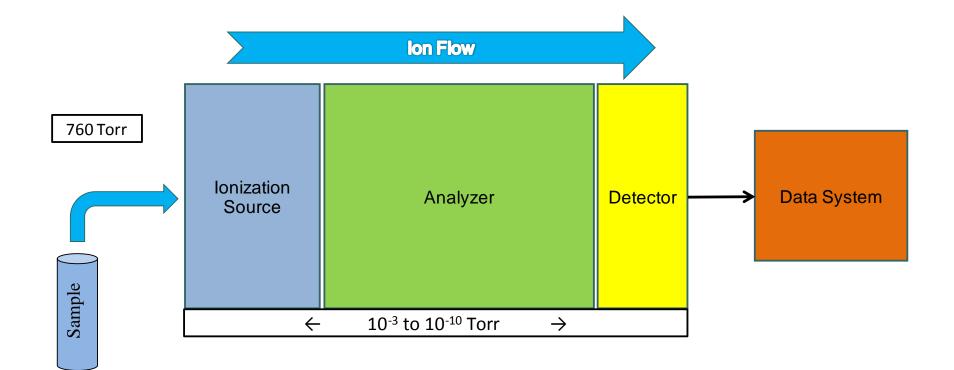
Introduction to Mass Spectrometry

W.M. Keck Biomedical Mass Spectrometry Lab

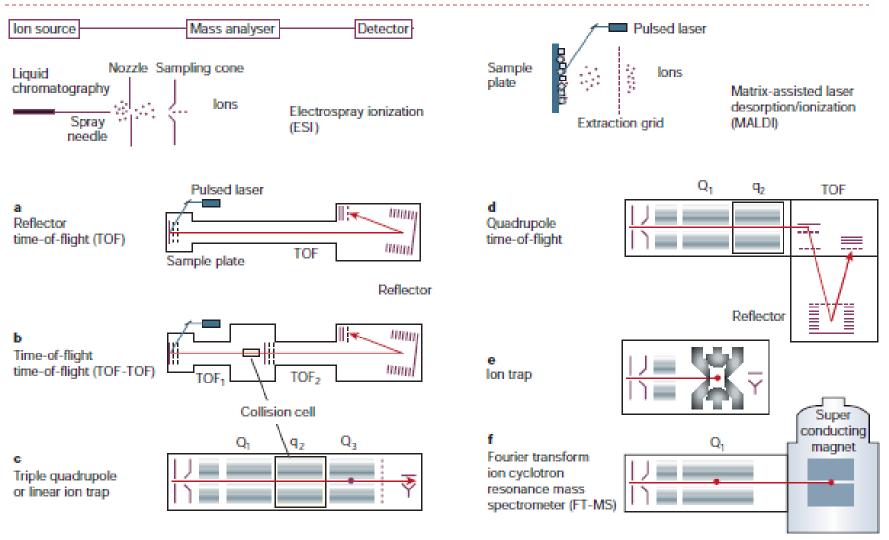
Moore Health Sciences Library Rooms 1335 & 1337 May 18, 2010

The Keck Mass Spectrometry Lab of the Biomolecular Resource Facility

- Jordan Hall Rooms 1105 and 1034
- 434 924-0070
- Nicholas E. Sherman, Ph.D., Director
- Jim Farmar, Ph.D., Assistant Director
- Carla Castro, Ph.D., Postdoctoral Fellow
- Rachel Reuther, M.S., Laboratory Technician
- John Shannon, Ph.D., Director, Shared Instrumentation Core Facility


Course Objectives

- How a Mass Spectrometer Works.
- What a Mass Spectrometer Can Tell You About Your Biomolecule.
- Types of Mass Spectrometers Available in the Keck MS Lab.
- Services Available in the Keck MS Lab.
- How to Work With the Keck MS Lab to Maximize Your Research Success.
- Examples

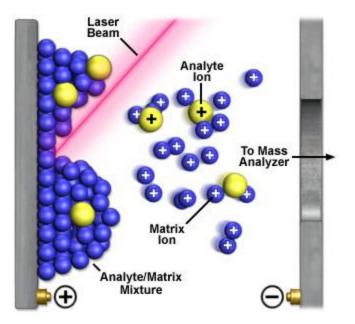

How Does a Mass Spectrometer Work?

- 1. Forms lons from Molecules
- 2. Analyzes lons by mass to charge (m/z)
- 3. Detects the Separated Ions
- 4. Collects the Data

How Does a Mass Spectrometer Work?

Mass Spectrometer Varieties

6


Forming Ions: MALDI (Matrix-Assisted Laser Desorption Ionization)

MALDI

- Laser energy strikes co-crystallized analyte/matrix under vacuum and sputtering produces a plume/explosion of analyte and matrix ions
- Singly Charged Ions (usually)
- Usually Paired with a Time of Flight Analyzer.

lons

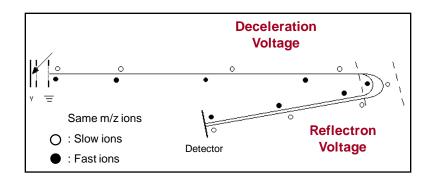
- Formed from molecules: H⁺ or H⁻ or H⁺⁺ or higher
- Reactive, so keep under vacuum.
- Moved in the MS by electromagnetic fields.
- Ions can be made to react with other species in the MS.

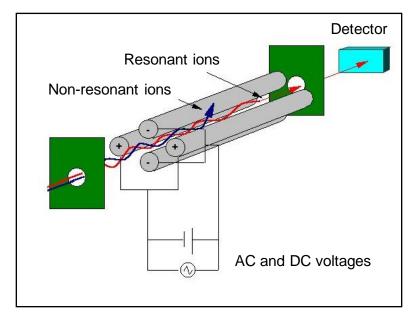
National Magnet Lab www.magnet.fsu.edu

Forming Ions: ESI ElectroSpray Ionization

ESI

- Molecules separated via HPLC.
- Jet of highly charged droplets emerge from capillary tip
- Solvent is evaporated.
- Multiply Charged Ions enter the analyzer.
- Paired with Quadrupoles, Ion Traps, FTs and Orbitraps Analyzers.


Capillary

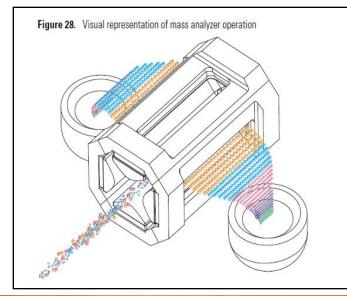

lons

- Formed from molecules: H⁺ or H⁻ or H⁺⁺ or higher
- Reactive, so keep under vacuum.
- Moved in the MS by electromagnetic fields.
- Ions can be made to react with other species in the MS.

National Magnet Lab www.magnet.fsu.edu

Analyzing Ions: Analyzer Types

Time of Flight


- Ions fly along a long tube
- Diagram shows a reflector
- Smaller ions get to the detector 1st
- Analogous to a gel

Quadrupole

- Voltages on 4 rods are scanned as ions enter from source.
- For a certain voltage, only a narrow range of m/z will pass.
- Other m/z's are rejected.
- Result: a Scanning Mass Filter
- Usually used in a series of 3

W.M. Keck MS Lab

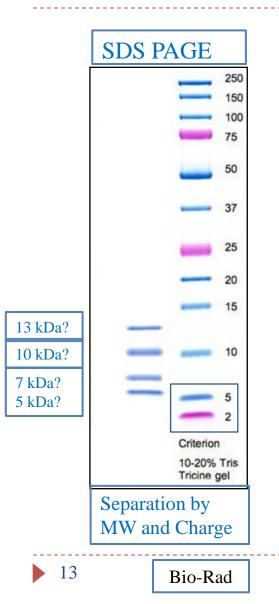
Analyzing Ions: Analyzer Types

Ion Trap

- Traps ions in a 2D field
- Both MS and MS/MS analyses can occur.
- Ions are sequentially ejected to the detector
- High sensitivity, Good range
- Low resolution, Low accuracy

Orbitrap (FT)

- Ions are trapped between a central & an outer electrode
- Ions oscillate to produce a current
- Current is transformed into a m/z
- High sensitivity, good range
- Very High Resolution & Accuracy


Detecting Ions: How?

- Plate and Ion Multiplier Type
 - For ToF, Quadrupole and Ion Trap
 - Conversion Dynode: ions produce 2^o particles
 - Electron Multiplier: 2^o particles generate multiple electrons
 - High sensitivity and High range
- ICR Type
 - For FT and Orbitrap
 - Measures the current induced by ions rotating in a magnetic field or around an electrode.
 - High mass accuracy, high sensitivity, & good range
- Detectors can only count

Your Biomolecule(s): What Information Do You Want?

- Molecular Mass
- Structure
- Sequence
- Identity
- Quantity

Key Concept: Telling One Biomolecule from Another

Detection: Sensitivity vs. Specificity

- Stain: sensitive but non-specific; weak dynamic range
- Ab: very sensitive & specific for an epitope

Resolution:

- Distinguish one biomolecule from another of similar properties
- 2000 Da +/- 500
- Smaller MWs, Better Resolution

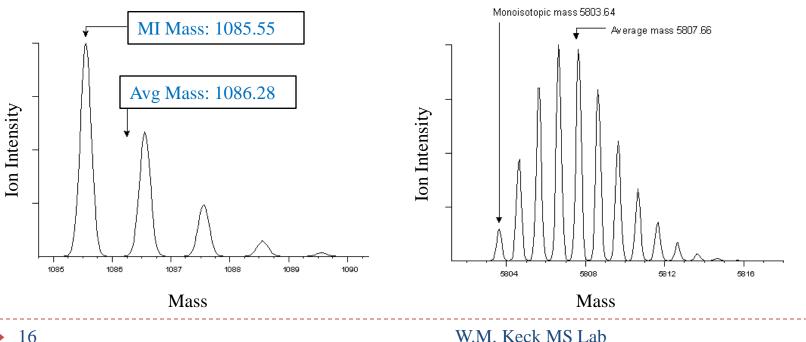
Accuracy:

- Compare Standard Proteins to Sample Proteins.
- How accurate?
- What are the MWs of the sample Bands?

Key Concept: MS of Peptides not the Protein

- Problem:
 - Proteins are too big;
 - Small but important differences in the MS aren't seen and are difficult to locate
- Solution:
 - Digest the protein to produce peptides
- Trypsin is the preferred enzyme:
 - Very well-characterized
 - Efficient
 - Produces good-sized peptides (10 amino acid avg length)
 - Cleaves between KX or RX except if X is Pro

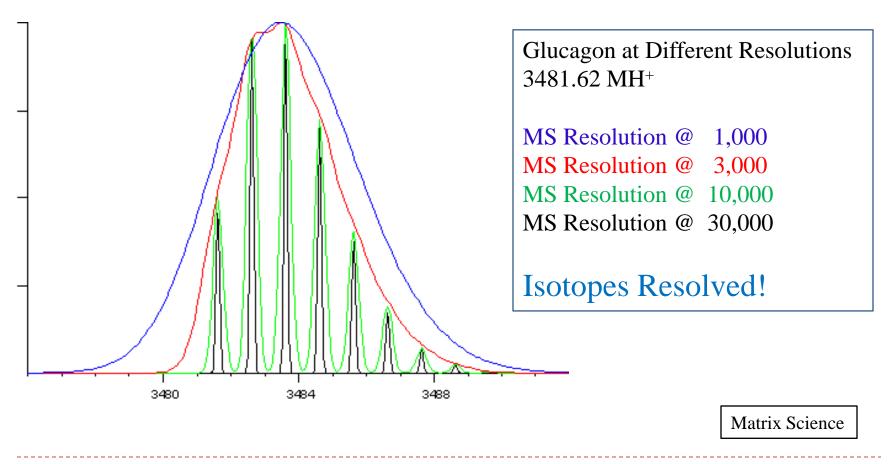
Key Concept: Mass Accuracy Is Important

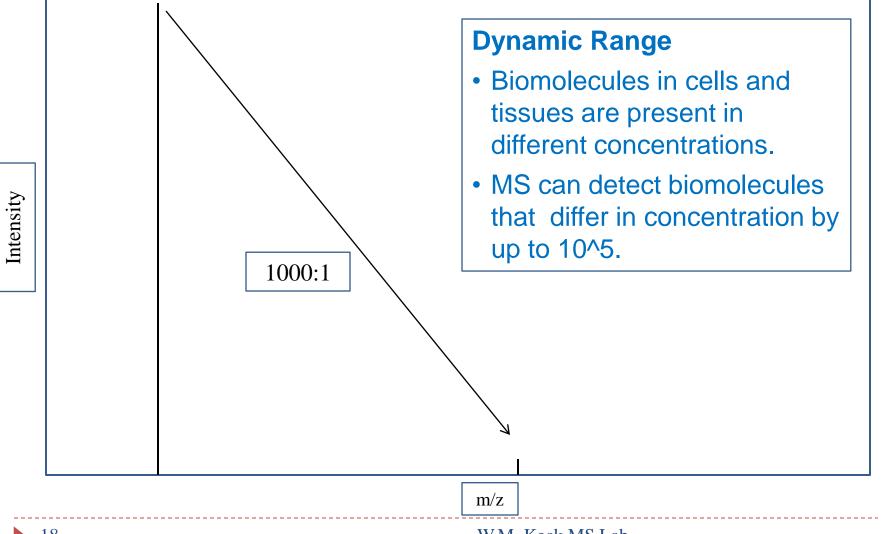

- Measured Value vs. True Value.
- Increase Mass Accuracy: Decrease Number of Matching Molecules from the Protein Databases.
- Modern MS Accuracy: within 10 ppm.
- Practical Limits to instrument accuracy.

Search m/z	Mass Tolerance (Da)	# Hits
1529	1	478
1529.7	0.1	164
1529.73	0.01	25
1529.734	0.001	4
1529.7348	0.0001	2

Liebler, 2002

Key Concept: Isotopes


- Natural Abundance:
 - ¹²C: 98.93%
 - ¹³C: 1.07%
- Use Monoisotopic Mass (all ¹²C molecule) For High **Mass Accuracy**

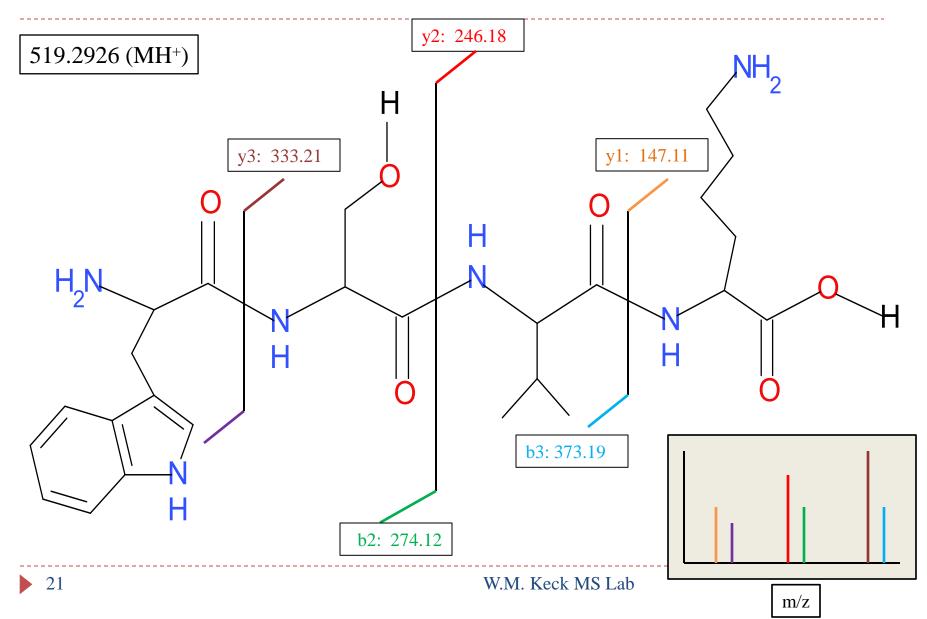

16

Key Concept: Resolution for Mass Spectrometers

The ability of a MS to distinguish one ion from another of very similar m/z's.

Key Concept: Dynamic Range of Mass Spectrometers

W.M. Keck MS Lab


Key Concept: Advantages of a Mass Spectrometer

- Accuracy: >10 part per million
- Resolution: up to 10^6
- Range: greater than 10^5 difference in concentration
- MS as a Universal Detector gives
 - Sensitivity &
 - Specificity.

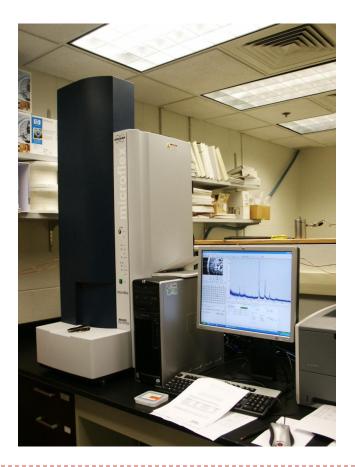
Key Concept: Tandem MS or MS/MS

- To get more information about an ion:
- Fragment the ion into Product ions.
- Obtain the MS of the fragments.
- From the fragments, deduce how they fit together.
- Tandem MS uses 2 or more Analyzers in series.
- For Peptides: Sequence Information

Trp-Ser-Val-Lys

Trp-Ser-Val-Lys

Keck MS Lab: Normal Resolution MS


Bruker MALDI-ToF MS

- Available for Training & Use.
- Confirmation of mass for a biomolecule (500-150,000 Da).
- Protein confirmation via Peptide Mass Fingerprinting (PMF).
- Isotopic Resolution
- Accuracy can be 50 ppm.
- Sensitive.

• Limits:

- Cannot determine the sequence of a peptide
- Not good for complicated mixtures
- No quantification.

Bruker MALDI ToF

Keck MS Lab: Normal Resolution MS

- Three Quadrupoles in Series
- Quantification of proteins, peptides and metabolites
- Selected Reaction Monitoring (SRM, aka MRM) measures intensity of a specific transition for each peptide
 - Parent ion to Product Ion
- High Sensitivity
- Resolution: 1000

Thermo TSQ Triple Quad

Our Lab: High Resolution MS

Double Ion Trap & Orbitrap

- Resolution: 1:400,000 (max)
- Mass Accuracy: 1 ppm
- Very fast
- Tandem MS for:
 - Sequence of peptides
 - Locates the PTM to a specific amino acid in the peptide
- Quantitation by chemical labeling of tryptic digests.
- Global proteomics

Thermo Orbitrap Velos

Our Lab: High Resolution MS

Thermo LTQ ICR FT:

- Ion Trap (LTQ)
- <u>Ion Cyclotron</u>
 <u>Resonance Fourier</u>
 <u>Transform MS</u>
- Resolution: >1:400,000
- Mass Accuracy: 1 ppm
- Tandem MS for:
 - Sequence of peptides
- Global proteomics

Thermo FT ICR

Keck MS Lab: MS Services

- 1. Confirmation of peptide identity by <u>MALDI mass</u> <u>measurements</u>.
- 2. <u>Protein identification from gel or solution by</u> Peptide Mass Fingerprinting (PMF).
- 3. Analysis of <u>protein mixtures</u> from tissue and media .
- 4. Absolute quantitation of proteins using labeled peptides and <u>selective reaction monitoring</u>.
- 5. ID of <u>post-translational modifications (PO₄, Ac, Methylation, etc.,) & sites</u>.

Keck MS Lab: MS Services

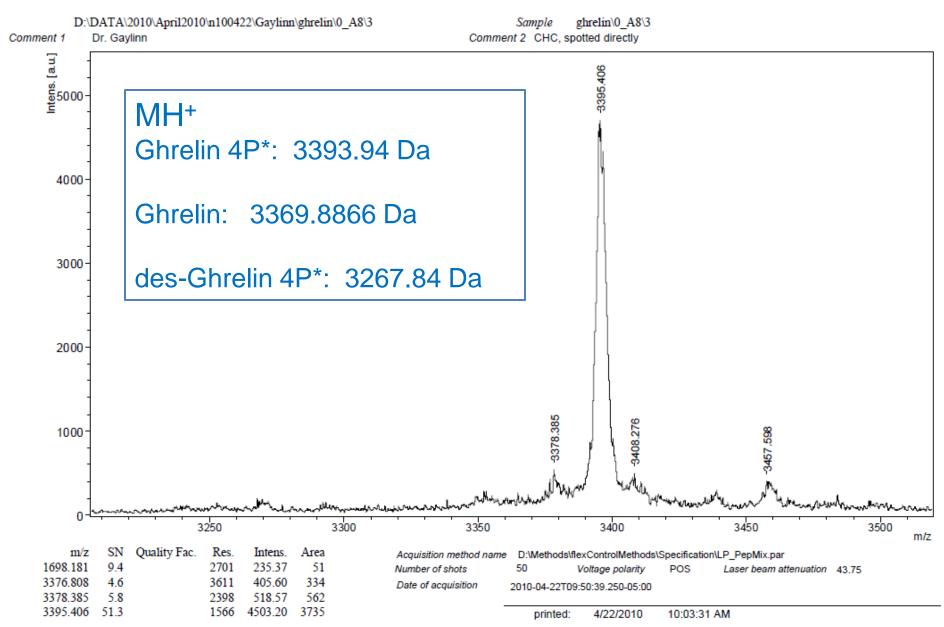
- 6. <u>High resolution, High Mass Accuracy</u> <u>measurements of peptides and small proteins.</u>
- 7. <u>Protein identification and sequencing</u> from gel or solution by ESI-LC/MS/MS.
- 8. Proteomics: comparison of proteins in samples.
- 9. De Novo (manual) <u>sequence analysis</u> of novel proteins to enable cloning.
- 10. Identification of binding partners.

Keck MS Lab: Sample Types Analyzed

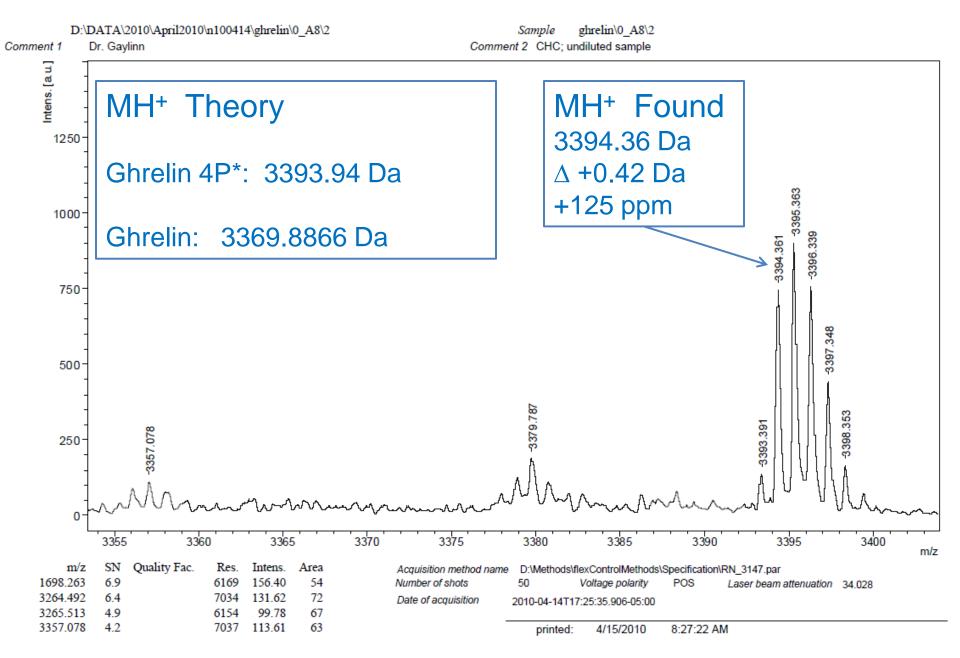
- Gel Bands
 - Coomassie stain
 - Silver stain*
 - Fluorescent stains
- Proteins in solution
- Immunoprecipitations
- Tissue samples
- Biofluids
- Media

Your Sample: Keep in Mind

- Important: Talk with us <u>before</u> you begin your experiment.
- Use our <u>online sample submission process</u> (we can show you how).
- One band or one spot may contain several proteins and in varying amounts.
- Minimize contamination.


In the Keck MS Lab

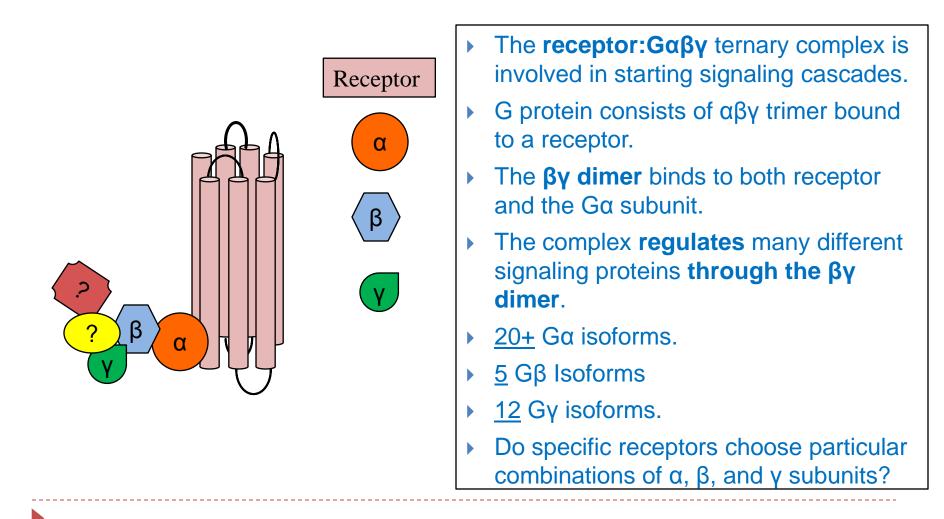
- Sample Modification:
 - Cleanup
 - Chemistry
 - Digest
- Chromatography
- Mass Spectrometer
- Raw Data Analysis
- Results are reported to you as Protein Matches


Bruker MALDI TOF Experiment

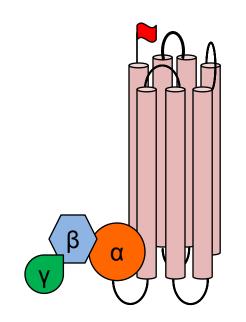
- Was the correct version of Ghrelin synthesized?
- Wanted:
 - GSS(oct)FLSP*EHQRVQQRKESKKP*P*AKLQP*R
 - Octanoyl moiety adds 126.1 Da to Ghrelin (C₈H₁₄O).
 - Each Heavy Proline (P*) adds 6 Da for a total Δ of 24 Da.
- Are all Prolines made with heavy C and N atoms?
- Has the Ghrelin lost the octanoyl group to form des-Ghrelin?

Bruker MALDI ToF in Linear Mode

Bruker MALDI ToF in Reflector Mode

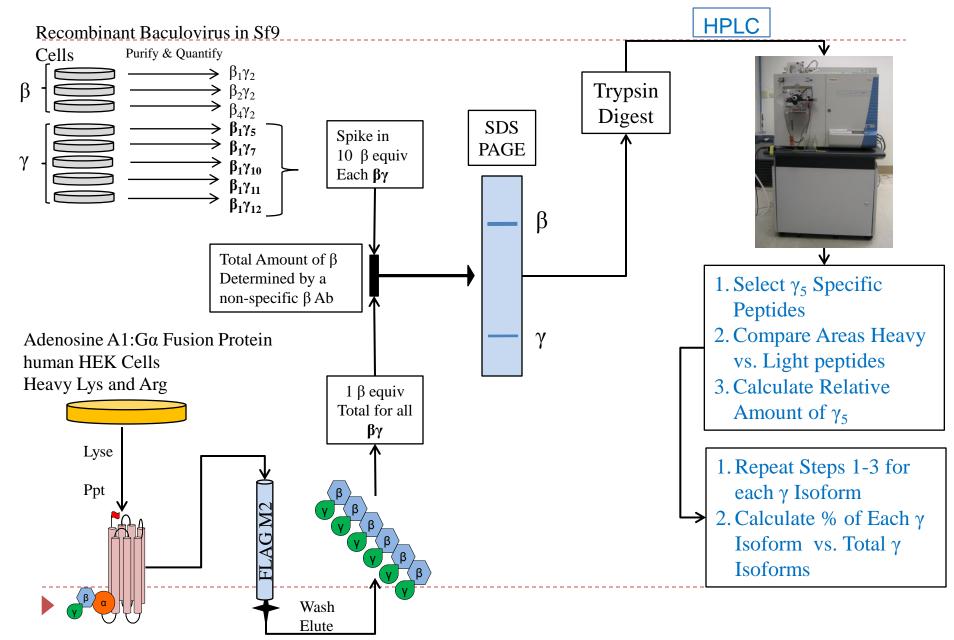


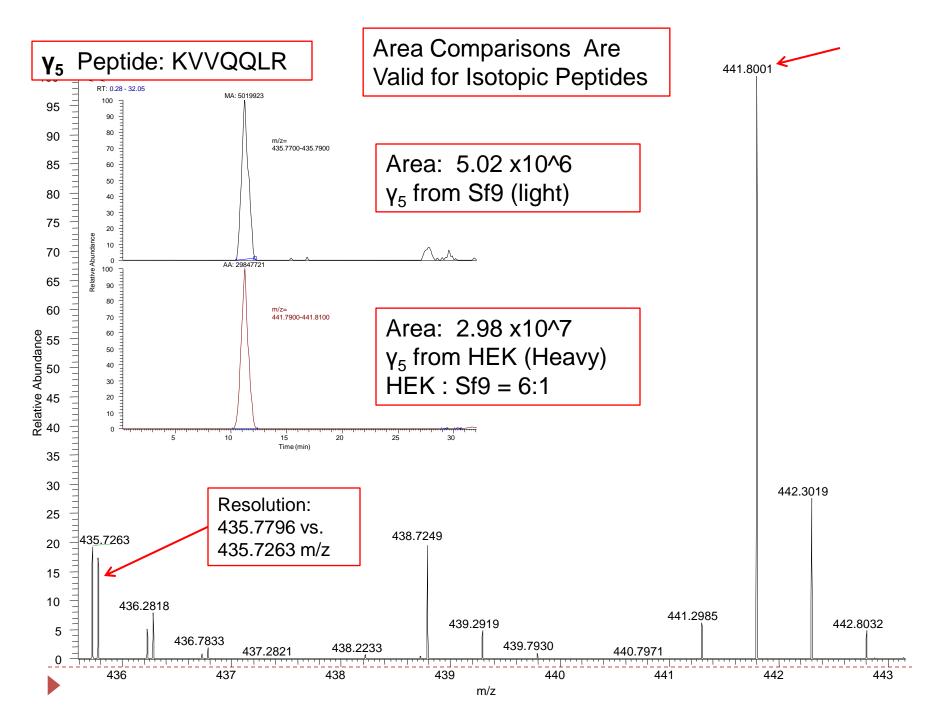
Orbitrap and FT MS Experiment

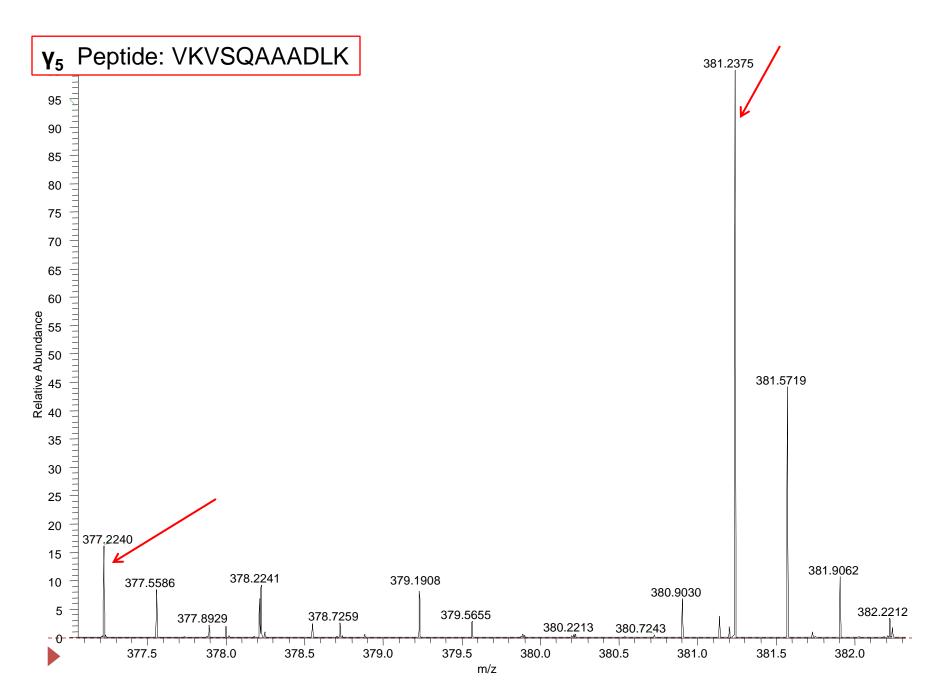

βγ Isoforms Binding to Adenosine A1 Receptor: Gαi1 Complex

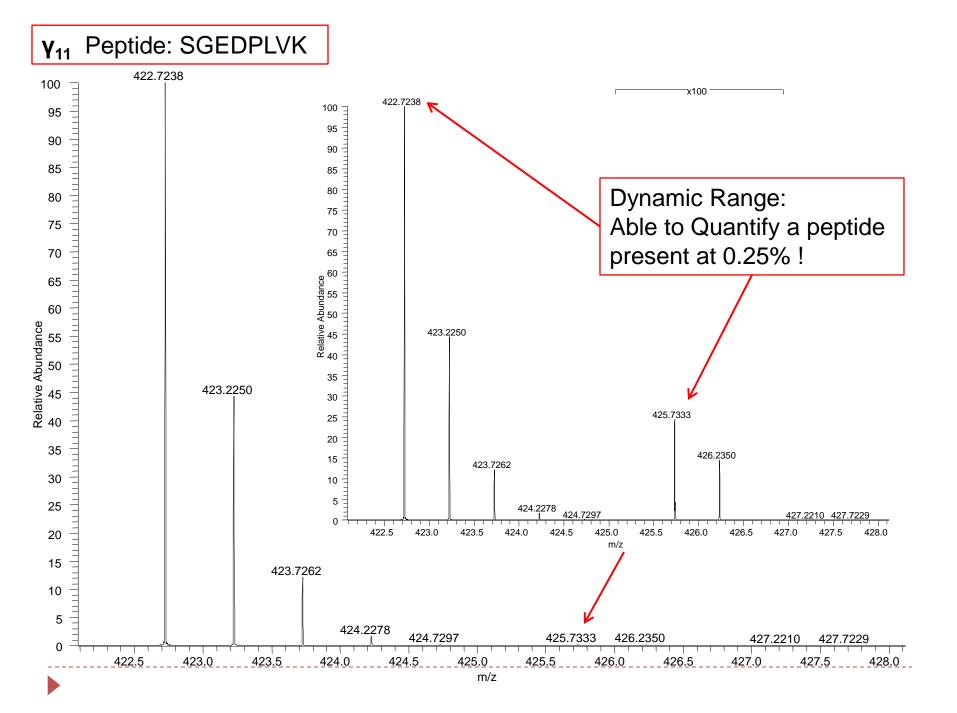
- Use Orbitrap Velos or FT MS
- Use SILAC:
 - Stable Isotope Labeling with Amino Acids in Cell Culture
 - For Relative Quantification of proteins from two cell cultures
 - Compares the tryptic peptides of proteins
 - From cells grown with Heavy Arg and/or Lys (¹³C for +6 Da for each present).
 - ► To cells grown with Light Arg/Lys (¹²C).

βγ Isoforms Binding to Adenosine A1 Receptor: Gαi1 Complex

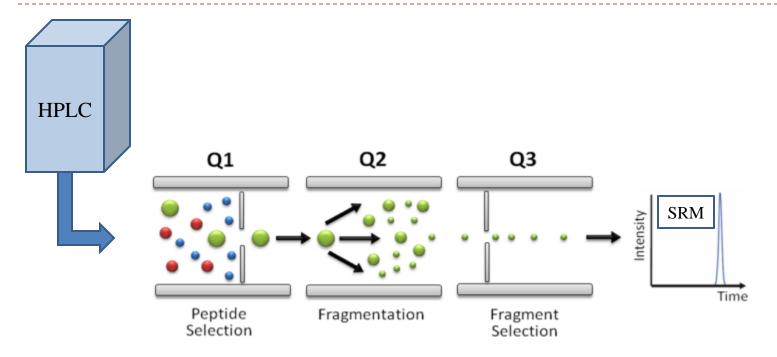



$\beta\gamma$ Isoforms Binding to Adenosine A₁ Receptor: Ga_{i1} Complex Using SILAC




- Building a trap for βγ dimers
- Adenosine A₁ Receptor
- Fused with Gα_{i1} & His-Flag Tag
- βγ dimers binds to receptor:Gα_{i1} fusion protein
- Non-specific Ab to β for total quantitation.
- Which β and γ isoforms bound to Adenosine A₁:Gα_{i1}?

Quantification of βγ Isoforms in an R:G Complex

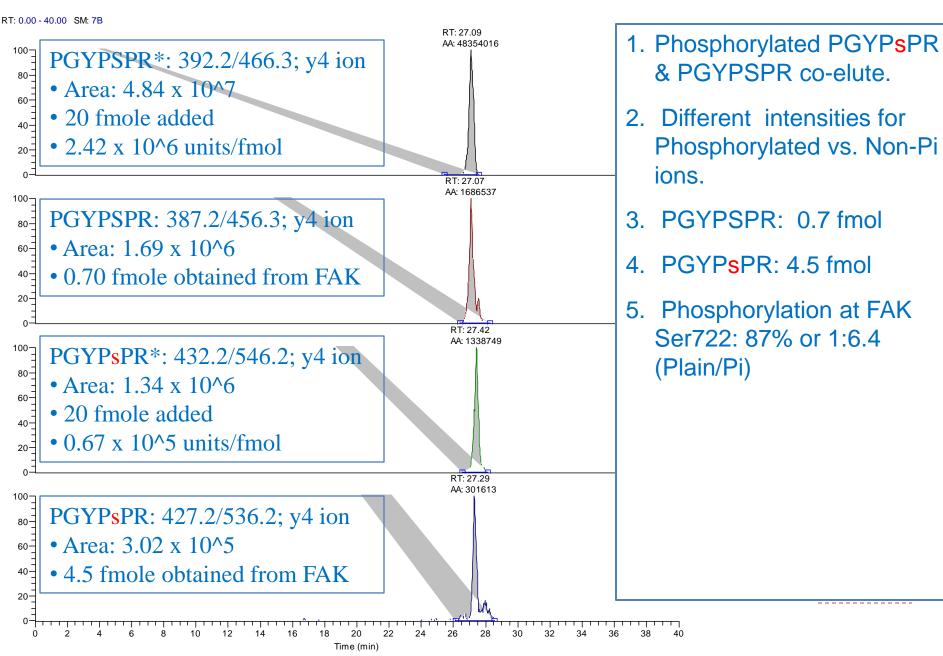

$\beta\gamma$ Isoforms Binding to Adenosine A₁ Receptor: $G\alpha_{i1}$ Complex

γ Isoform	% Total γ	+/-
Ϋ2	6.3	0.9
Y 5	77.5	2.1
¥7	2.3	0.1
Y ₁₀	2.1	0.2
Y ₁₁	0.03	0.01
Y ₁₂	11.9	1.2

Thermo Triple Quad MS Experiment

- Quantitation by SRM
 - Selected Reaction Monitoring (SRM) or Multiple Reaction Monitoring (MRM).
 - > Proteins, peptides, metabolites and PTMs of proteins.
 - No Ab needed
 - Variants easily detected.
 - Biomolecule are separated by chromatography.
 - Measures the fragment ion intensities of:
 - A biomolecule.
 - An isotopic (Heavy) version of the biomolecule which was added in a known amount.
 - Compares the two intensities to arrive at a relative amount for the natural biomolecule.

Thermo Triple Quad MS: SRM or MRM



A. Schmidt, P. Picotti and R. Aebersold

FAK: Phosphorylation at Ser, Thr and Tyr

- Focal Adhesion Kinase I: 1052 Amino Acids
 - Involved in cell motility, proliferation and apoptosis;
 - Phosphorylation of Ser, Thr and Tyr controls interactions with other proteins.
- What Amount of Ser 722 is Phosphorylated?
- Experiment Design:
 - 1. Digest FAK to produce natural or "Light" peptides.
 - Add a <u>known</u> amount of each "Heavy" tryptic peptide. (synthesized with ¹³C/¹⁵N Arg).
 - 3. Run Spiked digest on LC-MSMS (triple quad).
 - 4. For each Heavy/Light peptide, Compare area from a transition: MS ion (precursor)/MSMS ion (product ion).

SRM MS of +/- Phosphorylated PGYPSPR

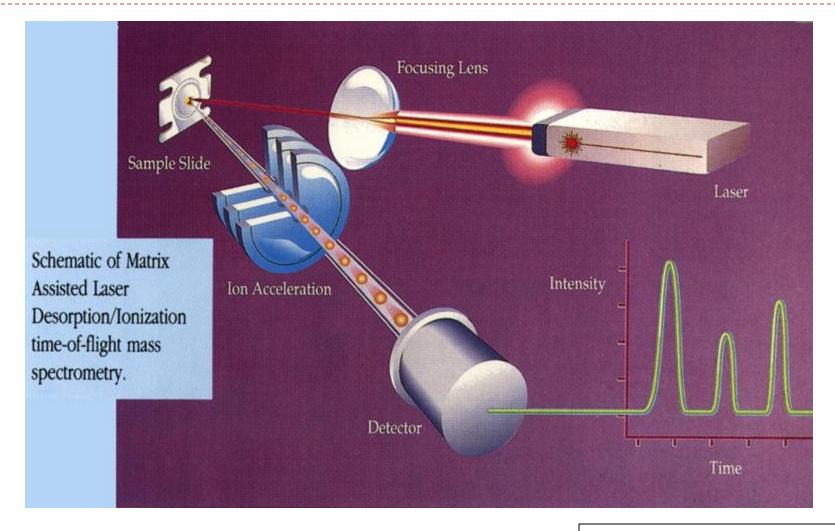
Summary Points

- A Mass Spectrometer makes ions and measures them accurately.
- A Mass Spectrometer Can Give:
 - Molecular Mass
 - Sequence & Structure
 - Identity
 - Quantity
- Different Mass Spectrometers for Different Information.
- The Keck MS Lab Services include:
 - Confirmation
 - Discovery
 - Quantification
- Talk to Us about Your Research Goals

Supplementary Slides to Introduction to Mass Spectrometry (May 18, 2010)

Mass Spectrometer Parameters

Table 1. Characteristics and performances of commonly used types of mass spectrometers. Check marks indicate available, check marks in parentheses indicate optional. +, ++, and +++ indicate possible or moderate, good or high, and excellent or very high, respectively. Seq., sequential.


	IT-LIT	Q-Q-ToF	ToF-ToF	FT-ICR	Q-Q-Q	QQ-LIT
Mass accuracy	Low	Good	Good	Excellent	Medium	Medium
Resolving power	Low	Good	High	Very high	Low	Low
Sensitivity (LOD)	Good		High	Medium	High	High
Dynamic range	Low	Medium	Medium	Medium	High	High
ESI	-					
MALDI	(💴)	(🗾)				
MS/MS capabilities	-			-	-	
Additional capabilities	Seq. MS/MS			Precurso	r, Neutral los	s, MRM
Identification	++	++	++	+++	+	+
Quantification	+	+++	++	++	+++	+++
Throughput	+++	++	+++	++	++	++
Detection of modifications	+	+	+	+		+++

Domon & Mann Science 2006

Comparison of Mass Analyzers

	TOF	mass filter	ion-trap	sector	FT-ICR
mass resolving power	10 ³ -10 ⁴	10 ² -10 ⁴	10 ³ -10 ⁴	10 ² -10 ⁵	10 ⁴ -10 ⁶
mass accuracy	5-50 ppm	100 ppm	50-100 ppm	1-5 ppm	1-5 ppm
mass range	>10 ⁵	10 ⁴	1.5 × 10 ⁵	10 ⁴	>10 ⁴
linear dynamic range	10 ² -10 ⁶	10 ⁷	10 ² -10 ⁵	10 ⁹	10 ² -10 ⁵
precision	0.1-1%	0.1-5%	0.2-5%	0.01-1%	0.3-5%
abundance sensitivity	up to10 ⁶	10 ⁴ -10 ⁶	10 ³	10 ⁶ -10 ⁹	10 ² -10 ⁵
efficiency				<1%	
(transmission × duty cycle)	1-100%	<1-95%	<1-95%	(scanning)	<1-95%
speed	10 ¹ -10 ⁴ Hz	1-20 Hz	1-30 Hz	0.1-20 Hz	0.001-10 Hz
compatibility with ionizer	pulsed & continuous	continuous	pulsed & continuous	continuous	pulsed & continuous
cost	moderate to high	relatively low	low to moderate	moderate to high	moderate to high
size/weight/utility requirements	benchtop	benchtop	benchtop	lab instruments	lab instrument

Schematic of a MALDI Tof MS

http://kenickbiochem09....

Mass Spectrometry References

- UVa: Search "mass spectrometry AND Sherman"
- Google: Search "Siuzdak AND Scripps"
- Google: Search "ASMS"
- Google: "IonSource"
- National Magnet Lab/FSU:
 - www.magnet.fsu.edu/education/tutorials/tools/
- Books:
 - Introduction to Proteomics, Liebler
 - Protein Sequencing and Identification Using Tandem MS, Kinter & Sherman
 - Computational Methods for MS Proteomics, Eidhammer, et al.,

Terms

- ▶ m/z : mass of an ion divided by the number of charges
- Dalton:
- MW: Molecular Weight
 - Angiotensin I = 1296.48 g/mole
- ► MH⁺ (mono): MonoIsotopic
 - Angiotensin I = 1296.6848 m/z (z = 1)
- ► MH⁺ (avg): Average
 - Angiotensin I = 1297.5115 m/z
- ► MH⁺³ (mono): MonoIsotopic
 - Angiotensin I = 432.8998 m/z (z = 3)