
Chemometrics: Definition

Chemometrics is the field of chemistry that deals 
with the application of mathematical and 
statistical methods to chemical data analysis. 
Chemometric techniques are used to extract 
useful information from complex chemical data 
sets and to develop models for understanding 
and predicting chemical behavior. These 
techniques can be applied to a wide range of 
chemical data, including spectroscopic, 
chromatographic, and mass spectrometric data, 
as well as data from other analytical techniques. 
Chemometrics is widely used in areas such as 
process control, quality assurance, 
environmental monitoring, and materials 
science.



Background for understanding chemometrics (1):
The needle in the haystack

The expression "finding the needle in a 
haystack" means to locate or identify something 
that is difficult to find or hidden among a large 
number of similar things. This expression can be 
translated to chemometrics as finding the 
relevant information or signal from a large 
amount of data or noise. In chemometrics, the 
goal is to extract useful information from 
complex data sets, where there may be many 
variables measured on each sample, and the 
signal of interest may be obscured by noise or 
other irrelevant variables. By reducing the 
dimensionality of the data and focusing on the 
most important variables, chemometric 
methods can help to identify the relevant signal 
and extract useful information from complex 
data sets.



Background for understanding chemometrics (2): Deconvolution

Cleaning and deconvoluting complex matrices is important for 
several reasons:

Accuracy: Complex matrices often contain multiple 
components or interferences that can affect the accuracy of 
analytical measurements. By removing these interferences, the 
accuracy of the analysis can be improved.

Sensitivity: Removing interferences can increase the sensitivity 
of the analysis, allowing for the detection of lower 
concentrations of analytes.

Specificity: Deconvoluting complex matrices can help identify 
and separate individual components, allowing for more 
specific and targeted analysis.

Reproducibility: Cleaning and deconvoluting complex matrices 
can improve the reproducibility of analytical measurements, 
ensuring that results are consistent across multiple analyses.



1 dimension= One line. Example…

Gen Cell 1

A 10

B 0

C 14

2 dimensions= Un plane. Example…

ONE cell

Gen Cell 1 Cell 2

A 10 8

B 0 2

C 14 10

3 dimensions= One space. Example…

A

Gen Cell 1 Cell 2 Cell 3

A 10 8 8

B 0 2 4

C 14 10 12
B

C

TWO cells

Three cells

What if we have 4 cells?... What if we have 87 cells?... 87 Dimensions? Impossible!

Dimensions

The following is an 
example of how to 
graphically represent 
dimensions. One 
dimension equals one 
line; two, a plane. Three 
will provide volume. 
However, starting at four, 
we run out of ways to 
represent them, since we 
live in a three-
dimensional world. 
Therefore, dimensions 
must be reduced. When 
talking about dimension 
reduction in multivariate 
analyses, it actually 
mean reducing variables



Reducing dimensions. Importance

It is often necessary to reduce dimensions in data analysis because of the problem of "curse of dimensionality." As the 
number of dimensions (i.e., variables) increases, the amount of data required to accurately represent the data also 
increases exponentially. This can lead to issues with overfitting, increased computational complexity, and difficulty in 
interpreting the data. By reducing the number of dimensions, the data can be more easily analyzed, visualized, and 
interpreted. These are some reasons why it is important:

Improved computational efficiency: High-dimensional data requires more computational resources to process, 
analyze, and visualize. By reducing the dimensions, we can simplify the data and reduce the computational burden.

Improved accuracy: High-dimensional data often contains noise, redundancy, and irrelevant features that can 
negatively impact the accuracy of machine learning models. By reducing dimensions, we can eliminate these factors 
and improve the accuracy of our models.

Improved interpretability: High-dimensional data can be difficult to interpret and visualize. By reducing the 
dimensions, we can create more intuitive and understandable representations of the data.

Improved generalization: High-dimensional data can lead to overfitting, where models perform well on the training 
data but poorly on new, unseen data. By reducing dimensions, we can reduce the risk of overfitting and improve the 
generalization of our models.



First point to consider: Some dimensions are more important than others (for example, that's why 3D 

TVs failed... Seeing everything on a flat screen is good enough for almost everyone). The key is to 

identify which dimensions present the greatest variation in the system as a whole.

Second point to consider: Therefore, we should focus on maximizing the differences between the 

data among different elements of the system. In other words, we should seek diversity rather than 

homogenization.
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Reducing dimensions. Principal Component Analysis (PCA)



Reducing dimensions. Principal Component Analysis (PCA)

1. The points are arranged around a diagonal 
line, between whose vertices there is the
maximum variation.

2. The points are also distributed above and below
this line, with maximum variation also at the limits
of said line.

3. If we rotate the graph so that these two lines where the
maximum variation occurs become the new axes, we will have
this new graph.



These two new axes of this rotated graph, which represent the 
maximum variability among the sample points, are called 
"principal components" (PC for Principal Component).

Reducing dimensions. Principal Component Analysis (PCA)

What if we have 3 cells? (However, this is also relevant for 4,5, 6, 87 …. n cells

• We will have PCn where n is the number of cells (or values).
• It doesn't matter how many dimensions there are because it 

is calculated based on the formula.
• PC1 is the axis with the highest variation, PC2 is the next 

highest variation, PC3 is the next... PC87 is the axis with the 
87th highest variation... PCn is the axis with the lowest 
variation.



Reducing dimensions. Principal Component Analysis (PCA)

How is the calculation of PC represented?
• The information is arranged around the arithmetic mean of the total data.
• The axis is shifted to this arithmetic mean.
• The line that passes through this new origin is sought where the sum of the squares of the distances from the points to their 

projection on that line is minimized (PC1).
• The line that passes through this new origin is sought where the sum of the squares of the distances from the points to their 

projection on that line is maximized (PC2).

Eigenvalues: The sum of the square of the distances from 
each dot to the corresponding PC. They are a set of 
scalars associated with a linear system of equations or a 
matrix. In the context of chemometrics, eigenvalues are 
used to quantify the variation in the data captured by 
principal components. For example, in principal 
component analysis (PCA), eigenvalues represent the 
variance of each principal component, indicating how 
much of the total variation in the data is explained by 
each component. The eigenvalues are calculated by 
solving the characteristic equation of the matrix, and the 
resulting eigenvectors provide the direction and 
magnitude of the principal components.



PCA. What can we do with it?

1. We can check the contribution that each element brings to a given PC



PCA. What can we do with it?

Loadings

Eigenvector: An arrangement of loadings

2. If we consider the influence that each element (in this case 
genes) has on a main component, and multiply that value by 
the number of times that element is manifested in a variable 
(in this case cell), we can, in our example... Plot cells, not 
genes!

In chemometrics, "loadings" are a set of 
coefficients that show the contribution of 
each variable (or predictor) in a multivariate 
model. They represent the correlation 
between the original variables and the 
principal components (PCs) extracted from 
the data. Loadings are calculated during 
principal component analysis (PCA) or partial 
least squares (PLS) regression, which are 
common methods in chemometrics. Loadings 
can be used to reduce the number of 
variables in a dataset by identifying the most 
important variables that contribute the most 
to the variance of the data. By selecting the 
variables with the highest loadings, a subset 
of variables can be chosen that still captures 
the majority of the variance in the original 
dataset. This process is known as "variable 
selection" or "variable reduction" and can 
help simplify the model and improve its 
interpretability. It can also help to reduce the 
risk of overfitting the model and improve its 
predictive performance.



PCA

The importance of PCA can be summarized as follows:

Dimensionality reduction: PCA helps to reduce the number of variables in 
a data set while retaining the most important information. This makes it 
easier to analyze and visualize complex data sets.

Feature selection: PCA helps to identify the most important features or 
variables that contribute to the variability in the data. This can be useful in 
feature selection for machine learning models.

Data visualization: PCA can be used to visualize high-dimensional data in 
two or three dimensions, making it easier to interpret and understand.

Noise reduction: PCA can filter out noise and irrelevant variables, which 
can improve the accuracy of machine learning models.

Clustering: PCA can be used to cluster similar data points together, which 
can be useful in identifying patterns and trends in the data.

Principal component analysis (PCA) is an important technique in data analysis and machine learning. It is used to reduce the 
dimensionality of large data sets by identifying the most important variables or features that explain the majority of the 
variance in the data. Being a supervised algorithm, it aims to MAXIMIZING DISPERSON among datasets



Supervised algorithm

In chemometrics, a supervised 
algorithm is a type of machine 
learning algorithm that requires 
a labeled dataset to train a 
model. This means that the 
dataset is already classified or 
labeled with known outcomes, 
and the algorithm uses this 
information to learn how to 
classify new data. Supervised 
algorithms are commonly used 
in chemometrics for tasks such 
as classification, regression, and 
prediction. Examples of 
supervised algorithms in 
chemometrics include linear 
regression, logistic regression, 
support vector machines, and 
random forests.

Linear Discriminant Analysis (LDA)

Two criteria are considered for LDA:

Maximizing the distance between the 
means of both groups of previously 
labeled data (μ of each data set)

Minimizing the dispersion between the 
different points of each previously 
labeled data set.



Supervised vs Unsupervised algorithms
A supervised algorithm is a machine 
learning algorithm that is trained on a 
labeled dataset where the outcome variable 
is known. In a supervised learning approach, 
the algorithm uses the labeled data to learn 
the relationship between the input variables 
(also known as features or predictors) and 
the outcome variable. Once the algorithm 
has learned this relationship, it can be used 
to predict the outcome variable for new 
data points based on their input variables. 
Supervised algorithms differ from 
unsupervised algorithms in that 
unsupervised algorithms do not require 
labeled data. Instead, unsupervised 
algorithms try to find patterns or 
relationships within the data itself. This can 
be useful for tasks such as clustering or 
dimensionality reduction. However, 
unsupervised algorithms cannot be used for 
prediction tasks because they do not have a 
known outcome variable to train on.
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