters because of the high 

potential of RS to retrieve soil surface parameters. The operational RS systems (passive and 

active) and analysis techniques for estimating of soil parameters include various sensors (see 

section 3.2). For passive remote sensing, we can consider four principal types of sensors:  

(i) Optical multispectral sensors, particularly adapted for land use and 

mineralogical analysis.  

(ii) Optical imaging spectroscopy sensors, particularly adapted for deriving soil 

properties (e.g. mineralogical composition, iron oxides and organic matter). 

(iii) Optical TIR sensors, particularly adapted for soil temperature estimation. 

(iv) Passive microwave sensors, particularly adapted to soil moisture estimation.  

Active remote sensing holds considerable potential for characterizing soil moisture, 

roughness, and texture. Here, we distinguish between RADAR and LiDAR sensors: 

(i) Synthetic aperture radar (SAR) sensors, particularly adapted for soil moisture, 

texture and salinity estimations.  

(ii) Radar scatterometer sensors, adapted for soil moisture estimates.  

(iii) LiDAR sensors, particularly adapted for terrain analysis.  
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For the interpretation of RS data, one should be aware of general limitations related to RS 

observations and specific disadvantages related to the inference of soil information; in 

general, there is a trade-off between spatial and temporal resolution of space and airborne 

observations. Revisit times of polar orbiting satellites generally vary from days to weeks, 

depending on the satellite orbital and energy constraints, its observation geometry and 

downlink capacity. The spatial resolution depends on both the energy level of the measured 

radiation and the observation distance. Whereas spaceborne passive microwave sensors 

inherit spatial resolutions on the order of tens of kilometres, optical airborne observations 

range within the cm to meter scale. Furthermore, RS data requires corrections accounting for 

atmospheric, geometric, radiometric and topographic effects. For example, in rugged terrain, 

the observational geometry in combination with high topography may limit continuous 

assessment of the earth surface.  

Specifically for soil RS, soil coverage by vegetation and lichens are hampering 

investigations by optical sensors. In such cases, spectral signatures of land cover other than 

soils (e.g. vegetation, urban areas, roads and water surfaces) need to be masked, resulting in 

incomplete coverage of the study area. Furthermore, the majority of RS systems only 

characterize the surface or, in optimum conditions, shallow depths of soils. These surface 

characteristics may not be representative for the deeper soil profile. Still, RS-derived 

observations of the soil surface, soil surface variations, and partially obscured soil surfaces 

can be used to infer soil properties. Beside the direct retrieval of soil attributes, proxies may 

represent an alternative; stratification using indicator species of vegetation for specific 

habitats enables soil types to be allocated to specific strata, and vice versa [Mücher et al., 

2009]. However, the success of the latter method is limited to the availability of data for 

potential natural vegetation or indicator species, and is hampered in ecoregions significantly 

altered by humans. For further details on remote sensing technologies, see section 3.2 and 

4.1. 

2.3 Remote sensing products 

RS offers possibilities for extending existing soil survey data sets and can be used in 

various ways. Firstly, it may help segmenting the landscape into internally more or less 

homogeneous soil–landscape units for which soil composition can be assessed by sampling 

using classical or more advanced methods (Fig. 2). Automated spatial segmentation of the 

landscape supporting soil–landscape mapping is typically based on first- and second-order 

derivatives of DEMs, observed parent material and spatiotemporal vegetation changes. In this 

context, spatial and temporal changes of vegetation indices and biogeographical gradients 

have been used to improve spatial segmentation [Mulder, 2013]. Secondly, RS data can be 

analysed using physically-based or empirical methods to derive soil properties. Moreover, RS 

can be used as a data source supporting DSM [Ben-Dor et al., 2008; Slaymaker, 2001]. 

Finally, RS facilitate mapping inaccessible areas by reducing the need for extensive time-

consuming and costly field surveys [Mulder, 2013; Mulder et al., 2011]. 



Remote Sensing Laboratories  Doc. Ref: 00.0338.PZ / L435-0501 

Dept. of Geography  Version: 5.2 

University of Zurich  Date: 22 Jan. 15 

Winterthurerstrasse 190  Page: 14 of 71 

CH – 8057 Zurich  File Name: Remote_Sensing_of_Soils.docx 

14 

 

Fig. 2. (Left) Landform delineations: red hatch: mountains, yellow hatch: alluvial fans, green hatch: 

valleys, blue hatch: wash drainage areas, unshaded: unclassified areas. (Right) the corresponding 

shaded relief: 4x vertical exaggeration [Leighty, 2004]. 

RS-derived soil and environmental variables are widely used in DSM. PS has been 

employed in the VNIR and SWIR for inferring a multitude of soil properties, with varying 

success [Reeves, 2010], including soil texture, organic matter, pH and iron content. Other soil 

sensors map penetration resistance, apparent electrical conductivity, or magnetic 

susceptibility [Viscarra Rossel et al., 2011]. 

Recently, major advancements in the spatial assessment of soil properties have emerged, 

predominantly from optical and microwave remote sensing, next to large-scale DSM-projects 

devoted to a Global Soil Observing System (e.g. e-SOTER, S-World). Summarizing, RS 

studies address particularly the following soil parameters: 

(i) Mineralogy: mineralogical composition of soils indicating its host rock and soil 

fertility. 

(ii) Soil texture: indicating the sand/silt/clay content (i.e. soil grain sizes), which 

influences physical, chemical, and biological soil processes. 

(iii) Soil moisture: indicating the volumetric soil water content, a key parameter 

influencing a range of hydrological processes at a variety of spatiotemporal 

scales, including runoff, erosion and solute transport. Soil moisture information 

is furthermore important for managing agricultural irrigation.  

(iv) Soil organic carbon: biomass and non-biomass sources that improve various 

physical properties of soils, such as cation exchange capacity (CEC), water-

holding capacity and nutrient content, among others.  

(v) Iron content: indicator of soil fertility and the age of the sediments. 
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(vi) Soil salinity: indicating the salt content in soils that may increase driven by 

natural processes such as mineral weathering, water table variations or artificial 

processes such as fertilization or land clearing. 

(vii) Carbonates: originating from calcite-rich parent material, influencing the soil 

alkalinity (high soil pH) and structure with potential negative effects on water 

infiltration and plant growth. The soil pH specifically affects plant nutrient 

availability by controlling the chemical forms of the nutrient.  

(viii) Soil degradation and contamination: the decline in soil quality caused by its 

improper use, including agricultural, pastoral, industrial or urban purposes. Over 

time, this may result in the loss of organic matter, decline in soil fertility, decline 

in structural conditions, erosion, contamination by toxic chemicals or pollutants 

and other adverse changes (Fig. 3). 

For further details on remote sensing products see section 3.3 and 4.2. 



Remote Sensing Laboratories  Doc. Ref: 00.0338.PZ / L435-0501 

Dept. of Geography  Version: 5.2 

University of Zurich  Date: 22 Jan. 15 

Winterthurerstrasse 190  Page: 16 of 71 

CH – 8057 Zurich  File Name: Remote_Sensing_of_Soils.docx 

16 

 
Fig. 3. Robust regression kriging prediction of trace elements across France, excluding the effect of 

short-scale processes; Red crosses represent the location of outliers [after Saby et al., 2011]. 
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3 In-depth review on remote sensing of soils 

3.1 Digital soil mapping 

3.1.1 Concept of digital soil mapping 

DSM relies on field and laboratory soil observations and PS and RS-derived soil 

information, integrated with quantitative methods to infer spatial patterns of soils across 

various spatial and temporal scales [Grunwald, 2010]. Using a broad range of data sources 

and methods, DSM aims to provide up-to-date and accurate soil maps to meet the current and 

future need for soil information. The DSM approach is both data and environmental-centred 

and so uses the data as a starting point to study the spatial distribution of soils and soil 

properties. This makes DSM flexible and more suitable in providing soil information for 

specific applications compared to conventional soil mapping [Mulder, 2013]. 

The basis of DSM is the application of pedometric methods that predict the spatial and 

temporal distribution of soil types and soil properties. The conceptual framework in which the 

pedometric methods are applied is the State Factor Equation of soil formation, first 

introduced by Jenny [1941]. This work states that soils can be described by the main 

environmental soil forming factors, which are: climate, organisms, relief, parent material and 

time (CLORPT). DSM uses this concept to develop empirical models that relate observations 

of soil properties with environmental variables describing the main soil forming factors (i.e. 

CLORPT). Refinements of this modelling framework were made over the years, including the 

SCORPAN [McBratney et al., 2003] framework, which is spatially explicit, and the STEP-

AWBH [Grunwald, 2011], which is both spatially and temporally explicit. Typically, the 

environmental variables are exhaustive, georeferenced data layers, including digitized 

geological and soil maps, satellite images and derivatives of the latter. There are no 

prerequisites on the type of model; regression models, regression trees and various other data 

mining techniques have been proven successful in establishing the statistical relations. 

Overall, DSM is indeed flexible, quantitative and accurate [Mulder et al., 2011]. 

Nevertheless, there are some critical points to consider. First, the models are typically not 

easy to transfer to other regions because the prediction models are based on the feature space 

of the study area, which may not be applicable in another area. Secondly, compared to 

conventional soil mapping products, DSM maps are developed for specific purposes rather 

than for general applications, which reduces its use to a limited public. Finally, DSM is not 

standardized and the use and interpretation of models by other users requires a clearly written 

report with supplementary information and instructions [Mulder, 2013]. 

3.1.2 Remote sensing supporting digital soil mapping 

Advanced technologies such as remote and proximal sensing offer a wide variety of 

applications to obtain spatial information on soil forming factors (i.e. CLORPT, SCORPAN 

model). In this subsection, we highlighted the current RS contribution to obtain information 

on various CLORPT factors: 
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Soil properties, like soil mineralogy and soil texture, can be mapped using imaging 

spectroscopy sensors. While such infrared and visible sensors only measure surface 

characteristics, radar and gamma radiometry can provide spectral information beyond the 

vegetative cover and the soil surface. For a detailed overview of remote sensing applications 

for soil properties see section 3.3. 

Characteristic climate factors could be represented by air and surface temperature, rainfall 

and perhaps some measure of potential evapotranspiration. Climate surfaces can be produced 

from meteorological stations interpolated by Laplacian smoothing splines [Hutchinson, 

1998a; b] or based on remote sensing data [Huffman et al., 2007; Mu et al., 2011; Wan, 

2008]. Examples of RS-based climate products, in-situ and model data are MODIS, 

worldclim and TRMM products (see Chapter 8). 

The main soil forming or altering organisms are vegetation or humans, although other 

organisms can have an appreciable soil-modifying effect locally [Hole, 1981]. Estimates of 

vegetation type, land use and land cover and biomass have all been obtained from visible, 

infrared and microwave RS and are useful indicators of soil properties and classes [Chen et 

al., 1999; Gupta et al., 2001]. Examples of data products on land cover and vegetation 

dynamics are GIMMS, MODIS and GlobCover (see Chapter 8).  

Topography is mainly derived from DEM’s, which are based on Light Detection and 

Ranging (LiDAR) data, synthetic aperture RADAR (SAR) data and stereo-correlation of 

optical images. Dependent on the sensor altitude, LiDAR allows for highly accurate and very 

densely sampling of elevation points which enables the generation of highly resolved digital 

terrain and surface models [Brennan and Webster, 2006; Hodgson et al., 2003]. SAR data are 

typically processed using interferometric techniques, based on either airborne or spaceborne 

sensors. Recently, the ASTER Global Digital Elevation Map (GDEM), created by stereo-

correlation of ASTER imagery (30 m), has been made available for free to the public. For 

Switzerland, the swissALTI
3D

 product is a very precise digital elevation model, which 

describes the surface of Switzerland without vegetation and surface buildings. It is based on 

airborne LiDAR measurements and very high-resolution airborne imagery and has an 

elevation accuracy ( Z) of ~1m and a spatial resolution of 2m. Also, the global WorldDEM 

elevation dataset, with unprecedented resolution (12 m) and Z ~10m, will be available from 

December 2014. This novel dataset is based on high-precision radar interferometry using the 

TerraSAR-X and TanDEM-X satellites. Different primary and secondary attributes can be 

parameterised from a DEM, such as altitude, slope, aspect, different curvatures, upslope area, 

compound topographic index, etc. Therefore, DEMs are, arguably, one of the most useful and 

quantitatively developed factor for predicting soil attributes and soil classes [McKenzie et al., 

2000]. See Chapter 8 for further information on data availability. 

Parent material information can be obtained from digitized geological maps and 

geological surveys. Further quantitative information about surface mineralogy and texture can 

be obtained by imaging spectroscopy, gamma radiometrics as well as geomorphological and 

weathering models [Dickson et al., 1996]. Additionally, the natural fields of the earth, being 
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gravitational, electrical [Andriani et al., 2001], magnetic [Galdeano et al., 2001] and 

electromagnetic [Beard, 2000], can be used to provide information on the underlying 

geological structure. Furthermore, regolith maps can be produced from a combination of 

multi- and hyperspectral and airborne geophysical data. Digitized geological data is available 

via the OneGeology initiative (see Chapter 8). 

3.1.3 Digital soil mapping and geostatistical approaches 

As outlined in the previous subsection, DSM may benefit from supplementary RS and PS 

information. In case of incomplete coverage of the area of interest, exhausted coverage may 

be obtained by direct interpolation of data gaps, based on RS information as primary data 

source. This approach is suitable if legacy soil data is scarce or unavailable and exhaustive 

RS or PS data is available. Alternatively, if legacy soil data are available, soil and terrain 

attributes, derived from remote sensing or soil proxies, can be used as secondary variables to 

improve the interpolation of existing soil data [McBratney et al., 2003]. 

In case remote sensing represents the primary data source, spatial interpolation using 

geostatistical techniques can be employed to map spatial patterns in areas with sparse soil 

data. In heterogeneous areas, methods like simple kriging and (generalized) linear models 

with independent variables, such as slope, curvature, wetness index and soil profile 

information, have been used to derive soil attribute maps [Gessler et al., 1995; Moore et al., 

1993; Odeh et al., 1994; Philippot et al., 2009; Saby et al., 2011]. In complex terrain, 

however, ordinary kriging is more appropriate, as it adapts to local fluctuations by a restricted 

neighbourhood search [Goovaerts, 1999]. 

When measurements are sparse or poorly correlated in space, the estimation of the 

primary attribute is generally improved by accounting for secondary information from other 

related categorical or continuous attributes such as a DEM, RS data or derived products. PS 

can be used as a primary data source and RS can be used as one of the secondary data sources 

to predict soil properties from PS. This way, the large spectral resolution of the PS data can 

be combined with the spatial coverage of the RS data. 

Considering PS, either field or laboratory measurements need to be obtained as primary 

data source or as a covariable (in co-kriging) for soil spatial prediction on a dense grid. The 

primary attribute can be predicted with kriging within strata, or some combination of 

regression analysis and kriging or co-kriging [Heuvelink and Webster, 2001; Knotters et al., 

1995]. 

So far, most quantitative relationships have been established between soil attributes and 

topography derived factors. But there is further evidence of quantitative relationships with the 

other soil-forming or soil-altering factors, which are generally nonlinear. These factors can be 

spatially predicted from geographic position using a variety of techniques. The empirical 

quantitative function linking soil attributes or classes to the CLORPT factors is generally 

based on various forms of linear models, classification and regression trees, neural networks, 
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fuzzy systems, strengthening models, expert systems, classifications or other methods 

[McBratney et al., 2003] (Fig. 4). 

 

Fig. 4. Spatial distribution maps of soil organic content density (SOCD) based on different spatial 

predictions for Hebei Province, China. Scale 1:10M [after Zhao and Shi, 2010].  

3.1.4 Remote Sensing in the context of conventional soil mapping 

While DSM studies usually focus on a few key soil properties conventional soil mapping 

surveys are based on soil taxonomy and soil classification. Thus, the latter provides not only a 

set of soil properties in top and subsoil, but also taxonomic features such as hydromorphic 

properties of the soil. Although there is huge potential that RS products support ongoing or 

planned conventional soil mapping surveys, up to date no soil survey in Switzerland was 

carried out so far in cooperation with RS expertise. At present the cantonal soil agencies 

acquire GIS maps from their cantonal GIS centres, but there are hardly any personal 

resources to process these information for the purpose of soil mapping. The current soil 

mapping activities at some cantons are mainly performed according the generalized scheme 

given in Fig. 5. Often soil mapping projects are quite small and the responsible cantonal soil 

agencies lacking financial support for larger soil mapping surveys. In Switzerland soil 

information is scarce, for less than one third of the agricultural land (1 Mio hectare) soil 

information exists as soil maps [Grob and Keller, 2011]. Most of these were mapped between 

the 1970s and 1990s, thus, are sometimes older than four decades. Only a few cantons 

accomplished so far a 1:5000 soil map. One of the main reasons for this uncomfortable 

situation is, that the former national soil mapping unit at the Swiss Federal Research Station 
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for Agroecology and Agriculture (FAL) stopped in 1996. Since then the cantons are 

responsible for soil mapping and are not supported by the federal government concerning 

reference methods or with new technologies such as remote sensing.  

The unfortunate situation induced activities for a national harmonization strategy [Knecht, 

2004], for digital coding of soil profile information, for converting data coded by earlier data 

keys and for harmonizing soil maps [Lüscher, 2004; Presler et al., 2010]. A major step was 

the implementation of the web-based Swiss National Soil Information System NABODAT 

(www.nabodat.ch) in 2011, which now serves as a national, harmonized digital archive for 

soil information [Rehbein et al., 2011]. At present, eight cantons transferred their soil data to 

the NABODAT system, while for another 9 cantons the data for transferring their soil data to 

NABODAT are being processed. As a result, the majority of the soil legacy data generated in 

soil mapping surveys will be available in the next years in a harmonized manner with the 

NABODAT soil information system.  

These soil legacy data are a valuable information source for new soil mapping activities in 

Switzerland. Given the performance steps in a conventional soil mapping survey as outlined 

in Fig. 5, one of the most important step is to acquire and compile all existing environmental 

information sources and GIS-maps for the SCORPAN factors as mentioned above. For this 

task the RS products as outlined in the previous chapters provide very valuable information 

for the pedologist. Bringing together the experience and expert knowledge of the soil 

scientists with a comprehensive set of thematic maps for the region a first proxy map can be 

delineated in an effective manner. In addition, the single thematic maps (e.g. geology, terrain 

attributes, land use, vegetation, and others) might be processed together to provide the soil 

scientist with a “synthesis” map for those environmental conditions, i.e. the spatial 

segmentation of soil related environmental covariates. Such a spatial segmentation facilitates 

to generate the first proxy soil map in conjunction with preliminary soil investigations in the 

field.  

Based on this proxy soil map usually typical representative spatial units are chosen and 

sites chosen, where soil profiles have to be investigated (so called reference profiles). After 

that step, the crucial step is to extrapolate the findings for the reference profiles for the whole 

soil survey area. In this step, in addition to the spatial segmentation any kind of RS product 

that provides information about the spatial heterogeneity of soil properties is invaluable. Most 

of the RS products described in chapter 3.3 such as mineralogy, soil texture, soil moisture (in 

particular in spring time to distinguish the light and heavy textured soils) soil organic carbon, 

iron and carbonate are very important soil properties helps the soil scientist to perform soil 

mapping. In conventional soil mapping the soil scientist has usually large experience in field 

work and delineates the spatial boundaries of the soil map units (i.e. polygons of the final 

spoil map) with a small soil auger in the field. This information is used then to draw the 

borders of single soil units on the field map on paper. The field map is often generated on 

1:1000 resolution if a target resolution for the final soil map of 1:5000 should be 

accomplished. However, the accuracy of spatial segmentation of soil map units with such an 
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approach is often discussed and questioned. In fact, large experience is needed by the soil 

scientist to delineate the spatial boundaries accurately. 

Fig. 5. Generalized performance steps in conventional soil mapping. The arrows indicate for which 

steps RS products improve soil surveys. 

An important issue in classical soil mapping is that single map polygons are delineated if 

at least one main soil property changes in space in the topsoil or subsoil, e.g. soil texture, soil 

hydromorphy, organic matter, mineralogy and others. Hence, RS products as proxies for any 

soil property will improve the spatial segmentation of soil map units. This holds also if RS 

products would be only available for the top soil. In addition, geostatistical approaches as 

outlined in chapter 3.1.3 will support this performance step in soil mapping. 

In summary, the goals of DSM studies and conventional soil mapping surveys have to be 

distinguished. DSM studies usually deal with one or a few key soil properties, while 

conventional soil mapping surveys cope with soil taxonomy and soil classification systems. 

For both type of approaches RS provides very valuable support, for conventional soil 

mapping the RS products have to be integrated in various performance steps and into the 
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whole soil mapping procedure. In future, case studies are needed to work out the synergies in 

detail and to evaluate the benefits of RS for soil mapping surveys in terms of quality of the 

soil maps, time and costs. 

3.2 Remote sensing technologies  

Remote sensing of soils covers various spatial, spectral and temporal scales using sensors 

that utilize different parts of the EM spectrum (Fig. 6). Cutting-edge advances in the 

quantitative disciplines like RS and PS have laid the foundations for a spatial exploration of 

soil-system dynamics within a landscape context [Pennock and Veldkamp, 2006].  

The platform and resolution of RS sensors control the product’s accuracy. Compared with 

ground-based sensors, air or spaceborne sensors have a low signal-to-noise ratio attributed to 

the larger atmospheric path length, decreased spatial resolution, geometric distortions, and 

spectral ambiguity caused by recording multiple signals from adjacent features. Furthermore, 

differences between sensors in available wavelength bands and in the mechanics of imaging 

influence the accuracy [Kasischke et al., 1997]. In the shorter wavelengths (e.g., the visible 

part of the electromagnetic spectrum), features can be observed by virtue of reflected solar 

energy, while in the longer wavelengths (e.g., microwave, thermal EM), sensing of emitted 

energy predominates.  

A number of in-depth reviews have been dedicated to the application of RS to soil 

mapping and related issues, which demonstrated a significant increase in the efficiency of 

conventional soil-survey methods when RS data were used [e.g. Anderson and Croft, 2009; 

Ben-Dor et al., 2002; Dwivedi, 2001; Joyce et al., 2009; Kääb, 2008; McBratney et al., 2003; 

Metternicht and Zinck, 2003; Metternicht et al., 2005; Metternicht et al., 2010; Mulder et al., 

2011; Vrieling et al., 2006]. 



Remote Sensing Laboratories  Doc. Ref: 00.0338.PZ / L435-0501 

Dept. of Geography  Version: 5.2 

University of Zurich  Date: 22 Jan. 15 

Winterthurerstrasse 190  Page: 24 of 71 

CH – 8057 Zurich  File Name: Remote_Sensing_of_Soils.docx 

24 

 

Fig. 6. The EM spectrum, highlighting the useful parts for obtaining information on soil and 

environmental variables through RS and PS. The boundaries for the visible to infrared spectrum are 

defines as: VIS: 0.38-0.74; NIR: 0.74-1.4 m, SWIR: 1.4-3 m, TIR: 3-15 m and FIR: 15-1000 m 

[after McBratney et al., 2003]. 

3.2.1 Optical sensors 

The spectral reflectance of soil varies depending on the environmental conditions at a 

specific spatial and temporal scale, but also on land use and management. RS may capture 

these variations, because it exploits the distinctive nature of energy reflected from materials, 

from which empirical or analytical models can be constructed. This section provides a 

summary on the use of optical sensors for soil RS, focusing on imaging spectroscopy and 

multispectral RS, including thermal RS. 

Imaging spectroscopy 

Imaging spectroscopy, also known as hyperspectral imaging, is defined as a passive RS 

technology, acquiring simultaneous images in many spectrally contiguous, registered bands 

such that for each pixel a reflectance spectrum can be derived [Goetz et al., 1985; Schaepman 

et al., 2007].  

Soils are complex dynamic systems, which are formed and developed as a result of the 

combined effects of climate, biotic activities, and topography. Soil genesis modifies the 

chemical, physical, and mineralogical properties of soil surfaces. This process results in 

distinct spectral absorption features, which can be detected using high-resolution reflectance 

spectra [Leone and Sommer, 2000]. Some of the most significant absorption features occur in 



Remote Sensing Laboratories  Doc. Ref: 00.0338.PZ / L435-0501 

Dept. of Geography  Version: 5.2 

University of Zurich  Date: 22 Jan. 15 

Winterthurerstrasse 190  Page: 25 of 71 

CH – 8057 Zurich  File Name: Remote_Sensing_of_Soils.docx 

25 

the VNIR and SWIR range (0.4 nm to 2.5 m) (Fig. 7 A,B). These absorption characteristics 

can vary in their spectral depth, width, and location and therefore serve as diagnostic 

indicators, which enable us to characterize soil properties. In particular, the amount of organic 

matter and iron content, particle size distribution, clay mineralogy, water content, soil 

contamination, CEC and calcium carbonate content, can be determined with imaging 

spectroscopy [Ben-Dor et al., 2009]. 

In general, soils have only few recognizable narrow absorption features in the VNIR-

SWIR range which become less apparent in the presence of the broad, shallow absorption 

features, related to iron oxides and organic matter (Fig. 7 A,B). Ferric or ferrous iron causes 

absorptions in the VNIR spectra, particularly around 860 nm, whereas organic matter results 

in an overall lowering of the reflectance. In contrast to organic matter and iron oxides, 

various clay minerals (e.g., montmorillonite, kaolinite, illite, smectite) and carbonates have 

distinctive narrowband absorption features in the SWIR region between 2000 and 2500 nm. 

Hence, analysing hyperspectral data is challenging in a variety of ways: (1) the file size of 

multidimensional imaging spectroscopy data increases linearly with the number of spectral 

bands. (2) Atmospheric absorption affects particularly hyperspectral data, due to the selective 

absorption of atmospheric gases and water vapour across the spectral range, which requires 

sophisticated pre-processing. (3) An overall lower signal-to-noise ratio as compared to 

multispectral data is another issue related to narrow spectral bandwidths and atmospheric 

attenuations. (4) A significant band-to-band correlation results in dimensionality issues and 

consequently reduces the total amount of available bands. (5) Furthermore, imaging 

spectroscopy data needs to be corrected for BRDF effects, which vary as a function of 

illumination and viewing geometry and depend on the wavelength as well as structural and 

optical properties of the surface. Managing these and other challenges convenient and 

straightforward processing algorithms and methodologies have been developed to analyse 

imaging spectroscopy data in diverse research disciplines [Kaufmann et al., 2010]. 

Currently, most imaging spectrometers are airborne sensors (e.g. AVIRIS, HyMAP, APEX, 

AISA, HySPEX), in contrast to few spaceborne prototypes (e.g. Hyperion, HICO). 
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Fig. 7. Typical soil spectrum in the (A) visible (vis), (B) near-infrared (NIR), and (C) mid-infrared 

(mid-IR) portions of the EM spectrum that indicates spectral ranges of interest, to infer specific soil 

properties [after Viscarra Rossel et al., 2011]. 

Multispectral remote sensing 

Multispectral sensors record data in fewer bands, resulting in a coarser spectral resolution 

compared to hyperspectral sensors. Typically, multispectral data has been used to derive 

information on land cover and land use (Fig. 8), vegetation indices, land degradation and 

terrain attributes [Dewitte et al., 2012; Mulder et al., 2011]. Over the years, the retrieval of 

soil attributes with RS has progressed, particularly since the launch of advanced multispectral 

sensors. Such RS data potentially allow discrimination between crop residues and soil, 

distinguishing iron oxides, iron hydroxides and iron sulphates, and distinguishing between 

clay and sulphate mineral species [Abrams and Hook, 1995; Hubbard and Crowley, 2005; 

Hubbard et al., 2003]. Examples of advanced spaceborne multispectral sensors with eight or 

more spectral bands include ASTER, Landsat, MERIS, MODIS, and WorldView2, among 

others. 

Some multispectral sensors also include spectral bands in the TIR, which measure the 

thermally emitted radiance from the soil surface. This radiance depends on two factors: (1) 

the surface temperature, which is an indication of the equilibrium thermodynamic state 

resulting from the energy balance of the fluxes between the atmosphere, surface and the 

subsurface soil; and (2) the surface emissivity which is the efficiency of the surface for 

transmitting the radiant energy generated in the soil into the atmosphere [Schmugge et al., 

2002]. The emissivity is conditioned by temperature, the chemical composition, surface 

roughness, and physical parameters of the surface, e.g. moisture content. 

TIR data have been used in combination with other spectral data to discriminate dark 

clayey soils and bright sandy soils from non-photosynthetic vegetation [Breunig et al., 2008; 

Salisbury and D'Aria, 1992]. Further applications include determining soil salinity and soil 

moisture as well as establishing soil–vegetation–atmosphere transfer models to estimate root-

zone soil moisture. 
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Fig. 8. Land cover map of Thunder Creek, Washington, USA, based on ASTER data using the SAM 

method [after Meirik et al., 2010]. 

3.2.2 RADAR sensors 

Microwave instruments are generally distinguished in active and passive radar sensors, 

depending on their energy source utilized in the data acquisition (natural vs. emitted 

microwave radiation). Both systems are highly suitable to quantify soil moisture, whereas 

active systems are additionally used to derive terrain and soil attributes. The main advantage 

of radar sensors in comparison to optical and LiDAR sensors is their ability to make ground 

observations independent of most weather conditions (e.g., clouds, fog). Furthermore, radar 

sensors can penetrate through soil to a depth that is equal to 10–25% of their wavelength, 

which equals few millimetres to centimetres depending of the wavelength range [Lascano et 

al., 1998].  

Active microwave systems 

Active microwave sensors can achieve high spatial resolutions on a local to regional scale 

using Synthetic Aperture RADAR (SAR) systems. SAR is the most common imaging active 

microwave configuration, where microwave pulses are processed together to simulate a very 

long aperture capable of high spatial resolution. SAR backscatter is directly related to the 

target dielectric constant [Moran et al., 2000]. The large difference between the dielectric 

properties of dry soil and moisture enables good calibration of the SAR signal to soil 

moisture. The active C-band and X-band radars have been used successfully to quantify soil 

moisture [Baghdadi et al., 2008; Zribi et al., 2011]. Previously SAR sensors were limited by 

their long revisit time for acquisitions on the same orbital path. For example, ERS-1 and 

ASAR were characterized by a repeat cycle of 35 days [Moran et al., 2004]. Nowadays, it 

possible to map soil moisture with high temporal frequencies (daily to weekly) due to the 

increasing number of new SAR systems (e.g. TerraSAR-X, Cosmo-SkyMed, ASCAT, Sentinel-

1) and processing techniques allowing for shorter revisit times. Additionally, the launched 
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Sentinel-1A and upcoming Sentinel-1B satellites of the ESA earth observation program 

Copernicus will provide complete coverage of Europe, within two to four days. The 

radiometric, spatial and temporal resolutions of Sentinel-1 render this mission to a promising 

platform for operational surface soil moisture retrieval at 1 km over land [Wagner et al., 

2012]. Furthermore, retrieval in near real-time using change detection is expected to be 

technically feasible. In addition to soil moisture, active SAR data are widely used to generate 

DEMs and other soil attributes, such as soil texture and salinity [Paulik et al., 2014]. 

Passive microwave systems 

Passive microwaves sensors measure the intensity of a soil’s microwave emission in a low 

spatial resolution (~10-50 km) due to the low signal-strength at these wavelengths. With 

respect to operational spaceborne data, the recent ESA mission SMOS operates since 

November 2009 in the L-band to detect Soil Moisture and Ocean Salinity [Kerr et al., 2010]. 

This mission delivers soil moisture information at a 50 km spatial resolution within an 

accuracy of 4%, every three days, and is thus more suitable to detect temporal changes on a 

regional to global scale. SMOS data along with numerical modelling techniques, results in a 

better estimation of the water content in soil down to a depth of 1-2 m. Estimation of soil 

moisture in this zone is important for improving hydrological modelling, monitoring 

photosynthesis and plant growth, and estimating the terrestrial carbon cycle [Ford et al., 

2014]. Timely estimates of soil moisture are also important for contributing to the forecasting 

of hazardous events such as floods, droughts and heat waves. 

3.2.3 LiDAR 

LiDAR (Light Detection and Ranging) is a widely used data source to generate DEM. 

Dependent on the sensor flight altitude, LiDAR allows highly accurate and very densely 

sampled elevation points [Woolard and Colby, 2002]. Processing of LiDAR data involves 

filtering irregularly spaced data points to obtain terrain elevation projected onto a regular grid 

[Brennan and Webster, 2006; Hodgson et al., 2003]. 

A main limitation for LiDAR based approaches is vegetation cover density. For LiDAR, 

too small gap fractions in the canopy prevent the laser pulse to reach the ground. Besides 

several airborne laser scanner systems, spaceborne LiDAR systems (i.e., altimeters and 

sounding instruments) have atmospheric and cryospheric applications [Burkert et al., 1982; 

Spinhirne et al., 2005]. 

3.2.4 Proximal sensors 

Mid-infrared Spectroscopy (covering parts of the SWIR and TIR spectrum) contains more 

information on soil mineral and organic composition than the VNIR, and its multivariate 

calibrations are generally more robust [Viscarra Rossel et al., 2006b]. The main reason is that 

defined molecular vibrations of soil components occur in the mid-IR, while only their 

overlapping combination and overtone peaks can be detected in the NIR [Stenberg et al., 

2010]. This combined signal results in a multitude of bands for even simple compounds. One 

caveat on the use of mid-IR spectroscopy is the presence of distortions due to specular 
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reflection [Reeves et al., 2005]. Specular reflection causes spectral distortions depending on 

the concentration of the material and the particular band (frequency) in question [Reeves, 

2010]. 

Electromagnetic induction is a highly adaptable non-invasive technique that measures the 

apparent bulk electrical conductivity (ECa) of the soil [de Jong et al., 1979]. Electromagnetic 

induction is particularly useful for mapping saline soils and for precision agriculture (Fig. 9). 

Furthermore, the instruments can be placed in airborne platforms for data collection at the 

catchment and regional scale. 

 

Fig. 9. Multisensor platforms. (left) A multisensor platform with electromagnetic induction, passive 

gamma-ray spectrometry, electrical resistivity, and pH sensors and (right) one with mechanical, 

electrical, and optical sensors [after Viscarra Rossel et al., 2011]. 

Soil electrical conductivity (or its reciprocal soil electric resistivity) reflects a combination 

of soil mineralogy, salts, moisture and texture, hence, it is a good compound measure of soil 

(Fig. 10). Measurements of resistivity usually require four electrodes; two electrodes are used 

to apply the current (current electrodes) and two are used to measure the resulting potential 

difference (potential electrodes). Such proximal sensing offers the possibility of producing 

high-resolution maps of the soil electrical conductivity. Furthermore, regression equations 

have been developed to predict and map moisture content, topsoil thickness, and clay content 

[Samouelian et al., 2005]. 

 

Fig. 10. Soil transect based on electric resistivity tomography and soil cores to create a 2D soil 

texture/mineralogy map [after Coulouma et al., 2010]. 

Induced polarisation measurements are essentially an extension of the four-electrode 

resistivity technique described above. Induced polarisation operates by first applying an 

electric current between a current electrode pair and the resulting voltage induced in the soil 
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is measured between a potential electrode pair. However, induced polarisation captures both 

the charge loss (conduction) and the charge storage (capacitance) characteristics of the soil. 

Induced polarisation instruments have been used in hydrogeophysical applications, e.g. to 

infer soil hydraulic properties in the vadose zone [Börner et al., 1996]. 

Magnetic sensors, or, magnetometers, measure variations in the strength of the earth's 

magnetic field and the data reflect the spatial distribution of magnetization throughout the 

ground. Magnetisation of naturally occurring materials and rocks is determined by the 

quantity of magnetic minerals and by the strength and direction of the permanent 

magnetisation carried by those minerals [Hansen et al., 2005]. Typically, magnetics has been 

used for the detection of geological bodies. However, there is increasing use of the technique 

for near-surface applications for example; to better understand soil genesis and formation 

[Mathé and Lévêque, 2003]; to detect anthropogenic pollution on top soils through their 

associations with Fe-oxides; and for rapid identification and mapping of soil heavy metal 

contamination [Jordanova et al., 2008]. 

Seismic reflection methods are sensitive to the speed of propagation of various kinds of 

elastic waves. The elastic properties and mass density of the medium in which the waves 

travel control the velocity of the waves and can be used to infer properties of the earth's 

subsurface. Reflection seismology is frequently used in exploration for hydrocarbons, coal, 

ores, minerals, and geothermal energy. It is also used for basic research into the nature and 

origin of rocks that make up the Earth's crust. Furthermore, it can be used in near-surface 

application for engineering, groundwater and environmental surveying [Viscarra Rossel et 

al., 2011]. 

Ground Penetrating Radar (GPR) is similar to reflection seismology, as it uses the 

transmission and reflection of high frequency (1 MHz to 1 GHz) EM waves in the soil 

(Daniels et al. 1988). The resolution of GPR images can be varied through the use of different 

antennae frequencies. Typically, higher frequencies increase the resolution at the expense of 

penetration depth. GPR has been extensively used for various environmental applications 

[Knight, 2001], including the determination of soil water content [Huisman et al., 2003] (Fig. 

11). 
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Fig. 11. A ground-penetrating radar (GPR) system [after Viscarra Rossel et al., 2011]. 

Magnetic resonance sounding uses a nuclear magnetic resonance principle that is used in 

medical brain scanning (i.e. magnetic resonance imaging (MRI)) to measure subsurface free 

water and hydraulic properties [Lubczynski and Roy, 2004]. It is also known as surface 

nuclear magnetic resonance and can be used to measure water content and porosity to depths 

up to 1500 m. Paetzold et al. [1985] used the technique to measure soil water content and 

concluded that the nuclear magnetic resonance signal is a linear function of volumetric water 

content and is not affected by clay mineralogy, soil organic matter, or texture. They 

concluded that the nuclear magnetic resonance signal is uniquely related to liquid water in 

soils and rocks. 

Gamma-Ray Spectrometry, also known as -radiometrics, provides a direct measurement 

of natural gamma radiation from the top 30 to 45 cm of the soil [Bierwith, 1996]. A gamma-

ray spectrometer is designed to detect the gamma rays naturally emitted from the earth 

surface [Grasty et al., 1991] (Fig. 12). Airborne radiometrics surveys measure the radiation of 

gamma-emitters, like 
40

K and daughter radionuclides of 
238

U and 
232

Th. As the concentration 

of these radioelements varies between different rock types, we can use the information to map 

spatial variation of parent material (soil-forming rocks). Interpreting the surface geology 

requires an understanding of the nature of the surficial materials and their relationship to 

bedrock geology. It can also be considered as a direct, albeit compound, a measure of the 

mineralogical and textural composition of the soil itself and it has also been applied to 

estimate variation in surface soil moisture content [Carroll, 1981] and regolith 

characterization [Martelet et al., 2013]. 
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Fig. 12. (A) A proximal passive  radiometric sensor mounted on a multisensory platform and (B) a 

gamma-ray spectrum showing the energies of the potassium (K), uranium (U), and thorium (Th) 

bands [after Viscarra Rossel et al., 2011]. 

 

Table 1. Suitable proximal soil sensors, other than VNIR-TIR, for acquiring soil information [after 

Viscarra Rossel et al., 2011]. 

 

3.3 Remote sensing products 

In the following subsections we review the different soil attributes that can be determined 

by PS and RS for bare or sparsely vegetated soil. These soil attributes encompass globally 

important soil properties such as texture, organic matter, moisture and mineralogy as well as 

soil properties of local to regional relevance such as iron content, soil salinity and carbonates 

[Arrouays et al., 2014]. 
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3.3.1 Mineralogy 

Surface mineral composition can be determined from the RS spectral signature of rock 

outcrops and bare in-situ soils. In order to discriminate between different minerals, subtle 

differences in the spectral signature throughout the VNIR to TIR may be used. For this, 

airborne or spaceborne data having fine spectral resolution are needed, which allow to detect 

subtle differences in the spectral fingerprint of the mineralogical composition. Furthermore, a 

high spatial resolution is beneficial to reduce spectral mixing effects from different land cover 

types. Airborne imaging spectroscopy data are highly suitable for this task (e.g. AVIRIS, 

HyMAP), given its high spatial and spectral resolution [Green et al., 1998]. For example, 

AVIRIS data has been used to analyse the variation in type and their mineralogical and 

chemical compositions, by mapping SiO2 and Al2O3 in order to estimate the degree of soil 

weathering [Bedini et al., 2009; Galvão, 2008; Green et al., 2003; Kruse et al., 2003; 

Launeau et al., 2004; Martini et al., 2004]. But also synergies of multispectral satellite data 

have been used to determine mineral compositions. For example, the combination of Landsat 

TM data and ASTER data revealed promising results to differentiate the general lithological 

variability based on Landsat TM and to distinguish different mineral groups based on ASTER. 

Similar results can be obtained with the ASTER Geoscience Products [Cudahy, 2012]. The 

spectral features of typical rocks on Earth are mostly found in the TIR region, where 

quartzite, carbonate, silicate and mafic minerals can be discerned. In local studies, advanced 

methods for deriving minerals from ASTER data have resulted, in classification accuracies up 

to 86%. However, the spatial and spectral resolutions of other multispectral satellites, such as 

Landsat TM or MODIS, have been found to be too coarse for determining mineral 

composition [Dobos et al., 2000; Kettles et al., 2000; Teruiya et al., 2008].  

The analysis of mineralogy with spectral PS has made great progress over the last years. 

Nowadays, several institutes provide spectral libraries with comprehensive collections of a 

wide variety of materials. For example, the ASTER spectral library version 2.0, which is a 

collection of contributions from the Jet Propulsion Laboratory, Johns Hopkins University and 

the United States Geological Survey, is a widely used spectral library containing over 2400 

spectra of a wide variety of minerals, rocks, vegetation and manmade materials, covering the 

wavelength range 0.4–15.4 µm [Baldridge et al., 2008]. Similarly, the USGS Spectral Library 

offers a wide range of mineral spectra [Clark et al., 2007].  

The PRISM and Tetracorder tool, on the other hand, consist of a set of algorithms within 

an expert system decision-making framework for soil and terrain mapping. The expert 

systems can compare the spectra of materials of unknown composition with reference spectra 

of known materials. For example, the USGS spectral library contains soil mineral properties 

and land cover types from all over the world. This spectroscopic analysis allows the 

composition of the material to be identified and characterized [Kokaly, 2011]. The results 

obtained with the Tetracorder show that many different minerals can be identified as has been 

shown in Fig. 13 [Clark et al., 2003]. 
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Examples of powerful subpixel unmixing analysis tools are the Successive Projection 

Algorithm (SPA) [J Zhang et al., 2008], Spectral Angle Mapper (SAM), Constrained Energy 

Minimization (CEM) and spatial–spectral endmember extraction (SSEE) tool [García-Haro 

et al., 2005; Kruse et al., 1993; Rogge et al., 2007; Rowan and Mars, 2003; X Zhang et al., 

2007]. 

 

Fig. 13. (Left) True colour composite of Cuprite, Nevada and (right) the corresponding mineral map 

derived from AVIRIS data [Reprinted after Clark et al., 2003]. 

3.3.2 Soil texture 

In standard soil analysis, soil texture classes, such as silt, sand or clay are determined by 

their particle size distribution or physical texture. In RS, soil texture is typically determined 

using specific absorption features to differentiate between clay-rich and quartz-rich soils (Fig. 

14). Clay minerals have typical hydroxyl absorption at 2200 nm; this feature can be captured 

with bands 5 and 6 of ASTER, referred to as the SWIR Clay Index [Chabrillat, 2002]. The 

presence of quartz can be detected using thermal bands between 8000 nm and 9500 nm in 

which the restrahlen feature (reflectance peak of silica) occurs, which correspond with bands 

10 to 14 of ASTER. The combination of ASTER SWIR bands 5 and 6 and TIR bands 10 and 

14 can then be used to discriminate both dark clayey soils and bright sandy soils from non-

photosynthetic vegetation on a local scale, but organic matter influences the results [Breunig 

et al., 2008; Salisbury and D'Aria, 1992]. Principal component analysis of multispectral 
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ASTER imagery has also been used to determine broad texture classes [Apan et al., 2002]. In 

contrast, most other multispectral sensors are not designed to capture the necessary spectral 

information related to soil texture. 

In PS, soil texture is typically determined by multiple linear regression (MLR) or partial 

least-square regression (PLSR). Results show that these methods are useful tools for 

predicting soil texture, but calibration of the models is based on local conditions and therefore 

these models will typically have a reduced accuracy outside the studied areas [Demattê et al., 

2007; Minasny et al., 2008; Mulder et al., 2011; Thomasson et al., 2001; Viscarra Rossel et 

al., 2006a].    

In contrast to the use of optical imagery, there is little experience in using radar for soil 

texture retrieval. Singh and Kathpalia [2007] developed a modelling approach based on a 

Genetic Algorithm, which included empirical modelling to simultaneously retrieve soil 

moisture, roughness and texture from the dielectric constant derived from ERS-2 SAR 

backscatter data. Although the results were in agreement with field observations, they 

concluded that there were problems with the retrieval of input variables of the model. 

 

Fig. 14. (Left) Nominal clay content (%) for distinct soil units based on predictions using Bayesian 

belief networks [after Mayr and Palmer, 2006]. (Right) Soil texture based on regression kriging [after 

Marchetti et al., 2010]. 

3.3.3 Soil moisture 

Microwave RS of soil moisture content is based on the contrast in dielectric properties 

between dry soil and water derived from the backscatter data. The boundaries of the 

backscatter data are set on the basis of a long-term change detection approach. An advanced 

index on soil moisture is the Soil Water Index (SWI) [Wagner et al., 2007], which combines 

ERS/ASAR and METOP data to achieve a spatial resolution of 1 km on a daily basis (Fig. 

15). The index is particularly useful for monitoring changes in soil water content over time, 

but is unsuitable to quantify the soil water content [Wagner and Scipal, 2000; Wagner et al., 

2007]. The overall quality of the SWI data, compared to in situ soil moisture data from 664 

stations, averages a Pearson correlation coefficient of 0.54 [Paulik et al., 2014]. The recently 

launched passive microwave SMOS (Soil Moisture and Ocean Salinity) and future satellite 

SMAP (Soil Moisture Active Passive) will have a global coverage with 1 km resolution and a 
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temporal resolution up to approximately 3 to 5 days. The modelled surface soil moisture (0–3 

cm) is expected to be accurate to within 4.0% volumetric water content [Panciera et al., 

2009; Wigneron et al., 2007]. The successfully launched Sentinel-1A and upcoming 1B 

satellites (expected launch in in 2016) are characterized by improved spatial, temporal and 

radiometric resolutions. The retrieval of soil moisture will further benefit from the cross-

polarization ability to correct for seasonal vegetation effects in the co-polarized backscatter 

measurements. Assuming the successful operation of both Sentinel-1 satellites, the 

specifications of a potential surface soil moisture product will comprise a spatial resolution of 

0.5-1 km and a temporal resolution 3-6 days in Europe with a high accuracy of 0.04 to 0.08 

m
3
 / m

-3
 over grassland and agricultural areas, excluding forests and steep terrain [Gruber et 

al., 2013]. 

Imaging spectroscopy indices for estimating surface soil moisture content have been 

established using the reflectance in the SWIR region [Haubrock et al., 2005; Haubrock et al., 

2008; Lobell and Asner, 2002]. However, most retrieval algorithms were limited in their 

accuracy due the presence of vegetation. A recent study improved this drawback by 

accounting for a vegetation-cover influence of up to 75% [Spengler et al., 2013]. 

A different approach to estimate soil moisture is using surface energy balance models. 

These studies are typically done on the plot to local scale and produce spatio-temporal 

predictions of actual evapotranspiration, which can be linked with soil water. There are 

several models available; the most widely used are (1) the Soil Energy BALance (SEBAL), in 

which soil and vegetation contributions to ET are aggregated [Bastiaanssen et al., 2005]; (2), 

the Two-Source Energy Balance (TSEB) modelling approach, which discriminates between 

soil and vegetation [Aly et al., 2007]; and (3), the Surface Energy Balance System (SEBS) 

(Su, 2002) which uses both the optical and thermal parts of the electromagnetic spectrum to 

estimate turbulent atmospheric fluxes and surface evaporation [Van Der Kwast, 2009]. 

ASTER and MODIS images have been used for retrieving the surface variables required as 

inputs for energy balance modelling [French et al., 2005; Su et al., 2005]. The main 

difficulties using surface energy balance models are obtaining all the necessary data at the 

proper spatial resolution and the calibration of the model.  

Currently, the most advanced approaches used for estimating root zone soil moisture are 

based on assimilation of remote sensing observations into soil–vegetation–atmosphere 

transfer (SVAT) model. These models can be divided into thermal RS and water and energy 

balance (WEB) approaches. The WEB-SVAT (Water and Energy Balance - Soil Vegetation 

Atmosphere Transfer Modeling) model uses measured precipitation and predicted 

evapotranspiration. The model is based on forcing a prognostic root-zone water balance 

model with observed rainfall and predicted evapotranspiration. In RS SVAT approaches, the 

radiometric temperature is derived from thermal RS and combined with vegetation 

information obtained at the VNIR wavelengths in order to solve the surface energy balance; 

this method does not explicitly quantify soil moisture but uses a thermal-based proxy for the 

availability of soil water in the root zone and the onset of vegetation water stress [Crow et al., 

2008].  
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Under laboratory conditions, spectral PS with statistical methods has been used for 

quantifying soil water content. Examples of such methods are (1) the soil line, which plots the 

red-band as a function of the NIR-band [Baret et al., 1993; Demattê et al., 2006] and (2) 

MLR with the water absorption features, centred at 1400, 1900 and 2200 nm, as the 

independent variables and measured soil moisture as the dependent variable. However, the 

latter method will most likely not work under field conditions, owing to the strong absorption 

of radiance by water vapour in the atmosphere. 

 

Fig. 15. (Left) Surface soil moisture maps of Oklahoma retrieved from ERS scatterometer in a 50 km 

spatial resolution and (right) ASAR GM measurements in 1 km spatial resolution for three different 

dates in spring 2005 [after Pathe et al., 2009].  

3.3.4 Soil organic carbon 

Soil colour is a first order indicator to estimate soil organic carbon (SOC); typically, dark 

soils contain more soil organic matter than pale soils. This darkening of soil with higher SOC 

content is caused by saturated organic matter and to variation in the composition and quantity 

of black humic acid and soil moisture [Viscarra Rossel et al., 2006a]. However, some soil 

colour systems (e.g. Munsell HVC [Munsell, 1912]) are based on subjective perception and 

comparison, which results in a non-uniform system not suitable for quantification of SOC 

[Viscarra Rossel et al., 2006a].  

Using imaging spectroscopy for mapping SOC enables robust analysis of reflectance 

patterns beyond the visible spectrum (Fig. 6, 16). Used techniques employed the shape of the 

reflectance spectrum, absorption features analysis and principal component analysis 

[Palacios-Orueta and Ustin, 1998; Palacios-Orueta et al., 1999]. Alternatively, regression 

modelling can be used [Ben-Dor et al., 2002]. Previously, such methodologies have been 

employed successfully on spaceborne and airborne imaging spectroscopy data [Gomez et al., 

2008; Selige et al., 2006; Stevens et al., 2010]. 
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However, most research determining SOC using spectral information has been performed 

at the plot scale (<1 km
2
). Here, spectral data is usually obtained from PS thereby reducing 

the effect of vegetation on the spectral response. Correlation coefficients in the range of 

0.87<R
2
<0.98, between spectrally measured and chemically analysed samples, have been 

obtained using mid-infrared and combined diffuse reflectance spectroscopy [Barnes et al., 

2003; Chang, 2002; McCarty et al., 2002; Viscarra Rossel et al., 2006a]. 

Mapping SOC over vast areas, without extensive calibration by soil samples, can be 

achieved using spectrally-based indices. The SOC content is then determined based on the 

constituents of SOC: cellulose, starch and lignin; good relations have been found for indices 

based on the visible part of the spectrum (R
2
=0.80) and for the absorption features related to 

cellulose (around 2100 nm) (R
2
=0.81). The best index-based relations compared to results for 

PLSR (R
2
=0.87). PLSR proved to be much less sensitive towards extrapolation of the model 

beyond SOC levels used during the calibration. Although the indices seem promising, they 

must still be tested on spaceborne sensors, which currently have lower signal-to-noise ratio. 

Application in areas having substantial vegetation cover will be a challenge as well 

[Bartholomeus et al., 2008]. 

 

Fig. 16. (Left) Map of SOC content in a freshly ploughed field after land consolidation based on 

combined CASI–SASI imaging spectroscopy data. Dashed lines denote boarders of the original, 

separated fields [after Stevens et al., 2006]. (Right) Soil carbon map derived from imaging 

spectroscopy data of the bare soil of an agricultural field, draped on a LiDAR derived DEM (15x 

exaggerated) [after McCarty et al., 2010].  

3.3.5 Iron content 

Soil iron can be seen as an indicator of soil fertility and the age of the sediments 

[Bartholomeus et al., 2007]. Over the years, PS has proven to be useful for determining soil 

iron content in soil samples and at the plot scale [Demattê, 2002; Nanni and Demattê, 2006]. 

But also, RS imagery has been successfully used for determining the presence of iron over 

areas up to 500 km
2
. Both soil colour [Escadafal, 1993] and absorption features have been 

used to derive iron content [Farrand and Harsanyi, 1997; Palacios-Orueta and Ustin, 1998; 



Remote Sensing Laboratories  Doc. Ref: 00.0338.PZ / L435-0501 

Dept. of Geography  Version: 5.2 

University of Zurich  Date: 22 Jan. 15 

Winterthurerstrasse 190  Page: 39 of 71 

CH – 8057 Zurich  File Name: Remote_Sensing_of_Soils.docx 

39 

Warell, 2003]. Iron oxide and iron hydroxides have specific absorption features that are 

located in the VNIR and can be measured from multispectral or imaging spectrometer images 

[Abrams and Hook, 1995]. However, these absorption features are less distinct in the 

presence of vegetation, which hampers retrieving of soil iron [Xu et al., 2004]. 

Only few methods have been developed to quantify soil iron content (Fig. 17). Though 

Landsat TM has been used for this purpose, owing to the low spectral resolution the 

absorption features were not unequivocally discernable and therefore the results were 

considered inaccurate [Deller, 2006]. Bartholomeus et al. [2007] were among the first 

quantifying soil iron content on the basis of airborne optical data. They determined the iron 

content in Mediterranean soils in partly vegetated areas, using ground-based spectral 

reflectance and airborne imaging spectroscopy. The use of two iron-related absorption 

features as well as a ratio-based Redness Index, resulted in moderately good correlations 

(R
2
=0.67 and R

2
=0.51, respectively) on samples measured under laboratory conditions. 

Unfortunately, the relations were comparably weak (R
2
=0.26) when applied to airborne 

ROSIS (Reflective Optics System Imaging Spectrometer) data. The relations appeared to be 

sensitive to vegetation cover, but a combination of the Redness Index plus relations based on 

the absorption feature, made the model more robust against the influence of vegetation cover 

[Bartholomeus et al., 2007]. 

 

Fig. 17. Map of free iron oxides at the Ashdod sand dunes, Israel [after Ben-Dor et al., 2008]. 

3.3.6 Soil salinity 

In arid and semi-arid climates, precipitation is insufficient to maintain a regular 

percolation of rainwater through the soil, so soluble salts accumulate, with consequences for 

soil properties, such as structure, and land suitability.  
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Both radar and optical RS data have been used for mapping soil salinity. Microwave 

remote sensing of salinity is based on the dielectric properties of the soil, since salinity is a 

key element of the electric conductivity [Aly et al., 2007]. The dielectric constant is a 

complex number consisting of a real part, which is related to soil moisture, and an imaginary 

part, which is related to salinity. Using inverse modelling, the imaginary part can be 

calculated and calibrated with soil salinity [Bell et al., 2001; Taylor et al., 1996; Yun et al., 

2003]. Soil salinity classes have been successfully derived on a local scale (<500 km
2
) with 

the C-, P-, and L-bands of airborne and spaceborne radar systems; best results are obtained 

using L-band data because long wavelengths penetrate soil and vegetation to a greater extent 

than higher frequencies [Bell et al., 2001; Lasne et al., 2008; Taylor et al., 1996].  

The spectral response patterns of saline soils are a function of the quantity and mineralogy 

of the salts they contain [Mougenot et al., 1993]. Using spectral absorption features, spectral 

PS can be used to provide information on the presence of salt minerals and it enables salt-

affected soils to be quantified [Weng et al., 2008]. Salinized soils have distinctive spectral 

features in the VNIR parts of the spectrum, related to water in hydrated evaporite minerals. 

They show absorption features at 505 nm, 920 nm, 1415 nm, 1915 nm and 2205 nm. 

However, laboratory spectral analyses revealed that salt affected soil samples did not exhibit 

all of the diagnostic absorption features that were found in the spectra of the pure salt 

minerals. Yet, the regression models had accuracies up to R
2
=0.8 [Farifteh et al., 2008].  

Salt scalds and highly salinized soil show additional absorption features at 680, 1180 and 

1780 nm. These features enable the recognition of minerals, such as gypsum, bassanite, and 

polyhalite, which can be used as salinity indicators. Another informative property is that, at 

approximately 2200 nm, hydroxyl features become less pronounced when samples are more 

saline. The reduction of the 2200 nm absorption intensity may be a result of a loss of 

crystallinity in clay minerals. Yet another potentially usable characteristic, is the overall 

decrease in slope of the reflection curve between 800 and 1300 nm as samples become more 

saline [Taylor and Dehaan, 2000]. Using RS on a local scale (<10
4
 km), broad salinity classes 

can be mapped with ASTER [Melendez-Pastor et al., 2010], HyMAP [Dehaan and Taylor, 

2003], Landsat TM and ALI imagery - the latter two using the Salinity Index and the 

Normalized Salinity Index (NSI) [Bannari et al., 2008; Jabbar and Chen, 2008; Odeh and 

Onus, 2008]. Weng et al. [2008] were able to discriminate five classes of saline soils with 

Hyperion data for an area of about 1200 km
2
. Alternative methods for mapping saline areas 

are based on detecting the presence of salt scalds and halophytic vegetation. However, the 

spectral resolution must be high in order to detect the different vegetation types [Dehaan and 

Taylor, 2001]. 

A major constraint to using PS and RS for mapping salinity is related to the fact that there 

is a strong vertical, spatial and temporal variability of salinity in the soil profile. Spectral data 

acquisition does not allow information to be extracted from the entire soil profile, since only 

the Earth surface is observed. This can be overcome by integrating RS data with simulation 

models and geophysical surveys [Farifteh et al., 2006; Metternicht and Zinck, 2003; 

Mougenot et al., 1993]. Direct and precise estimation of salt quantities is difficult using 
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satellite data with a low spectral resolution because these fail to detect specific absorption 

bands of some salt types and the spectra interfere with other soil attributes [Mougenot et al., 

1993]. 

3.3.7 Carbonates 

Optical RS allows distinction between common carbonate minerals on the basis of unique 

spectral features found in the SWIR, and especially in the TIR region. Here, the minerals 

have a low emissivity from 1095 up to 1165 nm and high emissivity from 8125 to 10950 nm. 

The Calcite Index, for example, is based on this difference in emissivity and has been 

successfully used on single ASTER images of 60*60 km [Yoshiki et al., 2002; Yoshiki et al., 

2004]. Alternatively, the specific absorption features of carbonate have been analysed with 

derivative analysis on PS data. Derivatives of second order or higher should be relatively 

insensitive to variations in illumination intensity, whether caused by changes in sun angle, 

cloud cover, or topography [Hu, 2007; Plaza et al., 2008]. Under laboratory conditions this 

method worked well (R
2
=0.64), but when applied to airborne data with a pixel size of 25 m

2
, 

the performance decreased (R
2
=0.46). This was attributed to radiometric and wavelength 

calibration uncertainties as well as possible residual atmospheric effects [Lagacherie et al., 

2008]. 

3.3.8 Soil degradation and contamination 

Imaging spectroscopy enables the assessment of important soil erosion variables, such as 

water content and surface roughness [Haubrock et al., 2005; Haubrock et al., 2008]. 

Furthermore, spectroscopic data can be used to map post-fire soils and pin point water-

repellent soil areas that tend to be potentially highly erodible [Lewis et al., 2004]. 

The spectral difference between severely eroded soils and intact topsoil has previously 

been used to map surface erosion processes [Demattê and Garcia, 1999]. In a study area in 

southern France, various soil erosion states have been identified based on the ratio between 

developed substrates and components of the parent material [J Hill et al., 1994]. Their 

corresponding end-member spectra were subsequently used to parameterize a spectral 

mixture model to map the spatial extent of soil erosion [J Hill et al., 1995]. The results 

highlighted that different erosion levels could be mapped with an accuracy of about 80%, 

which proved superior to applying the approach of Landsat-TM imagery [J Hill et al., 1995]. 

Another approach to assess soil erosion and soil degradation status is based on 

quantitative estimates of specific soil chemical properties. In a study area in south-eastern 

Spain imaging spectroscopy data have been used to identify SOC concentrations indicating 

soil deposition and erosion states; high SOC concentrations in sediment sinks provide 

favourable soil conditions, owing to their higher infiltration and water retention capacity, 

better aggregation, and increased nutrient availability [e.g., Imeson et al., 1996]; the 

corresponding source areas represent active erosion and transport zones with low organic 

carbon concentrations [J Hill and Schütt, 2000]. 
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Probably most operational imaging spectroscopy surveys have been performed to assess 

soil contamination caused by chronic or accidental pollution from metal mining. Following 

studies in the US, e.g., Swayze et al. [1996], the MINEO project [Chevrel et al., 2003] 

investigated five mining areas in Europe using HyMap airborne imaging spectrometer data. 

Imaging spectrometry was used to map the extent and type of chronicle heavy metal 

contamination based on pyrite oxidation trace minerals. These indicators were used to assess 

the environmental impact of historical mining sites on soil contamination, and for 

remediation planning. 

In the event of a collapsed dam for mine tailings in southern Spain in 1999 the heavy 

metal contamination of soils was explored using HyMAP imaging spectroscopy data (Fig. 

18). Based on chemical and spectroscopy analysis of soil samples, prediction of heavy metals 

(As, Cd, Cu, Fe, Hg, Pb, S, Sb, and Zn) was achieved by stepwise MLR analysis and an 

artificial neural network approach. It was possible to predict six out of nine elements with 

high accuracy, using this approach. The best coefficients of determination (R
2
) between the 

predicted and chemically analysed concentrations were As, 0.84; Fe, 0.72; Hg, 0.96; Pb, 0.95; 

S, 0.87; and Sb, 0.93, respectively. Results for Cd (0.51), Cu (0.43), and Zn (0.24) were not 

significant [Kemper and Sommer, 2002]. In addition to the PS analysis, a Variable Multiple 

Endmember Spectral Mixture Analysis (VMESMA, [García-Haro et al., 2005]) was used to 

estimate the sludge abundance derived from the HyMap data. Furthermore, the analysis of 

residual pyrite-bearing material could be used to assess acidification risk and the distribution 

of residual heavy metal contamination. This assessment was based on an artificial mixture 

experiment and derived simple stoichiometric relationships. As a result, the spatial sludge 

abundance distribution and associated heavy metals could be used to assess the acidification 

potential and to plan counteracting remediation measures [Kemper and Sommer, 2002]. 

In summary, it can be concluded that the reflectance properties of soils enable the 

assessment of various contaminants in their environment and that imaging spectroscopy 

technology proved to be promising for that purpose. 
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Fig. 18. Sludge abundance map based on HyMap data from 1999 in Aznalcollar, Spain. The sludge-

affected area (black background) is superimposed on the HyMap false color image [after Kemper and 

Sommer, 2003]. 

3.3.9 Soil proxies 

The efficiency of using RS to map soil properties in densely vegetated areas depends on 

indirect relations between vegetation and soil attributes. As already outlined in the 

introduction, vegetation indices and time series can be used to delineate soil patterns. Yet, 

more detailed information on the vegetation cover is needed for retrieving soil properties. 

Two useful but prospective proxy indicators have been used to obtain soil property 

information from RS: Plant Functional Types (PFT) and Ellenberg indicator values [Mulder 

et al., 2011]. 

A central tenet in the concept of PFT is that morphological and physiological adaptations 

are linked in predictable ways by resource limitations, responses to disturbance, biotic factors 

or other aspects of the environment. The extent to which such linkages are generalized will 
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determine the ability to detect functional types with remote sensing [Ustin and Gamon, 

2010]. For example, abiotic factors that affect biodiversity are the nutrients available, such as 

nitrogen, and the prevailing climatic conditions. In some cases, low levels of nutrients lead to 

high levels of biodiversity [Forde et al., 2008]. Diekmann [2003] shows that the relation 

between nutrient requirements of plants and nutrient availability in soils can be used to derive 

soil attributes. Accordingly, the concept of PFT can be used to derive the specific type or 

group of species that grow on typical soils. Schaepman et al. [2007] showed that PFT may be 

derived from high resolution imaging spectrometer data on a plot level. Sun et al. [2008] 

developed the current global MODIS PFT product, which is a map with the distribution and 

abundance of major PFT. Ustin and Gamon [2010] proposed the new concept of ‘optical’ 

types. They argue that functional types can be distinguished largely on the basis of optical 

properties detectable by remote sensing. To fully utilize the potential of remote sensing, data 

must be combined with ecological models linking structural, physiological and phenological 

traits based on resource constraints. See Ustin and Gamon [2010] for an overview of different 

sensors and their implications for assessing PFT. Hence, PFT regulate or are regulated by 

ecosystem processes and have discrete different functions within the ecosystems [Mulder et 

al., 2011]. 

For the same reasons as the PFT, Ellenberg indicator values can be used to retrieve soil 

attributes. Originally, the Ellenberg indicator values were calculated for flora mapped on the 

basis of intensive fieldwork [Ellenberg, 1988]. However, Schmidtlein [2005]showed that 

imaging spectroscopy can be used as a tool for mapping Ellenberg indicator values for soil 

water content, soil pH and soil fertility. The Ellenberg indicator values scale the flora of a 

region along gradients reflecting light, temperature, moisture, soil pH, fertility and salinity. 

This way, the flora can be used to monitor environmental change and thereby changes in the 

soil [Diekmann, 2003; M O Hill et al., 2000].  
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4 Bridging the gap: opportunities and limitations 

4.1 Remote sensing technologies 

Over the past decades, major technological and analytical advances have been made in 

various RS fields and disciplines. PS has been successfully used to derive quantitative and 

qualitative soil information [Viscarra Rossel et al., 2006b]. Most reported studies 

demonstrated the high potential of PS to estimate soil properties, based on clear absorption 

features, at the laboratory and local scale [Ben-Dor et al., 2008]. However, for large-scale 

mapping of soil properties methods need to be extended beyond the plot scale. Various soil 

properties are difficult to characterize using spectroscopy due to the lack of diagnostic 

absorption features and complex scattering behaviour within the soil mixture [Clark and 

Roush, 1984]. Quantification and qualification of such soil properties require methods that 

model the complex scattering behaviour of soils [Clark et al., 2003]. For that, the sample 

preparation, spectral measurements, data analysis and model parameterization require special 

expertise [Pompilio et al., 2010]. Currently, these methods are not yet fully operational, but 

will become available in the near future. 

Important qualitative and, to a lesser extent, quantitative soil information can be obtained 

from RS data. Airborne and spaceborne RS provide qualitative information on soil properties, 

having clear diagnostic absorption features, at a regional to global scale. However, compared 

to PS, RS-derived information has a lower accuracy and feasibility to obtain information 

compared to proximal sensing (Table 3). The main limiting factors are (1) the coarse spatial 

and spectral resolution, (2) the low signal-to-noise ratio of high-resolution RS data and (3) the 

bands of multispectral satellite sensors have not been positioned at diagnostic wavelengths. 

Improvements in regional-scale DSM result from the integrated use of RS and PS with 

geostatistical methods. In every step of the soil mapping process, spectroscopy can play a key 

role and can deliver data in a time and cost efficient manner. Although existing methods have 

demonstrated the value of spectral data in DSM, Mulder [2013] stressed that methods need 

the support of geostatistics and ground truth data in order to advance models for regional-

scale DSM. Mulder [2013] further underlined the added value of advanced proximal and 

remote sensing combined with geostatistical methods to obtain soil information. Various 

studies revealed the abilities, opportunities and prospects of integrated RS data to map soil 

properties at regional scale [Mulder et al., 2011]. One of the best examples includes the 

ASTER Geoscience product [Cudahy, 2012] and the mineral maps that were made for 

Australia [Lau et al., 2012]. However, there is a strong need for sophisticated methods to 

analyse and integrate large-datasets [Mulder et al., 2013a]. Furthermore, spectral band 

configurations (spectral resolution and the position of the sensors’ bands) of multispectral 

satellites can be optimized for soil parameter retrieval to enable more comprehensive soil 

monitoring. Although the recently launched Landsat 8 satellite and the upcoming Sentinel-2 

satellites represent further technological improvements in the optical multispectral, their band 

configurations serve multiple purposes and are not specifically adjusted to diagnostic soil 

absorption and reflection features.  
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Although much progress has been made, current PS methods are not readily implemented 

at spaceborne level. There are, however, space-based instruments that partially support such 

approaches [Pieters et al., 2009] or will be available in the future [Stuffler et al., 2009]. The 

spectral band settings and improved signal-to-noise performance of upcoming spectrometers 

in space will certainly improve the retrievals of soil-based information using advanced 

spectral mixing approaches. Secondly, most methods used for retrieving soil attributes have 

been developed using local or regional correlation approaches, and may not scale for 

operational use over vast areas. Considering the use of RS for large-scale DSM, research is 

needed on extending current methods beyond the plot. Indications are that perspectives exist 

to develop methods for large-scale mapping, as indicated in Iwahashi and Pike [2007], 

Ballantine et al. [2005], Wagner et al. [2007] and Ninomiya et al. [2005]. Thirdly, although 

experiments retrieving soil information work well when using PS, their accuracy drops when 

(larger-scale) RS methods are being used. This accuracy drop is mainly caused by sensor 

noise [Phillips et al., 2009], directional reflectance [Kriebel, 1978], topographic [Richter and 

Schläpfer, 2002] atmospheric distortions [Gail et al., 1994; Richter and Schläpfer, 2002], and 

increased mixture of soil properties. Because advances in PS have evolved much faster as 

compared to RS, a technology gap still has to be bridged. 

 

Table 2: Remote sensing technologies used for soil attribute retrieval [modifed after Mulder et al., 

2011]. 
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Optical sensor types distinguish between multispectral (MS) sensors and imaging spectroscopy 

(IS) sensors. Spectral classes distinguish between visible near-infrared (VNIR), shortwave infrared 

(SWIR), thermal infrared (TIR) and different radar bands (X, C, L, P). Spatial coverage distinguishes 

local = <10
4
, regional = >10

4
 - <10

7
, and global = >10

7
 scales. SCORPAN factors comprise soil (S), 

organisms (O), topography (R), lithology (P), and spatial position (N). 



Remote Sensing Laboratories  Doc. Ref: 00.0338.PZ / L435-0501 

Dept. of Geography  Version: 5.2 

University of Zurich  Date: 22 Jan. 15 

Winterthurerstrasse 190  Page: 48 of 71 

CH – 8057 Zurich  File Name: Remote_Sensing_of_Soils.docx 

48 

4.2 Remote sensing products 

Reported DSM-studies made limited use of the various methods that are available for 

spectroscopy and geostatistics [Ben-Dor et al., 2009; Dewitte et al., 2012]. It was found that 

current research using RS data typically produced qualitative outputs. Also, the overall model 

accuracy reduced with increasing scale of the study area. This was contributed to 

incompatibility between the RS data and the available sample data. From the viewpoint of the 

soil scientists, the major gap is the lack of readily available RS-based soil products. 

Currently, soil scientists generate their own input data for their models. However, they may 

be limited in their knowledge of RS and PS tools and methods. Here, communication is the 

limiting factor, which is needed to initiate a multidisciplinary approach for soil mapping 

[Mulder, 2013]. 

Despite the large potential of using RS and PS methods for DSM [Ben-Dor et al., 2009; 

Mulder et al., 2011], advances are deemed necessary to fully develop large-scale 

methodologies. Advances may be expected in developing more quantitative methods and 

enhanced geostatistical analysis using RS and PS data by making use of recent developments 

in DSM-related disciplines. Alternatively to the DSM approach, imaging spectroscopy has 

been used to map e.g. soil mineralogy. Recent studies [van der Meer et al., 2012] 

demonstrated that, at the moment, RS data does not provide the high spectral resolution that 

is needed to quantitatively map soil mineralogy. The physical nature of minerals is too 

complex [Clark, 1999] to be modelled in a quantitative way using imaging spectroscopy 

alone. The use of a geostatistical approach in combination with a small representative sample 

substantially improves the feasibility to quantitatively map mineralogy [Mulder et al., 2013b]. 

The soil spectroscopy community has not yet explored spectral deconvolution for 

assessing soil properties using PS other than mineralogy and soil moisture [Whiting et al., 

2004]. Various methods for estimating properties of the topsoil using PS were found to be 

sufficiently accurate compared to chemical soil analysis. The remaining inaccuracies in 

estimated soil properties of the topsoil, such as soil organic matter, have often been 

contributed to other constituents in soil samples [Bartholomeus et al., 2008]. This implies 

actually, that the inaccuracies are a consequence of overlapping absorption features, which 

need to be accounted for in detailed analysis [Mulder, 2013].  

Additional aspects of DSM that deserve further attention in the development of soil 

products are: (1) the interpolation of gaps in the spatial coverage due to cloud cover, 

vegetation or other obscuring areas; (2) the combination of PS and RS data with geostatistics 

to address the lack of soil property data at regional to global scales; and (3) the improved 

understanding and multi-temporal monitoring of processes related to soil property changes to 

model future variations. The soil science community is aware of these challenges and current 

efforts are on data harmonization [GlobalSoilPartnership, 2011; Panagos et al., 2011; 

Sulaeman et al., 2012] while research efforts are initiated for temporal modelling of soil 

properties [Banwart, 2011]. Despite these initiatives, it is expected that the existing soil data 

have insufficient coverage and thematic variability for regional and global models. The time 
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and cost associated with collecting sufficient data are comprehensive. Therefore, it is 

important to develop new methods, for the benefit of various research disciplines focussing 

on modelling environmental changes, climate change adaptation, food security and soil 

services [Mulder, 2013]. 

 

Table 3: Remote sensing products for soil and terrain attributes [modifed after Mulder et al., 2011]. 
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Numbers (1–5) indicate the feasibility to determine soil and terrain attributes with remote and 

proximal sensing instruments. The feasibility represents the weighted average of scores for the 

number of studies reported, dataset quality, obtained result and applicability to field surveys. 1=low, 

2=low-medium, 3=medium, 4=medium-high and 5=high [Mulder et al., 2011]. 
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4.3 Future directions and soil products 

4.3.1 Research foci and products for DSM 

For future research in soil science, it is important to develop methods that allow modelling 

of a wide set of soil properties. Considering the need of soil information for regional and 

global-scale environmental models, spatiotemporal modelling is the future of soil mapping 

[Heuvelink and Webster, 2001; Katzfuss and Cressie, 2012]. To develop and advance such 

spatiotemporal models, RS and PS with geostatistics will play the key role. Integration of 

legacy, laboratory, soil profile data, field and airborne or satellite data with modelling 

approaches will allow to accurately monitor changes in soil, vegetation and their feedbacks 

[Milcu et al., 2012], over various spatial and temporal scales. Furthermore, large-scale 

subsurface information is needed, based on technologies like gamma-ray spectroscopy 

[Wilford et al., 1997], radar [Merlin et al., 2013] or electric conductivity [Lambot et al., 

2004], to complement data from sensors extracting soil surface information. Another 

remaining challenge is the development of more quantitative geostatistical approaches for 

large datasets [Katzfuss, 2011; 2013]. Such methods are transferrable to different landscapes 

and may deliver more accurate and comprehensive information about soils, soil resources and 

soil ecosystem services [Mulder, 2013]. 

With respect to DSM, numerous studies provide evidence that soil taxonomic data and 

soil properties can be predicted successfully using sets of environmental covariates, as shown 

in various soil-landscape settings [e.g., Grunwald, 2009; Hartemink and McBratney, 2008; 

Lagacherie et al., 2007] (Fig. 19). The trend to formalize pedological expertise in form of 

quantitative soil prediction models of various types is ongoing.  

 

Fig. 19. Spatial distribution of soil organic carbon stocks (kg/m
2
), at the national scale (France) 

[after Martin et al., 2014]. 

 

An interesting and contemporary research topic involves the development of a 

methodology for quantitative extrapolation of soil information across the globe, also referred 
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to as the Homosoil method. This method assumes homology of soil-forming factors between 

a reference area, having good legacy data, and a region of interest where soil information is 

sparse. Hence, the rules calibrated in the reference area may be applied elsewhere, realising 

its limitations and extrapolation consequences [Mallavan et al., 2010]. Global RS products 

are key for establishing a framework in which the homology of soil-forming factors between 

areas can be established. Within this context, finite mixture modelling approaches have been 

successful in deriving specific systems in which soils develop [Mulder et al., 2014]. Another 

important research topic in DSM concerns digital soil assessment, which comprises three 

main processes: (1) soil attribute space inference, (2) evaluation of soil functions and the 

threats to soils, and (3) risk assessment and the development of strategies for soil protection 

[Carré et al., 2007]. Digital soil risk assessment consists of integrating political, social, 

economical parameters and general environmental threats for building, modelling and testing 

scenarios about environmental perspectives. This path responds to the pressing environmental 

issues requiring accurate and high-resolution, spatially-explicit soil data to conduct a holistic 

assessment of soil-environmental systems. 

Future challenges will entail to apply DSM to various soil-landscape settings accounting 

for spatial as well as temporal soil variability. Digital soil mapping will need to encompass 

three-dimensional soil bodies across landscapes [Lacoste et al., 2014]. So far, DSM has 

focused on the topsoil but mapping of soil characteristics in the subsurface are critical to 

address, e.g. nutrient enrichment and pollution problems, carbon sequestration. Bridging the 

gap between research and operational DSM programs will require fusing of expert-

knowledge from soil surveyors and research scientists. Despite technological and 

methodological advancements in DSM, it will be critical to collect reconnaissance soil data 

without relying too much on legacy soil data. Fusing of soil and environmental covariates and 

development of multi-sensor systems will be important to advance and homogenize future 

DSM.  

Future DSM products: GlobalSoilMap  

In 2008, a global consortium (GlobalSoilMap) has been formed that aims to make a new 

digital soil map of the world using state-of-the-art and emerging technologies for soil 

mapping and predicting soil properties at fine resolution. This new global soil map aims to 

predict primary functional soil properties that define soil depth, water storage, texture, 

fertility and carbon at fine spatial resolution (~100 m) for most of the ice-free land surface of 

the globe over the next five years. These maps will be supplemented by interpretation and 

functionality options to support improved decisions for a range of global issues such as food 

production, climate change, and environmental degradation [Arrouays et al., 2014]. 

GlobalSoilMap will be freely available, web-accessible, and widely distributed. 

4.3.2 Remote sensing - data availability, products and services

In addition to the existing earth observation satellites, newly developed products and 

sensors will provide data for the soil science community; the new WorldDEM of the 

TanDEM-X mission will improve global terrain analysis. The upcoming Sentinels and the 
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SMAP mission will enable advanced analysis of soil moisture. Furthermore, the planned 

imaging spectroscopy mission EnMAP (planned launch in 2017) aims to provide high quality 

data for global environmental monitoring, including soil status and properties. On-going 

multi-sensor and multi-scale approaches offer great potential for soil system monitoring over 

large spatial extents and can contribute to a more precise spatial assessment of soil properties. 

Furthermore, novel designs in senor technology enable multiple view angle observations to 

better account for anisotropic reflectance from soil surfaces.  

Copernicus services  

The Copernicus programme comprises satellite-borne earth observation and in-situ data, 

and a services component that combines these in order to provide information essential for 

monitoring the terrestrial environment. The Copernicus land monitoring service provides 

geographical information on land cover/land use and on variables related to vegetation state 

and the water cycle. With respect to the pre-operational state of the Sentinel missions, the 

only soil related product is the Soil Water Index (subsection 3.3.3). In the near future, the 

launched and upcoming Sentinel-1 satellites will enable the operational monitoring of surface 

soil moisture at 1 km spatial resolution [Gruber et al., 2013]. 

THEIA Land Data Centre  

The THEIA Land Data Centre is a French inter-agency initiative designed to promote the 

use of satellite data for (1) environmental research on land surfaces, (2) public policy 

monitoring and (3) management of environmental resources. THEIA aims fostering the use of 

remote sensing data to measure the impact of human pressure and climate on various scales, 

focusing on both natural and anthropological research [Hagolle, 2014]. Within the Land Data 

Centre, the National Centre of Space Research (CNES) is setting up a production center 

named MUSCATE, and already exists in the form of a prototype. This center will provide 

users with ready-to-use products derived from time-series of images acquired over large 

areas. Here, Sentinel-2 will be the spearhead of the production center, but currently, 

MUSCATE produces data from the SPOT4 (Take 5) experiment and is processing all Landsat 

data acquired over mainland France from 2009 to 2011. 

LP DAAC 

NASA and USGS process, archive and distribute Land Processes data, received from EOS 

satellites, thus establishing a Distributed Active Archive Center, or LP DAAC. The LP 

DAAC is a component of NASA’s Earth Observing System (EOS) Data and Information 

System (EOSDIS). LP DAAC processes, archives, and distributes land data and products 

derived from the EOS sensors. The LP DAAC handles data from three EOS instruments 

aboard two operational satellite platforms: ASTER and MODIS from Terra, and MODIS 

from Aqua. ASTER data and MODIS land products are received, processed, distributed, and 

archived. Both data sets are main contributors to the inter-disciplinary study of the integrated 

Earth system. Furthermore, the USGS EarthExplorer (EE) tool provides users access to the 

satellite images, aerial photographs, and cartographic products from several sources [USGS, 

2014].  
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5 Conclusions and recommendations 

This report summarizes and reviews the use of remote and proximal sensing for soil 

survey. In summary, remote sensing provides data (1) supporting the segmentation of the 

landscape into rather homogeneous soil-landscape units whose soil composition can be 

determined by sampling or that can be used as a source of secondary information, (2) 

allowing measurement or prediction of soil properties by means of physically-based and 

empirical methods, and (3) supporting spatial interpolation of sparsely sampled soil property 

data as a primary or secondary data source [Mulder, 2013]. Table 2 gives an overview of the 

various remote sensing technologies used for soil assessments complemented by Table 3 

highlighting remote sensing products for soil properties as discussed in this report. 

A wide variety of soil attributes have been derived with use of statistical and chemometric 

analysis of spectroscopic data [Minasny and McBratney, 2008; Viscarra Rossel and 

McBratney, 2008], which can be used for DSM [Minasny et al., 2009]. However, as can be 

seen in Table 3, the feasibility to derive these soil attributes is on average ‘medium’, which 

means that current methods are not fully developed yet. The retrieval of soil attributes with 

remote sensing has made progress, particularly since the launch of advanced multispectral 

sensors and imaging spectrometers such as ASTER and Hyperion, which have made it 

possible to detect subtle differences between spectral signatures. Various indices, proxies, 

quantities and patterns have been derived from remote sensing in order to map soil and terrain 

attributes. However, remote sensing technology still needs to catch up with proximal sensing 

in terms of number and feasibility of derived soil attributes. Due to the heterogeneity of 

landscapes and the spatial resolution of the imagery (Table 2) it is often difficult to find pure 

pixels representing soil or bare rock. Advanced unmixing tool methods, such as Tetracorder 

[Clark et al., 2003] and PRISM [Kokaly, 2011], are needed to extract sub-pixel soil and rock 

composition. Finally, the spatial extent of most reported work is still restricted to local studies 

and needs to be expanded to allow for regional soil assessments. 

Remote sensing data is used in DSM as covariates for the prediction of soil classes or soil 

properties. In general, the use of spectral imagery for the spatial prediction of soil properties 

is based on the spatial relation between existing soil data and observed patterns in the 

imagery, and not on physically-based retrievals, such as soil moisture [Dobos et al., 2000; 

Stoorvogel et al., 2009]. Over the last years, spectral proximal sensing showed to be useful as 

part of DSM [Minasny et al., 2009; Viscarra Rossel and McBratney, 2008]. Dependent on 

spatial and spectral resolution, spatial coverage and the availability of legacy data, remote and 

proximal sensing data are either used as primary or secondary data source for the spatial 

prediction of soil properties. In vegetated areas soil proxies, such as NDVI, plant functional 

type or Ellenberg indicator values, have been used to derive soil properties, but with mixed 

success. Alternatively, data mining techniques such as classification trees – which are 

generated from a matrix of environmental variables – have been used to estimate soil 

properties and to create soil maps [Bourennane et al., 2014; Martin et al., 2014; Saby et al., 

2009]. 
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Bridging the technology gap between proximal and remote sensing, future work will focus 

on the improved integration of remote and proximal sensing using scaling-based approaches 

in order to make optimal use of all data sources available. Revisit time or temporal 

approaches are still limited by satellite orbital constraints and/or data download capacity. Soil 

moisture based retrievals have become increasingly feasible with the launch of SMOS (Soil 

Moisture Ocean Salinity), but its spatial resolution is still too coarse for soil plot-size 

retrievals. Here, the recently launched Sentinel-1 mission is expected to provide soil moisture 

data in a high spatial and temporal resolution. Certainly, the planned availability of SMAP 

will further contribute to improved retrievals, including freeze/thaw status of the surface. In 

addition, upcoming remote sensing data of Sentinel-2 missions and the imaging spectroscopy 

mission EnMAP, among others, will spark further opportunities to quantify and monitor 

various soil properties in great detail. 

Future research will aim for the integrated use of remote sensing methods for spatial 

segmentation, as well as measurements and spatial prediction of soil properties to achieve 

complete area coverage. In-situ or proximal sensing methods are readily available and we will 

be seeing future instruments launched soon supporting these methods at larger spatial scales 

enhancing the perspectives of DSM.  
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8 Digital resources 

 

 

Theme Description Weblink 
Soil data GlobalSoilMap - A new digital 

soil map of the world using 

state-of-the-art and emerging 

technologies for soil mapping 

and predicting soil properties at 

fine spatial resolution. 

http://www.globalsoilmap.net/ 

 SoilGrids1km is a collection of 

updatable soil property 

http://www.isric.org/content/soilgrids 

 e-SOTER: Regional pilot 

platform as EU contribution to a 

Global Soil Observing System 

http://www.esoter.net/ 

 ASTER Geoscience http://www.ga.gov.au/earth-

observation/satellites-and-

sensors/aster-radiometer/national-aster-

maps.html 

  

Spectral Library USGS Spectroscopy Lab 

(USGS mineral database, 

software, etc.) 

http://speclab.cr.usgs.gov/ 

 ASTER spectral library, a 

compilation of over 2400 

spectra of natural and man 

made materials. 

http://speclib.jpl.nasa.gov/ 

 

   

Environmental 

variables 

MODIS remote sensing 

products (e.g. Land Surface 

Temperature,  

http://modis.gsfc.nasa.gov/data/ 

 

 THEIA is a French initiative 

designed to promote the use of 

satellite data for environmental 

research on land surfaces 

http://www.cesbio.ups-

tlse.fr/multitemp/?p=213 

 

 Global climate layers http://www.worldclim.org/ 

 Tropical Rainfall Measuring 

Mission 

http://trmm.gsfc.nasa.gov/ 

 Geological data http://www.onegeology.org/home.html 

 Earth's global land cover http://due.esrin.esa.int/globcover/ 

 Global Inventory Modeling and 

Mapping Studies - global 

measure of normalized 

difference vegetation index 

http://gcmd.nasa.gov/records/GCMD_

GLCF_GIMMS.html 

   

Digital Elevation 

Models 

Shuttle Radar Topography 

Mission (SRTM) 

http://www2.jpl.nasa.gov/srtm/ 
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 ASTER GDEM http://asterweb.jpl.nasa.gov/gdem.asp 

 WorldDEM http://www.astrium-

geo.com/worlddem/ 

 

 

 


