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CHAPTER OVERVIEW

1: The Basic Tools of Quantum Mechanics
Quantum Mechanics Describes Matter in Terms of Wavefunctions and Energy Levels and physical Measurements are Described in
Terms of Operators Acting on Wavefunctions

1.1: Operators
1.2: Wavefunctions
1.3: The Schrödinger Equation
1.4: Free-Particle Motion in Two Dimensions
1.5: Particles in Boxes
1.6: One Electron Moving About a Nucleus
1.7: Harmonic Vibrational Motion
1.8: Rotational Motion for a Rigid Diatomic Molecule
1.9: The Physical Relevance of Wavefunctions, Operators and Eigenvalues

This page titled 1: The Basic Tools of Quantum Mechanics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.

https://libretexts.org/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/01%3A_The_Basic_Tools_of_Quantum_Mechanics/1.01%3A_Operators
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/01%3A_The_Basic_Tools_of_Quantum_Mechanics/1.02%3A_Wavefunctions
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/01%3A_The_Basic_Tools_of_Quantum_Mechanics/1.03%3A_The_Schrodinger_Equation
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/01%3A_The_Basic_Tools_of_Quantum_Mechanics/1.04%3A_Free-Particle_Motion_in_Two_Dimensions
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/01%3A_The_Basic_Tools_of_Quantum_Mechanics/1.05%3A_Particles_in_Boxes
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/01%3A_The_Basic_Tools_of_Quantum_Mechanics/1.06%3A_One_Electron_Moving_About_a_Nucleus
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/01%3A_The_Basic_Tools_of_Quantum_Mechanics/1.07%3A_Harmonic_Vibrational_Motion
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/01%3A_The_Basic_Tools_of_Quantum_Mechanics/1.08%3A_Rotational_Motion_for_a_Rigid_Diatomic_Molecule
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/01%3A_The_Basic_Tools_of_Quantum_Mechanics/1.09%3A_The_Physical_Relevance_of_Wavefunctions_Operators_and_Eigenvalues
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/01%3A_The_Basic_Tools_of_Quantum_Mechanics
https://creativecommons.org/licenses/by-nc-sa/4.0
http://simons.hec.utah.edu/
http://simons.hec.utah.edu/TheoryPage/BookPDF/


1.1.1 https://chem.libretexts.org/@go/page/60535

1.1: Operators
Each physically measurable quantity has a corresponding operator. The eigenvalues of the operator tell the values of the

corresponding physical property that can be observed

In quantum mechanics, any experimentally measurable physical quantity F (e.g., energy, dipole moment, orbital angular
momentum, spin angular momentum, linear momentum, kinetic energy) whose classical mechanical expression can be written in
terms of the cartesian positions {q } and momenta {p } of the particles that comprise the system of interest is assigned a
corresponding quantum mechanical operator F. Given F in terms of the {q } and {p }, F is formed by replacing p  by  and

leaving q  untouched. For example, if

then

The x-component of the dipole moment for a collection of N particles has

and

where Z e is the charge on the j  particle.

The mapping from F to F is straightforward only in terms of cartesian coordinates. To map a classical function F, given in terms of
curvilinear coordinates (even if they are orthogonal), into its quantum operator is not at all straightforward. Interested readers are
referred to Kemble's text on quantum mechanics which deals with this matter in detail. The mapping can always be done in terms
of cartesian coordinates after which a transformation of the resulting coordinates and differential operators to a curvilinear system
can be performed. The corresponding transformation of the kinetic energy operator to spherical coordinates is treated in detail in
Appendix A. The text by EWK also covers this topic in considerable detail.

The relationship of these quantum mechanical operators to experimental measurement will be made clear later in this chapter. For
now, suffice it to say that these operators define equations whose solutions determine the values of the corresponding physical
property that can be observed when a measurement is carried out; only the values so determined can be observed. This should
suggest the origins of quantum mechanics' prediction that some measurements will produce discrete or quantized values of certain
variables (e.g., energy, angular momentum, etc.).

This page titled 1.1: Operators is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons via source
content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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1.2: Wavefunctions
The eigenfunctions of a quantum mechanical operator depend on the coordinates upon which the operator acts; these functions are

called wavefunctions

In addition to operators corresponding to each physically measurable quantity, quantum mechanics describes the state of the system
in terms of a wavefunction  that is a function of the coordinates {q } and of time . The function |  gives the
probability density for observing the coordinates at the values  at time t. For a many-particle system such as the  molecule,
the wavefunction depends on many coordinates. For the  example, it depends on the x, y, and z (or r,q, and f) coordinates of
the ten electrons and the x, y, and z (or r,q, and f) coordinates of the oxygen nucleus and of the two protons; a total of thirty-nine
coordinates appear in .

In classical mechanics, the coordinates qj and their corresponding momenta  are functions of time. The state of the system is then
described by specifying  (t) and  (t). In quantum mechanics, the concept that qj is known as a function of time is replaced by
the concept of the probability density for finding  at a particular value at a particular time t: . Knowledge of the
corresponding momenta as functions of time is also relinquished in quantum mechanics; again, only knowledge of the probability
density for finding  with any particular value at a particular time  remains.

This page titled 1.2: Wavefunctions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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1.3: The Schrödinger Equation

The Time-Dependent Schrödinger Equation 

How to extract from  knowledge about momenta is treated, where the structure of quantum mechanics, the use of operators
and wavefunctions to make predictions and interpretations about experimental measurements, and the origin of 'uncertainty
relations' such as the well known Heisenberg uncertainty condition dealing with measurements of coordinates and momenta are
also treated.

Before moving deeper into understanding what quantum mechanics 'means', it is useful to learn how the wavefunctions  are
found by applying the basic equation of quantum mechanics, the Schrödinger equation, to a few exactly soluble model problems.
Knowing the solutions to these 'easy' yet chemically very relevant models will then facilitate learning more of the details about the
structure of quantum mechanics because these model cases can be used as 'concrete examples'.

The Schrödinger equation is a differential equation depending on time and on all of the spatial coordinates necessary to describe the
system at hand (thirty-nine for the H O example cited above). It is usually written

where ,t) is the unknown wavefunction and  is the operator corresponding to the total energy physical property of the
system. This operator is called the Hamiltonian and is formed, as stated above, by first writing down the classical mechanical
expression for the total energy (kinetic plus potential) in Cartesian coordinates and momenta and then replacing all classical

momenta pj by their quantum mechanical operators .

For the H O example used above, the classical mechanical energy of all thirteen particles is

where the indices i and j are used to label the ten electrons whose thirty cartesian coordinates are {q } and a and b label the three
nuclei whose charges are denoted {Z }, and whose nine cartesian coordinates are {q }. The electron and nuclear masses are
denoted me and {m }, respectively.

The corresponding Hamiltonian operator is

Notice that H is a second order differential operator in the space of the thirty-nine Cartesian coordinates that describe the positions
of the ten electrons and three nuclei. It is a second order operator because the momenta appear in the kinetic energy as  and ,

and the quantum mechanical operator for each momentum p =  is of first order.

The Schrödinger equation for the  then reads

If the Hamiltonian operator contains the time variable explicitly, one must solve the time-
dependent Schrödinger equation. If the Hamiltonian operator does not contain the time
variable explicitly, one can solve the time-independent Schrödinger equation
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The Time-Independent Schrödinger Equation 

In cases where the classical energy, and hence the quantum Hamiltonian, do not contain terms that are explicitly time dependent
(e.g., interactions with time varying external electric or magnetic fields would add to the above classical energy expression time
dependent terms discussed later in this text), the separations of variables techniques can be used to reduce the Schrödinger equation
to a time-independent equation.

In such cases, H is not explicitly time dependent, so one can assume that ,t) is of the for

Substituting this 'ansatz' into the time-dependent Schrödinger equation gives

Dividing by F(t) then gives

Since F(t) is only a function of time t, and  ) is only a function of the spatial coordinates { }, and because the left hand and
right hand sides must be equal for all values of t and of { }, both the left and right hand sides must equal a constant. If this
constant is called E, the two equations that are embodied in this separated Schrödinger equation read as follows:

Equation  is called the time-independent Schrödinger Equation; it is a so-called eigenvalue equation in which one is asked to
find functions that yield a constant multiple of themselves when acted on by the Hamiltonian operator. Such functions are called
eigenfunctions of H and the corresponding constants are called eigenvalues of H. For example, if H were of the form

then functions of the form e  would be eigenfunctions because

In this case,  is the eigenvalue.

When the Schrödinger equation can be separated to generate a time-independent equation describing the spatial coordinate
dependence of the wavefunction, the eigenvalue  must be returned to the equation determining  to find the time dependent
part of the wavefunction. By solving

once  is known, one obtains

and the full wavefunction can be written as

and the full wavefunction can be written as
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For the above example, the time dependence is expressed by

Having been introduced to the concepts of operators, wavefunctions, the Hamiltonian and its Schrödinger equation, it is important
to now consider several examples of the applications of these concepts. The examples treated below were chosen to provide the
learner with valuable experience in solving the Schrödinger equation; they were also chosen because the models they embody form
the most elementary chemical models of electronic motions in conjugated molecules and in atoms, rotations of linear molecules,
and vibrations of chemical bonds.

This page titled 1.3: The Schrödinger Equation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack
Simons via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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1.4: Free-Particle Motion in Two Dimensions

The Schrödinger Equation 

The number of dimensions depends on the number of particles and the number of spatial (and other) dimensions needed to
characterize the position and motion of each particle

Consider an electron of mass m and charge e moving on a two-dimensional surface that defines the x,y plane (perhaps the electron
is constrained to the surface of a solid by a potential that binds it tightly to a narrow region in the z-direction), and assume that the
electron experiences a constant potential  at all points in this plane (on any real atomic or molecular surface, the electron would
experience a potential that varies with position in a manner that reflects the periodic structure of the surface). The pertinent time
independent Schrödinger equation is:

Because there are no terms in this equation that couple motion in the x and y directions (e.g., no terms of the form  or  

or ), separation of variables can be used to write  as a product (x,y)=A(x)B(y). Substitution of this form into the

Schrödinger equation, followed by collecting together all x-dependent and all y-dependent terms, gives;

Since the first term contains no y-dependence and the second contains no x-dependence, both must actually be constant (these two
constants are denoted  and , respectively), which allows two separate Schrödinger equations to be written:

The total energy E can then be expressed in terms of these separate energies  and  as . Solutions to the x-
and y- Schrödinger equations are easily seen to be:

Two independent solutions are obtained for each equation because the x- and y-space Schrödinger equations are both second order
differential equations.

Boundary Conditions 
The boundary conditions, not the Schrödinger equation, determine whether the eigenvalues will be discrete or continuous

If the electron is entirely unconstrained within the x,y plane, the energies  and  can assume any value; this means that the
experimenter can 'inject' the electron onto the x,y plane with any total energy E and any components  and  along the two axes
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as long as  +  = E. In such a situation, one speaks of the energies along both coordinates as being 'in the continuum' or 'not
quantized'.

In contrast, if the electron is constrained to remain within a fixed area in the x,y plane (e.g., a rectangular or circular region), then
the situation is qualitatively different. Constraining the electron to any such specified area gives rise to so-called boundary
conditions that impose additional requirements on the above A and B functions. These constraints can arise, for example, if the
potential (x,y) becomes very large for x,y values outside the region, in which case, the probability of finding the electron outside
the region is very small. Such a case might represent, for example, a situation in which the molecular structure of the solid surface
changes outside the enclosed region in a way that is highly repulsive to the electron.

For example, if motion is constrained to take place within a rectangular region defined by 0  x ; 0 , then the
continuity property that all wavefunctions must obey (because of their interpretation as probability densities, which must be
continuous) causes A(x) to vanish at 0 and at L . Likewise, B(y) must vanish at 0 and at L . To implement these constraints for

A(x), one must linearly combine the above two solutions e  and e to achieve a function that vanishes at x=0:

One is allowed to linearly combine solutions of the Schrödinger equation that have the same energy (i.e., are degenerate) because
Schrödinger equations are linear differential equations. An analogous process must be applied to B(y) to achieve a function that
vanishes at y=0:

Further requiring A(x) and B(y) to vanish, respectively, at x=L  and y=L , gives equations that can be obeyed only if  and 
assume particular values:

These equations are equivalent to

Knowing that sin( ) vanishes at , for n=1,2,3,..., (although the sin(n ) function vanishes for n=0, this function vanishes for
all x or y, and is therefore unacceptable because it represents zero probability density at all points in space) one concludes that the
energies  and  can assume only values that obey:
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It is important to stress that it is the imposition of boundary conditions, expressing the fact that the electron is spatially constrained,
that gives rise to quantized energies. In the absence of spatial confinement, or with confinement only at x =0 or L  or only at y =0
or L , quantized energies would not be realized.

In this example, confinement of the electron to a finite interval along both the x and y coordinates yields energies that are quantized
along both axes. If the electron were confined along one coordinate (e.g., between 0  x ) but not along the other (i.e., B(y) is
either restricted to vanish at y=0 or at y=L  or at neither point), then the total energy E lies in the continuum; its  component is
quantized but  is not. Such cases arise, for example, when a linear triatomic molecule has more than enough energy in one of its
bonds to rupture it but not much energy in the other bond; the first bond's energy lies in the continuum, but the second bond's
energy is quantized.

Perhaps more interesting is the case in which the bond with the higher dissociation energy is excited to a level that is not enough to
break it but that is in excess of the dissociation energy of the weaker bond. In this case, one has two degenerate states- i. the strong
bond having high internal energy and the weak bond having low energy ( ), and ii. the strong bond having little energy and the
weak bond having more than enough energy to rupture it ( ). Although an experiment may prepare the molecule in a state that
contains only the former component (i.e., , coupling between the two degenerate functions
(induced by terms in the Hamiltonian H that have been ignored in defining  and ) usually causes the true wavefunction  = e

 to acquire a component of the second function as time evolves. In such a case, one speaks of internal vibrational
energy flow giving rise to unimolecular decomposition of the molecule.

3. Energies and Wavefunctions for Bound States 
For discrete energy levels, the energies are specified functions the depend on quantum numbers, one for each degree of freedom

that is quantized

Returning to the situation in which motion is constrained along both axes, the resultant total energies and wavefunctions (obtained
by inserting the quantum energy levels into the expressions for  are as follows:

and

with  and  = 1,2,3, ... .

The two  factors are included to guarantee that  is normalized:

Normalization allows  to be properly identified as a probability density for finding the electron at a point x, y.

4. Quantized Action Can Also be Used to Derive Energy Levels 

There is another approach that can be used to find energy levels and is especially straightforward to use for systems whose
Schrödinger equations are separable. The socalled classical action (denoted S) of a particle moving with momentum p along a path
leading from initial coordinate  at initial time t  to a final coordinate  at time  is defined by:
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Here, the momentum vector p contains the momenta along all coordinates of the system, and the coordinate vector q likewise
contains the coordinates along all such degrees of freedom. For example, in the two-dimensional particle in a box problem
considered above, q = (x, y) has two components as does p = (p , p ), and the action integral is:

In computing such actions, it is essential to keep in mind the sign of the momentum as the particle moves from its initial to its final
positions. An example will help clarify these matters.

For systems such as the above particle in a box example for which the Hamiltonian is separable, the action integral decomposed
into a sum of such integrals, one for each degree of freedom. In this two-dimensional example, the additivity of H:

means that p  and p  can be independently solved for in terms of the potentials V(x) and V(y) as well as the energies  and 
associated with each separate degree of freedom:

the signs on p  and p  must be chosen to properly reflect the motion that the particle is actually undergoing. Substituting these
expressions into the action integral yields:

The relationship between these classical action integrals and existence of quantized energy levels has been show to involve
equating the classical action for motion on a closed path (i.e., a path that starts and ends at the same place after undergoing motion
away from the starting point but eventually returning to the starting coordinate at a later time) to an integral multiple of Planck's
constant:

Applied to each of the independent coordinates of the two-dimensional particle in a box problem, this expression reads:
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Notice that the sign of the momenta are positive in each of the first integrals appearing above (because the particle is moving from
x = 0 to x = L , and analogously for y-motion, and thus has positive momentum) and negative in each of the second integrals
(because the motion is from x = L  to x = 0 (and analogously for y-motion) and thus with negative momentum). Within the region
bounded by 0  x ; 0  y , the potential vanishes, so V(x) = V(y) = 0. Using this fact, and reversing the upper and
lower limits, and thus the sign, in the second integrals above, one obtains:

Solving for  and , one finds:

These are the same quantized energy levels that arose when the wavefunction boundary conditions were matched at x = 0, x = L
and y = 0, y = L . In this case, one says that the Bohr-Sommerfeld quantization condition:

has been used to obtain the result.

This page titled 1.4: Free-Particle Motion in Two Dimensions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.
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1.5: Particles in Boxes
The particle-in-a-box problem provides an important model for several relevant chemical situations

The above 'particle in a box' model for motion in two dimensions can obviously be extended to three dimensions or to one. For two
and three dimensions, it provides a crude but useful picture for electronic states on surfaces or in crystals, respectively. Free motion
within a spherical volume gives rise to eigenfunctions that are used in nuclear physics to describe the motions of neutrons and
protons in nuclei. In the so-called shell model of nuclei, the neutrons and protons fill separate s, p, d, etc orbitals with each type of
nucleon forced to obey the Pauli principle. These orbitals are not the same in their radial 'shapes' as the s, p, d, etc orbitals of atoms
because, in atoms, there is an additional radial potential

present. However, their angular shapes are the same as in atomic structure because, in both cases, the potential is independent of 
and . This same spherical box model has been used to describe the orbitals of valence electrons in clusters of mono-valent metal
atoms such as Cs , Cu , Na  and their positive and negative ions. Because of the metallic nature of these species, their valence
electrons are sufficiently delocalized to render this simple model rather effective (see T. P. Martin, T. Bergmann, H. Göhlich, and T.
Lange, J. Phys. Chem. 95 , 6421 (1991)).

One-dimensional free particle motion provides a qualitatively correct picture for -electron motion along the p  orbitals of a
delocalized polyene. The one cartesian dimension then corresponds to motion along the delocalized chain. In such a model, the box
length L is related to the carbon-carbon bond length R and the number N of carbon centers involved in the delocalized network L=
(N-1)R. Below, such a conjugated network involving nine centers is depicted. In this example, the box length would be eight times
the C-C bond length.

Figure 1.5.1: p-atomic orbitals in Nonanane

Conjugated  Network with 9 Centers Involved 

The eigenstates (x) and their energies E  represent orbitals into which electrons are placed. In the example case, if nine 
electrons are present (e.g., as in the 1,3,5,7- nonatetraene radical), the ground electronic state would be represented by a total
wavefunction consisting of a product in which the lowest four 's are doubly occupied and the fifth  is singly occupied:

A product wavefunction is appropriate because the total Hamiltonian involves the kinetic plus potential energies of nine electrons.
To the extent that this total energy can be represented as the sum of nine separate energies, one for each electron, the Hamiltonian
allows a separation of variables

in which each H(j) describes the kinetic and potential energy of an individual electron. This (approximate) additivity of H implies
that solutions of H  = E  are products of solutions to

The two lowest -excited states would correspond to states of the form

and
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where the spin-orbitals (orbitals multiplied by  or ) appearing in the above products depend on the coordinates of the various
electrons. For example,

denotes

The electronic excitation energies within this model would be

and

for the two excited-state functions described above. It turns out that this simple model of -electron energies provides a
qualitatively correct picture of such excitation energies.

This simple particle-in-a-box model does not yield orbital energies that relate to ionization energies unless the potential 'inside the
box' is specified. Choosing the value of this potential V  such that

is equal to minus the lowest ionization energy of the 1,3,5,7-nonatetraene radical, gives energy levels 

 which then are approximations to ionization energies.

The individual p-molecular orbitals

are depicted in the figure below for a model of the 1,3,5 hexatriene -orbital system for which the 'box length' L is five times the
distance  between neighboring pairs of Carbon atoms.

Figure 1.5.2: 1,3,5 hexatriene -orbitals in order or increasing energy.

In this figure, positive amplitude is denoted by the clear spheres and negative amplitude is shown by the darkened spheres; the
magnitude of the k  C-atom centered atomic orbital in the n  -molecular orbital is given by
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This simple model allows one to estimate spin densities at each carbon center and provides insight into which centers should be
most amenable to electrophilic or nucleophilic attack. For example, radical attack at the C  carbon of the nine-atom system
described earlier would be more facile for the ground state  than for either * or '*. In the former, the unpaired spin density

resides in , which has non-zero amplitude at the  site ; in * and '*, the unpaired density is in  and ,

respectively, both of which have zero density at . These densities reflect the values

of the amplitudes for this case in which L = 8 x R  for n = 5, 4, and 6, respectively.

This page titled 1.5: Particles in Boxes is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons
via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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1.6: One Electron Moving About a Nucleus
The Schrödinger equation for a single particle of mass m moving in a central potential (one that depends only on the radial
coordinate r) can be written as

This equation is not separable in cartesian coordinates (x,y,z) because of the way x,y, and z appear together in the square root.
However, it is separable in spherical coordinates

Subtracting V(r)y from both sides of the equation and multiplying by  then moving the derivatives with respect to r to the

right-hand side, one obtains

Notice that the right-hand side of this equation is a function of r only; it contains no q or f dependence . Let's call the entire right
hand side F(r) to emphasize this fact.

To further separate the  and  dependence, we multiply by sin  and subtract the  derivative terms from both sides to obtain

Now we have separated the  dependence from the  and r dependence. If we now substitute  and divide by 
Q, we obtain

Now all of the  dependence is isolated on the left hand side; the right hand side contains only r and  dependence.

Whenever one has isolated the entire dependence on one variable as we have done above for the  dependence, one can easily see
that the left and right hand sides of the equation must equal a constant. For the above example, the left hand side contains no r or 
dependence and the right hand side contains no  dependence. Because the two sides are equal, they both must actually contain no
r, , or  dependence; that is, they are constant.

For the above example, we therefore can set both sides equal to a so-called separation constant that we call -m . It will become
clear shortly why we have chosen to express the constant in this form.

The Hydrogenic atom problem forms the basis of much of our thinking about atomic
structure. To solve the corresponding Schrödinger equation requires separation of the r, ,
and  variables

The  Equation 

The resulting F equation reads

which has as its most general solution

We must require the function  to be single-valued, which means that
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This is satisfied only when the separation constant is equal to an integer m = 0, ±1, ± 2, ... . and provides another example of the
rule that quantization comes from the boundary conditions on the wavefunction. Here m is restricted to certain discrete values
because the wavefunction must be such that when you rotate through 2  about the z-axis, you must get back what you started with.

The  Equation 

Now returning to the equation in which the  dependence was isolated from the r and  dependence and rearranging the  terms to
the left-hand side, we have

In this equation we have separated  and r variations so we can further decompose the wavefunction by introducing 
, which yields

where a second separation constant, -l, has been introduced once the r and q dependent terms have been separated onto the right
and left hand sides, respectively.

We now can write the  equation as

where m is the integer introduced earlier. To solve this equation for , we make the substitutions z = cos  and P(z) = , so 
, and

The range of values for  was , so the range for z is -1 < z < 1. The equation for , when expressed in terms of P and z,
becomes

Now we can look for polynomial solutions for P, because z is restricted to be less than unity in magnitude. If m = 0, we first let

and substitute into the differential equation to obtain

Equating like powers of z gives

Note that for large values of k
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Since the coefficients do not decrease with k for large k, this series will diverge for z = ± 1 unless it truncates at finite order. This
truncation only happens if the separation constant  obeys  = l(l+1), where l is an integer. So, once again, we see that a boundary
condition (i.e., that the wavefunction be normalizable in this case) give rise to quantization. In this case, the values of  are
restricted to l(l+1); before, we saw that m is restricted to 0, ±1, ± 2, ... .

Since this recursion relation links every other coefficient, we can choose to solve for the even and odd functions separately.
Choosing a  and then determining all of the even ak in terms of this a , followed by rescaling all of these a  to make the function
normalized generates an even solution. Choosing a  and determining all of the odd a  in like manner, generates an odd solution.

For l= 0, the series truncates after one term and results in . For l= 1 the same thing applies and P (z) = z. For l= 2, a
, so one obtains P , and so on. These polynomials are called Legendre polynomials.

For the more general case where m ¹ 0, one can proceed as above to generate a polynomial solution for the Q function. Doing so,
results in the following solutions:

These functions are called Associated Legendre polynomials, and they constitute the solutions to the  problem for non-zero m
values.

The above P and e  functions, when re-expressed in terms of , yield the full angular part of the wavefunction for any
centrosymmetric potential. These solutions are usually written as

These are called spherical harmonics. They provide the angular solution of the r,  Schrödinger equation for any problem in
which the potential depends only on the radial coordinate. Such situations include all one-electron atoms and ions (e.g., H, He , Li

, etc.), the rotational motion of a diatomic molecule (where the potential depends only on bond length r), the motion of a
nucleon in a spherically symmetrical "box" (as occurs in the shell model of nuclei), and the scattering of two atoms (where the
potential depends only on interatomic distance).

The  Equation 
Let us now turn our attention to the radial equation, which is the only place that the explicit form of the potential appears. Using
our derived results and specifying  to be the coulomb potential appropriate for an electron in the field of a nucleus of charge
+Ze, yields:

We can simplify things considerably if we choose rescaled length and energy units because doing so removes the factors that
depend on , , and . We introduce a new radial coordinate  as follows:

and

Notice that if  is negative, as it will be for bound states (i.e., those states with energy below that of a free electron infinitely far
from the nucleus and with zero kinetic energy),  is real. On the other hand, if  is positive, as it will be for states that lie in the
continuum,  will be imaginary. These two cases will give rise to qualitatively different behavior in the solutions of the radial
equation developed below.

We now define a function  such that
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and substitute  for  to obtain:

The differential operator terms can be recast in several ways using

It is useful to keep in mind these three embodiments of the derivatives that enter into the radial kinetic energy; in various contexts it
will be useful to employ various of these.

The strategy that we now follow is characteristic of solving second order differential equations. We will examine the equation for S
at large and small  values. Having found solutions at these limits, we will use a power series in  to "interpolate" between these
two limits.

Let us begin by examining the solution of the above equation at small values of  to see how the radial functions behave at small r.
As 0, the second term in the brackets will dominate. Neglecting the other two terms in the brackets, we find that, for small
values of  (or r), the solution should behave like  and because the function must be normalizable, we must have . Since
L can be any non-negative integer, this suggests the following more general form for S( ) :

This form will insure that the function is normalizable since S  for all L, as long as  is a real quantity. If  is
imaginary, such a form may not be normalized (see below for further consequences).

Turning now to the behavior of S for large , we make the substitution of  into the above equation and keep only the terms
with the largest power of  (e.g., first term in brackets). Upon so doing, we obtain the equation

which leads us to conclude that the exponent in the large-  behavior of S is a = 

Having found the small- and large-  behaviors of S( ), we can take S to have the following form to interpolate between large and
small -values:

where the function L is expanded in an infinite power series in  as . Again Substituting this expression for S into
the above equation we obtain

and then substituting the power series expansion of P and solving for the ak's we arrive at:

For large k, the ration of expansion coefficients reaches the limit  which has the same behavior as the power series

expansion of e . Because the power series expansion of P describes a function that behaves like e  for large , the resulting S( )

function would not be normalizable because the e  factor would be overwhelmed by this e  dependence. Hence, the series
expansion of P must truncate in order to achieve a normalizable S function. Notice that if  is imaginary, as it will be if E is in the
continuum, the argument that the series must truncate to avoid an exponentially diverging function no longer applies. Thus, we see
a key difference between bound (with r real) and continuum (with  imaginary) states. In the former case, the boundary condition
of non-divergence arises; in the latter, it does not.
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To truncate at a polynomial of order n', we must have n' -  + L+ l= 0. This implies that the quantity  introduced previously is
restricted to  = n' + L + l , which is certainly an integer; let us call this integer n. If we label states in order of increasing n =
1,2,3,... , we see that doing so is consistent with specifying a maximum order (n') in the P( ) polynomial n' = 0,1,2,... after which
the l-value can run from l = 0, in steps of unity up to L = n-1.

Substituting the integer n for , we find that the energy levels are quantized because  is quantized (equal to n):

Here, the length a  is the so called Bohr radius  ; it appears once the above E-expression is substituted into the

equation for . Using the recursion equation to solve for the polynomial's coefficients a  for any choice of n and l quantum
numbers generates a so-called Laguerre polynomial; P . They contain powers of  from zero through n-l-1.

This energy quantization does not arise for states lying in the continuum because the condition that the expansion of P  terminate
does not arise. The solutions of the radial equation appropriate to these scattering states (which relate to the scattering motion of an
electron in the field of a nucleus of charge Z) are treated on p. 90 of EWK.

In summary, separation of variables has been used to solve the full r,  Schrödinger equation for one electron moving about a
nucleus of charge Z. The  solutions are the spherical harmonics  The bound-state radial solutions

depend on the n and l quantum numbers and are given in terms of the Laguerre polynomials (see EWK for tabulations of these
polynomials).

Summary 
To summarize, the quantum numbers l and m arise through boundary conditions requiring that  be normalizable (i.e., not
diverge) and  In the texts by Atkins, EWK, and McQuarrie the differential equations obeyed by the 
components of Y  are solved in more detail and properties of the solutions are discussed. This differential equation involves the
three-dimensional Schrödinger equation's angular kinetic energy operator. That is, the angular part of the above Hamiltonian is

equal to , where L  is the square of the total angular momentum for the electron.

The radial equation, which is the only place the potential energy enters, is found to possess both bound-states (i.e., states whose
energies lie below the asymptote at which the potential vanishes and the kinetic energy is zero) and continuum states lying
energetically above this asymptote. The resulting hydrogenic wavefunctions (angular and radial) and energies are summarized in
Appendix B for principal quantum numbers n ranging from 1 to 3 and in Pauling and Wilson for n up to 5.

There are both bound and continuum solutions to the radial Schrödinger equation for the attractive coulomb potential because, at
energies below the asymptote the potential confines the particle between r=0 and an outer turning point, whereas at energies above
the asymptote, the particle is no longer confined by an outer turning point (see the figure below).

Figure 1.6.1: Insert caption here!
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The solutions of this one-electron problem form the qualitative basis for much of atomic and molecular orbital theory. For this
reason, the reader is encouraged to use Appendix B to gain a firmer understanding of the nature of the radial and angular parts of
these wavefunctions. The orbitals that result are labeled by n, l, and m quantum numbers for the bound states and by l and m
quantum numbers and the energy E for the continuum states. Much as the particle-in-a-box orbitals are used to qualitatively
describe  - electrons in conjugated polyenes, these so-called hydrogen-like orbitals provide qualitative descriptions of orbitals of
atoms with more than a single electron. By introducing the concept of screening as a way to represent the repulsive interactions
among the electrons of an atom, an effective nuclear charge Z  can be used in place of Z in the  and E  to generate
approximate atomic orbitals to be filled by electrons in a many-electron atom. For example, in the crudest approximation of a
carbon atom, the two 1s electrons experience the full nuclear attraction so Z =6 for them, whereas the 2s and 2p electrons are
screened by the two 1s electrons, so Z = 4 for them. Within this approximation, one then occupies two 1s orbitals with Z=6, two
2s orbitals with Z=4 and two 2p orbitals with Z=4 in forming the full six-electron wavefunction of the lowest-energy state of
carbon.

This page titled 1.6: One Electron Moving About a Nucleus is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.
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1.7: Harmonic Vibrational Motion
The radial motion of a diatomic molecule in its lowest (J=0) rotational level can be described by the following Schrödinger
equation:

where m is the reduced mass

of the two atoms. By substituting  into this equation, one obtains an equation for F(r) in which the differential operators
appear to be less complicated:

This equation is exactly the same as the equation seen above for the radial motion of the electron in the hydrogen-like atoms except
that the reduced mass  replaces the electron mass  and the potential  is not the Coulomb potential.

If the potential is approximated as a quadratic function of the bond displacement  expanded about the point at which 
is minimum:

the resulting harmonic-oscillator equation can be solved exactly. Because the potential V grows without bound as x approaches 
, only bound-state solutions exist for this model problem; that is, the motion is confined by the nature of the potential, so

no continuum states exist.

This Schrödinger equation forms the basis for our thinking about bond stretching and
angle bending vibrations as well as collective phonon motions in solids

In solving the radial differential equation for this potential (see Chapter 5 of McQuarrie), the large-r behavior is first examined. For
large-r, the equation reads:

where  is the bond displacement away from equilibrium. Defining  as a new scaled radial coordinate allows

the solution of the large-r equation to be written as:

The general solution to the radial equation is then taken to be of the form:

where the C  are coefficients to be determined. Substituting this expression into the full radial equation generates a set of recursion
equations for the  amplitudes. As in the solution of the hydrogen-like radial equation, the series described by these coefficients
is divergent unless the energy E happens to equal specific values. It is this requirement that the wavefunction not diverge so it can
be normalized that yields energy quantization. The energies of the states that arise are given by:
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and the eigenfunctions are given in terms of the so-called Hermite polynomials  as follows:

where . Within this harmonic approximation to the potential, the vibrational energy levels are evenly spaced:

In experimental data such evenly spaced energy level patterns are seldom seen; most commonly, one finds spacings E
that decrease as the quantum number n increases. In such cases, one says that the progression of vibrational levels displays
anharmonicity.

Because the  are odd or even functions of x (depending on whether n is odd or even), the wavefunctions (x) are odd or even.
This splitting of the solutions into two distinct classes is an example of the effect of symmetry; in this case, the symmetry is caused
by the symmetry of the harmonic potential with respect to reflection through the origin along the x-axis. Throughout this text, many
symmetries will arise; in each case, symmetry properties of the potential will cause the solutions of the Schrödinger equation to be
decomposed into various symmetry groupings. Such symmetry decompositions are of great use because they provide additional
quantum numbers (i.e., symmetry labels) by which the wavefunctions and energies can be labeled.

The harmonic oscillator energies and wavefunctions comprise the simplest reasonable model for vibrational motion. Vibrations of a
polyatomic molecule are often characterized in terms of individual bond-stretching and angle-bending motions each of which is, in
turn, approximated harmonically. This results in a total vibrational wavefunction that is written as a product of functions one for
each of the vibrational coordinates.

Two of the most severe limitations of the harmonic oscillator model, the lack of anharmonicity (i.e., non-uniform energy level
spacings) and lack of bond dissociation, result from the quadratic nature of its potential. By introducing model potentials that allow
for proper bond dissociation (i.e., that do not increase without bound as x ), the major shortcomings of the harmonic oscillator
picture can be overcome. The so-called Morse potential (see the figure below)

is often used in this regard.

Figure 1.7.1: The Morse potential (blue) and harmonic oscillator potential (green). Unlike the energy levels of the harmonic
oscillator potential, which are evenly spaced by ħω, the Morse potential level spacing decreases as the energy approaches the
dissociation energy. The dissociation energy De is larger than the true energy required for dissociation D0 due to the zero point
energy of the lowest (v = 0) vibrational level. (CC-SA-BY-3.0; Somoza).

Here,  is the bond dissociation energy,  is the equilibrium bond length, and a is a constant that characterizes the 'steepness' of
the potential and determines the vibrational frequencies. The advantage of using the Morse potential to improve upon harmonic
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oscillator-level predictions is that its energy levels and wavefunctions are also known exactly. The energies are given in terms of
the parameters of the potential as follows:

where the force constant k is  The Morse potential supports both bound states (those lying below the dissociation
threshold for which vibration is confined by an outer turning point) and continuum states lying above the dissociation threshold. Its

degree of anharmonicity is governed by the ratio of the harmonic energy  to the dissociation energy .

This page titled 1.7: Harmonic Vibrational Motion is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Jack Simons via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.
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1.8: Rotational Motion for a Rigid Diatomic Molecule
A diatomic molecule with fixed bond length R rotating in the absence of any external potential is described by the following
Schrödinger equation:

or

The angles  and  describe the orientation of the diatomic molecule's axis relative to a laboratory-fixed coordinate system, and 
is the reduced mass of the diatomic molecule

The differential operators can be seen to be exactly the same as those that arose in the hydrogen-like-atom case, and, as discussed
above, these  differential operators are identical to the  angular momentum operator whose general properties are
analyzed in Appendix G. Therefore, the same spherical harmonics that served as the angular parts of the wavefunction in the
earlier case now serve as the entire wavefunction for the so-called rigid rotor: . As detailed later in this text, the
eigenvalues corresponding to each such eigenfunction are given as:

and are independent of M. Thus each energy level is labeled by J and is 2J+1-fold degenerate (because M ranges from -J to J). The

so-called rotational constant B  depends on the molecule's bond length and reduced mass. Spacings between

successive rotational levels (which are of spectroscopic relevance because angular momentum selection rules often restrict J to
1,0, and -1) are given by

These energy spacings are of relevance to microwave spectroscopy which probes the rotational energy levels of molecules.

This Schrödinger equation relates to the rotation of diatomic and linear polyatomic
molecules. It also arises when treating the angular motions of electrons in any spherically
symmetric potential.

Summary 

The rigid rotor provides the most commonly employed approximation to the rotational energies and wavefunctions of linear
molecules. As presented above, the model restricts the bond length to be fixed. Vibrational motion of the molecule gives rise to
changes in  which are then reflected in changes in the rotational energy levels. The coupling between rotational and vibrational
motion gives rise to rotational  constants that depend on vibrational state as well as dynamical couplings,called centrifugal
distortions, that cause the total ro-vibrational energy of the molecule to depend on rotational and vibrational quantum numbers in a
non-separable manner

This page titled 1.8: Rotational Motion for a Rigid Diatomic Molecule is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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1.9: The Physical Relevance of Wavefunctions, Operators and Eigenvalues

Quantum mechanics has a set of 'rules' that link operators, wavefunctions, and
eigenvalues to physically measurable properties. These rules have been formulated not in
some arbitrary manner nor by derivation from some higher subject. Rather, the rules were
designed to allow quantum mechanics to mimic the experimentally observed facts as
revealed in mother nature's data. The extent to which these rules seem difficult to
understand usually reflects the presence of experimental observations that do not fit in
with our common experience base.

The structure of quantum mechanics (QM) relates the wavefunction  and operators F to the 'real world' in which experimental
measurements are performed through a set of rules. Some of these rules have already been introduced above. Here, they are
presented in total as follows:

1: The Time Evolution 
The time evolution of the wavefunction  is determined by solving the time-dependent Schrödinger equation (see pp 23-25 of
EWK for a rationalization of how the Schrödinger equation arises from the classical equation governing waves, Einstein's ,
and deBroglie's postulate that )

where H is the Hamiltonian operator corresponding to the total (kinetic plus potential) energy of the system. For an isolated system
(e.g., an atom or molecule not in contact with any external fields), H consists of the kinetic and potential energies of the particles
comprising the system. To describe interactions with an external field (e.g., an electromagnetic field, a static electric field, or the
'crystal field' caused by surrounding ligands), additional terms are added to H to properly account for the system-field interactions.

If H contains no explicit time dependence, then separation of space and time variables can be performed on the above Schrödinger

equation  to give

In such a case, the time dependence of the state is carried in the phase factor ; the spatial dependence appears in .

The so called time independent Schrödinger equation  must be solved to determine the physically measurable energies 
 and wavefunctions  of the system. The most general solution to the full Schrödinger equation

is then given by applying  to the wavefunction at some initial time (t=0)

to obtain

The relative amplitudes  are determined by knowledge of the state at the initial time; this depends on how the system has been
prepared in an earlier experiment. Just as Newton's laws of motion do not fully determine the time evolution of a classical system
(i.e., the coordinates and momenta must be known at some initial time), the Schrödinger equation must be accompanied by initial
conditions to fully determine .
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Using the results of Problem 11 of this chapter to illustrate, the sudden ionization of  in its v=0 vibrational state to generate 
 produces a vibrational wavefunction

that was created by the fast ionization of . Subsequent to ionization, this  function is not an eigenfunction of the new
vibrational Schrödinger equation appropriate to  As a result, this function will time evolve under the influence of the 
Hamiltonian. The time evolved wavefunction, according to this first rule, can be expressed in terms of the vibrational functions
{ } and energies { } of the  ion as

The amplitudes , which reflect the manner in which the wavefunction is prepared (at t=0), are determined by determining
the component of each  in the function  at t=0. To do this, one uses

which is easily obtained by multiplying the above summation by , integrating, and using the orthonormality of the { }
functions.

For the case at hand, this results shows that by forming integrals involving products of the  v=0 function 

As demonstrated in Problem 11, this integral reduces to 0.959. This means that the  v=0 state, subsequent to sudden
ionization, can be represented as containing |0.959|2 = 0.92 fraction of the v=0 state of the  ion.

Example  relates to the well known Franck-Condon principal of spectroscopy in which squares of 'overlaps' between the
initial electronic state's vibrational wavefunction and the final electronic state's vibrational wavefunctions allow one to estimate the
probabilities of populating various final-state vibrational levels.

In addition to initial conditions, solutions to the Schrödinger equation must obey certain other constraints in form. They must be
continuous functions of all of their spatial coordinates and must be single valued; these properties allow  to be interpreted as a
probability density (i.e., the probability of finding a particle at some position can not be multivalued nor can it be 'jerky' or
discontinuous). The derivative of the wavefunction must also be continuous except at points where the potential function undergoes
an infinite jump (e.g., at the wall of an infinitely high and steep potential barrier). This condition relates to the fact that the
momentum must be continuous except at infinitely 'steep' potential barriers where the momentum undergoes a 'sudden' reversal.

2: Measurements are Eigenvalues 
An experimental measurement of any quantity (whose corresponding operator is F) must result in one of the eigenvalues  of the
operator F. These eigenvalues are obtained by solving

where the  are the eigenfunctions of F. Once the measurement of F is made, for that subpopulation of the experimental sample
found to have the particular eigenvalue , the wavefunction becomes .

The equation  is but a special case; it is an especially important case because much of the machinery of modern
experimental chemistry is directed at placing the system in a particular energy quantum state by detecting its energy (e.g., by
spectroscopic means). The reader is strongly urged to also study Appendix C to gain a more detailed and illustrated treatment of
this and subsequent rules of quantum mechanics.
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3: Operators that correspond to Measurables are Hermitian 

The operators F corresponding to all physically measurable quantities are Hermitian; this means that their matrix representations
obey (see Appendix C for a description of the 'bra' | \rangle and 'ket' \langle | notation used below):

in any basis { } of functions appropriate for the action of F (i.e., functions of the variables on which F operates). As expressed
through equality of the first and third elements above, Hermitian operators are often said to 'obey the turn-over rule'. This means
that F can be allowed to operate on the function to its right or on the function to its left if F is Hermitian.

Hermiticity assures that the eigenvalues { } are all real, that eigenfunctions { } having different eigenvalues are orthogonal and
can be normalized  and that eigenfunctions having the same eigenvalues can be made orthonormal (these
statements are proven in Appendix C).

4: Stationary states do not have varying Measurables 

Once a particular value  is observed in a measurement of F, this same value will be observed in all subsequent measurements of F
as long as the system remains undisturbed by measurements of other properties or by interactions with external fields. In fact, once 

 has been observed, the state of the system becomes an eigenstate of F (if it already was, it remains unchanged):

This means that the measurement process itself may interfere with the state of the system and even determines what that state will
be once the measurement has been made.

Again consider the v=0  ionization treated in Problem 11 of this chapter. If, subsequent to ionization, the  ions produced
were probed to determine their internal vibrational state, a fraction of the sample equal to 

 would be detected in the v=0 state of the  ion. For this sub-sample, the
vibrational wavefunction becomes, and remains from then on,

where  is the energy of the  ion in its  state. If, at some later time, this subsample is again probed, all species
will be found to be in the  state.

5: Probability of observed a specific Eigenvalue 
The probability  of observing a particular value  when F is measured, given that the system wavefunction is  prior to the
measurement, is given by expanding  in terms of the complete set of normalized eigenstates of F

and then computing  For the special case in which  is already one of the eigenstates of F (i.e., ), the
probability of observing  reduces to . The set of numbers  are called the expansion coefficients of  in the
basis of the { }. These coefficients, when collected together in all possible products as  form the so-called density
matrix  of the wavefunction  within the { } basis.

If F is the operator for momentum in the x-direction and  is the wave function for x as a function of time t, then the
above expansion corresponds to a Fourier transform of 

⟨ |F| ⟩= ⟨ |F ⟩∗ = ⟨F | ⟩χj χk χk χj χj χk
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fj χj

⟨ | ⟩= ,χj χk δj,k

fj

fi

FΨ = Ψ.fi
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Here  is the normalized eigenfunction of  corresponding to momentum eigenvalue . These momentum

eigenfunctions are orthonormal:

because F is a Hermitian operator. The function  is called the momentum-space transform of  and is
denoted ; it gives, when used as , the probability density for observing momentum values  at time t.

Take the initial  to be a superposition state of the form

where the a and b are amplitudes that describe the admixture of  and  functions in this wavefunction. Then:

a. If  were measured, the value  would be observed with probability , since all of the functions in  are
p-type orbitals. After said measurement, the wavefunction would still be this same  because this entire  is an eigenfunction
of .

b. If  were measured for this

the values  would be observed (because these are the only functions with non-zero  coefficients for the 
operator) with respective probabilities 

c. After  were measured, if the sub-population for which  had been detected were subjected to measurement of  the
value  would certainly be found because the new wavefunction

is still an eigenfunction of  with this eigenvalue.

d. Again after  were measured, if the sub-population for which  had been observed and for which the wavefunction is
now

were subjected to measurement of the energy (through the Hamiltonian operator), two values would be found. With probability
the energy of the  orbital would be observed; with probability , the energy of the 

orbital would be observed.

If  is a function of several variables (e.g., when  describes more than one particle in a composite system), and if F is a
property that depends on a subset of these variables (e.g., when F is a property of one of the particles in the composite system),
then the expansion  is viewed as relating only to 's dependence on the subset of variables related to F. In

this case, the integrals  are carried out over only these variables; thus the probabilities  depend
parametrically on the remaining variables.

Suppose that  describes the radial (r) and angular ( ) motion of a diatomic molecule constrained to move on a planar
surface. If an experiment were performed to measure the component of the rotational angular momentum of the diatomic molecule

perpendicular to the surface , only values equal to (m=0,1,-1,2,-2,3,- 3,...) could be observed, because these are

the eigenvalues of  :

1
2π

−−
√ eikx F = −iℏ ∂

∂x
ℏk

∫ dk = δ(x− )
1

2π
e−ikxeikx

′
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∫ Ψ( , t)de−ikx′
x′ x′ Ψ(x, t)
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The quantization of  arises because the eigenfunctions  must be periodic in : 

Such quantization (i.e., constraints on the values that physical properties can realize) will be seen to occur whenever the pertinent
wavefunction is constrained to obey a so-called boundary condition (in this case, the boundary condition is 

Expanding the -dependence of  in terms of the 

allows one to write the probability that  is observed if the angular momentum  is measured as follows:

If one is interested in the probability that  be observed when  is measured regardless of what bond length r is involved, then it
is appropriate to integrate this expression over the r-variable about which one does not care. This, in effect, sums contributions
from all rvalues to obtain a result that is independent of the r variable. As a result, the probability reduces to:

which is simply the above result integrated over r with a volume element r dr for the twodimensional motion treated here. If, on the
other hand, one were able to measure  values when r is equal to some specified bond length (this is only a hypothetical example;
there is no known way to perform such a measurement), then the probability would equal:

6. Commuting Operators 
Two or more properties F, G, J whose corresponding Hermitian operators F, G, J commute

FG-GF=FJ-JF=GJ-JG= 0

have complete sets of simultaneous eigenfunctions (the proof of this is treated in Appendix C). This means that the set of functions
that are eigenfunctions of one of the operators can be formed into a set of functions that are also eigenfunctions of the others:

The  orbitals are eigenfunctions of the  angular momentum operator with eigenvalues equal to 
. Since  commute and act on the same (angle) coordinates, they possess a complete set of

simultaneous eigenfunctions.

Although the  orbitals are not eigenfunctions of , they can be combined to form three new orbitals: 
 that are still eigenfunctions of  but are now eigenfunctions of 

also (with eigenvalues , respectively).

It should be mentioned that if two operators do not commute, they may still have some eigenfunctions in common, but they
will not have a complete set of simultaneous eigenfunctions. For example, the  components of the angular
momentum operator do not commute; however, a wavefunction with L=0 (i.e., an S-state) is an eigenfunction of both
operators.
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The fact that two operators commute is of great importance. It means that once a measurement of one of the properties is
carried out, subsequent measurement of that property or of any of the other properties corresponding to mutually commuting
operators can be made without altering the system's value of the properties measured earlier. Only subsequent measurement of
another property whose operator does not commute with F, G, or J will destroy precise knowledge of the values of the
properties measured earlier.

Assume that an experiment has been carried out on an atom to measure its total angular momentum . According to quantum
mechanics, only values equal to  will be observed. Further assume, for the particular experimental sample
subjected to observation, that values of  equal to  were detected in relative amounts of 64 % and 36 % ,
respectively. This means that the atom's original wavefunction  could be represented as:

where P and S represent the P-state and S-state components of . The squares of the amplitudes 0.8 and 0.6 give the 64 % and
36 % probabilities mentioned above.

Now assume that a subsequent measurement of the component of angular momentum along the lab-fixed z-axis is to be
measured for that sub-population of the original sample found to be in the P-state. For that population, the wavefunction is now
a pure P-function:

However, at this stage we have no information about how much of this ' is of m = 1, 0, or -1, nor do we know how much 2p,
3p, 4p, ... np components this state contains.

Because the property corresponding to the operator  is about to be measured, we express the above  in terms of the
eigenfunctions of 

However, at this stage we have no information about how much of this y' is of m = 1, 0, or -1, nor do we know how much 2p,
3p, 4p, ... np components this state contains.

Because the property corresponding to the operator  is about to be measured, we express the above ' in terms of the
eigenfunctions of 

When the measurement of  is made, the values  will be observed with probabilities given by 
 respectively. For that sub-population found to have, for example,  equal to , the wavefunction

then becomes

At this stage, we do not know how much of  this wavefunction contains. To probe this question
another subsequent measurement of the energy (corresponding to the H operator) could be made. Doing so would allow the
amplitudes in the expansion of the above 

to be found.

The kind of experiment outlined above allows one to find the content of each particular component of an initial sample's
wavefunction. For example, the original wavefunction has  fractional content of the various  functions. It
is analogous to the other examples considered above because all of the operators whose properties are measured commute.
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Let us consider an experiment in which we begin with a sample (with wavefunction ) that is first subjected to measurement
of  and then subjected to measurement of  and then of the energy. In this order, one would first find specific values
(integer multiples of ) of  and one would express \psi as

At this stage, the nature of each \(\m is unknown (e.g., the y1 function can contain np1, n'd1, n''f1, etc. components); all that is
known is that ym has m h as its Lz value

Taking that sub-population  with a particular m  value for  and subjecting it to subsequent measurement
of  requires the current wavefunction  to be expressed as

When  is measured the value L(L+1)  will be observed with probability , and the wavefunction for that particular
sub-population will become

At this stage, we know the value of L and of m, but we do not know the energy of the state. For example, we may know that
the present sub-population has L=1, m=-1, but we have no knowledge (yet) of how much 2p-1, 3p-1, ... np-1 the system
contains.

To further probe the sample, the above sub-population with L=1 and m=-1 can be subjected to measurement of the energy. In
this case, the function  must be expressed as

When the energy measurement is made, the state  will be found  fraction of the time.

The fact that , and H all commute with one another (i.e., are mutually commutative) makes the series of measurements
described in the above examples more straightforward than if these operators did not commute.

In the first experiment, the fact that they are mutually commutative allowed us to expand the 64 % probable  eigenstate with
L=1 in terms of functions that were eigenfunctions of the operator for which measurement was about to be made without
destroying our knowledge of the value of . That is, because  and  can have simultaneous eigenfunctions, the L = 1 function
can be expanded in terms of functions that are eigenfunctions of both  and  This in turn, allowed us to find experimentally
the sub-population that had, for example -1  as its value of  while retaining knowledge that the state remains an eigenstate of 
(the state at this time had L = 1 and m = -1 and was denoted ). Then, when this  state was subjected to energy
measurement, knowledge of the energy of the sub-population could be gained without giving up knowledge of the  and 
information; upon carrying out said measurement, the state became .

We therefore conclude that the act of carrying out an experimental measurement disturbs the system in that it causes the system's
wavefunction to become an eigenfunction of the operator whose property is measured. If two properties whose corresponding
operators commute are measured, the measurement of the second property does not destroy knowledge of the first property's value
gained in the first measurement.

On the other hand, as detailed further in Appendix C, if the two properties (F and G) do not commute, the second measurement
destroys knowledge of the first property's value. After the first measurement,  is an eigenfunction of F; after the second
measurement, it becomes an eigenfunction of G. If the two non-commuting operators' properties are measured in the opposite
order, the wavefunction first is an eigenfunction of G, and subsequently becomes an eigenfunction of F.

It is thus often said that 'measurements for operators that do not commute interfere with one another'. The simultaneous
measurement of the position and momentum along the same axis provides an example of two measurements that are incompatible.
The fact that x = x and  do not commute is straightforward to demonstrate:
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Operators that commute with the Hamiltonian and with one another form a particularly important class because each such operator
permits each of the energy eigenstates of the system to be labelled with a corresponding quantum number. These operators are
called symmetry operators. As will be seen later, they include angular momenta (e.g.,  for atoms) and point group
symmetries (e.g., planes and rotations about axes). Every operator that qualifies as a symmetry operator provides a quantum
number with which the energy levels of the system can be labeled.

7: Expectation Values 
If a property F is measured for a large number of systems all described by the same , the average value of \langle F\rangle for
such a set of measurements can be computed as

Expanding  in terms of the complete set of eigenstates of F allows \langle F\rangle to be rewritten as follows:

which clearly expresses \langle F\rangle as the product of the probability  of obtaining the particular value  when the property
F is measured and the value .of the property in such a measurement. This same result can be expressed in terms of the density
matrix  of the state  defined above as:

Here, DF represents the matrix product of the density matrix  and the matrix representation  of the F operator,
both taken in the { } basis, and Tr represents the matrix trace operation.

As mentioned at the beginning of this Section, this set of rules and their relationships to experimental measurements can be quite
perplexing. The structure of quantum mechanics embodied in the above rules was developed in light of new scientific observations
(e.g., the photoelectric effect, diffraction of electrons) that could not be interpreted within the conventional pictures of classical
mechanics. Throughout its development, these and other experimental observations placed severe constraints on the structure of the
equations of the new quantum mechanics as well as on their interpretations. For example, the observation of discrete lines in the
emission spectra of atoms gave rise to the idea that the atom's electrons could exist with only certain discrete energies and that light
of specific frequencies would be given off as transitions among these quantized energy states took place.

Even with the assurance that quantum mechanics has firm underpinnings in experimental observations, students learning this
subject for the first time often encounter difficulty. Therefore, it is useful to again examine some of the model problems for which
the Schrödinger equation can be exactly solved and to learn how the above rules apply to such concrete examples.

The examples examined earlier in this Chapter and those given in the Exercises and Problems serve as useful models for
chemically important phenomena: electronic motion in polyenes, in solids, and in atoms as well as vibrational and rotational
motions. Their study thus far has served two purposes; it allowed the reader to gain some familiarity with applications of quantum
mechanics and it introduced models that play central roles in much of chemistry. Their study now is designed to illustrate how the
above seven rules of quantum mechanics relate to experimental reality.

An Example Illustrating Several of the Fundamental Rules 

The physical significance of the time independent wavefunctions and energies treated in Section II as well as the meaning of the
seven fundamental points given above can be further illustrated by again considering the simple two-dimensional electronic motion
model.

If the electron were prepared in the eigenstate corresponding to  its total energy would be

[x(−iℏ )−(−iℏ )x]χ = iℏχ ≠ 0.
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If the energy were experimentally measured, this and only this value would be observed, and this same result would hold for all
time as long as the electron is undisturbed.

If an experiment were carried out to measure the momentum of the electron along the y-axis, according to the second postulate

above, only values equal to the eigenvalues of  could be observed. The p  eigenfunctions (i.e., functions that obey p

 are of the form

where the momentum  can achieve any value; the  factor is used to normalize the eigenfunctions over the range 

 It is useful to note that the y-dependence of  as expressed above  is already written in terms of two

such eigenstates of 

Thus, the expansion of  in terms of eigenstates of the property being measured dictated by the fifth postulate above is already
accomplished. The only two terms in this expansion correspond to momenta along the y-axis of  the probabilities of

observing these two momenta are given by the squares of the expansion coefficients of  in terms of the normalized eigenfunctions

of . The functions  are such normalized eigenfunctions; the expansion coefficients of

these functions in  respectively. Thus the momentum  will be observed with probability 

 will be observed with probability  If the momentum along the x-axis were experimentally

measured, again only two values would be found, each with a probability of .

The average value of the momentum along the x-axis can be computed either as the sum of the probabilities multiplied by the
momentum values:

or as the so-called expectation value integral shown in the seventh postulate:

Inserting the full expression for (x,y) and integrating over x and y from 0 to L  respectively, this integral is seen to
vanish. This means that the result of a large number of measurements of p  on electrons each described by the same  will yield
zero net momentum along the x-axis.; half of the measurements will yield positive momenta and half will yield negative momenta
of the same magnitude.

The time evolution of the full wavefunction given above for the n =1, n =2 state is easy to express because this  is an energy
eigenstate:
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If, on the other hand, the electron had been prepared in a state  that is not a pure eigenstate (i.e., cannot be expressed as a
single energy eigenfunction), then the time evolution is more complicated. For example, if at t=0  were of the form

with a and b both real numbers whose squares give the probabilities of finding the system in the respective states, then the time

evolution operator  applied to  would yield the following time dependent function:

where

The probability of finding  if an experiment were carried out to measure energy would be ; the
probability for finding  would be . The spatial probability distribution for finding the electron at points x,y will, in this case,
be given by:

where  is 

and

This spatial distribution is not stationary but evolves in time. So in this case, one has a wavefunction that is not a pure eigenstate of
the Hamiltonian (one says that  is a superposition state or a non-stationary state) whose average energy remains constant 

 but whose spatial distribution changes with time.

Although it might seem that most spectroscopic measurements would be designed to prepare the system in an eigenstate (e.g., by
focusing on the sample light whose frequency matches that of a particular transition), such need not be the case. For example, if
very short laser pulses are employed, the Heisenberg uncertainty broadening  causes the light impinging on the
sample to be very non-monochromatic (e.g., a pulse time of  sec corresponds to a frequency spread of approximately 

). This, in turn, removes any possibility of preparing the system in a particular quantum state with a resolution of better than 
 because the system experiences time oscillating electromagnetic fields whose frequencies range over at least ).

Essentially all of the model problems that have been introduced in this Chapter to illustrate the application of quantum mechanics
constitute widely used, highly successful 'starting-point' models for important chemical phenomena. As such, it is important that
students retain working knowledge of the energy levels, wavefunctions, and symmetries that pertain to these models.

Ψ(x, y, t) = ψ(x, y) .e

−iEt

ℏ

ψ(x, y)
ψ

ψ = [a sin( ) sin( )+b sin( ) sin( )] ,
2

Lx

−−−

√
2

Ly

−−−

√
2πx

Lx

1πy

Ly

1πx

Lx

2πy

Ly

e

−iHt

ℏ ψ

Ψ = a sin( ) sin( ) sin( )+b sin( ) sin( ) ,
2

Lx

−−−

√
2

Ly

−−−

√
⎡

⎣
⎢ e

−i tE2,1

ℏ
2πx

Lx

2πx

Lx

1πx

Lx

e

−i tE1,2

ℏ
1πx

Lx

2πy

Ly

⎤

⎦
⎥

= [ + ] , andE2,1 π2 ℏ2

2m

22

L2
x

12

L2
y

= [ + ] , andE1,2 π2 ℏ2

2m

12

L2
x

22

L2
y

E2,1 a| = |ae

−i tE2,1

ℏ |2 |2

E1,2 |b|
2

|Ψ = |a | + |b | +2 ab cos( ) ,|
2

|
2
ψ2,1|

2
|
2
ψ1,2|

2
ψ2,1ψ1,2

ΔEt

ℏ

ΔE − ,E2,1 E1,2

= sin( ) sin( ) ,ψ2,1
2

Lx

−−−

√
2

Ly

−−−

√
2πx

Lx

1πy

Ly

= sin( ) sin( ) ,ψ1,2
2

Lx

−−−

√
2

Ly

−−−

√
1πx

Lx

2πy

Ly

Ψ

(E = |a + |b )E2,1 |2 E1,2 |2

(ΔEΔt ≥ ℏ)
1x10−12

5cm−1

30cm−1 5cm−1

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/60545?pdf


1.9.11 https://chem.libretexts.org/@go/page/60545

Thus far, exactly soluble model problems that represent one or more aspects of an atom or molecule's quantum-state structure have
been introduced and solved. For example, electronic motion in polyenes was modeled by a particle-in-a-box. The harmonic
oscillator and rigid rotor were introduced to model vibrational and rotational motion of a diatomic molecule

As chemists, we are used to thinking of electronic, vibrational, rotational, and translational energy levels as being (at least
approximately) separable. On the other hand, we are aware that situations exist in which energy can flow from one such degree of
freedom to another (e.g., electronic-to-vibrational energy flow occurs in radiationless relaxation and vibration-rotation couplings
are important in molecular spectroscopy). It is important to understand how the simplifications that allow us to focus on electronic
or vibrational or rotational motion arise, how they can be obtained from a first-principles derivation, and what their limitations and
range of accuracy are.
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1

CHAPTER OVERVIEW

2: Approximation Methods
Approximation methods can be used when exact solutions to the Schrödinger equation cannot be found. In applying quantum
mechanics to 'real' chemical problems, one is usually faced with a Schrödinger differential equation for which, to date, no one has
found an analytical solution. This is equally true for electronic and nuclear-motion problems. It has therefore proven essential to
develop and efficiently implement mathematical methods which can provide approximate solutions to such eigenvalue equations.
Two methods are widely used in this context- the variational method and perturbation theory. These tools, whose use permeates
virtually all areas of theoretical chemistry, are briefly outlined here, and the details of perturbation theory are amplified in
Appendix D

2.1: The Variational Method
2.2: Perturbation Theory
2.E: Approximation Methods (Exercises)
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2.1: The Variational Method
For the kind of potentials that arise in atomic and molecular structure, the Hamiltonian H is a Hermitian operator that is bounded
from below (i.e., it has a lowest eigenvalue). Because it is Hermitian, it possesses a complete set of orthonormal eigenfunctions 

. Any function Φ that depends on the same spatial and spin variables on which H operates and obeys the same boundary
conditions that the {  j } obey can be expanded in this complete set

The expectation value of the Hamiltonian for any such function can be expressed in terms of its  coefficients and the exact
energy levels  of H as follows:

If the function Φ is normalized, the sum  is equal to unity. Because H is bounded from below, all of the  must be greater

than or equal to the lowest energy . Combining the latter two observations allows the energy expectation value of Φ to be used
to produce a very important inequality:

The equality can hold only if Φ is equal to  ; if Φ contains components along any of the other , the energy of Φ will exceed 
.

This upper-bound property forms the basis of the so-called variational method in which 'trial wavefunctions' Φ are constructed:

1. To guarantee that Φ obeys all of the boundary conditions that the exact  do and that Φ is of the proper spin and space
symmetry and is a function of the same spatial and spin coordinates as the ;

2. With parameters embedded in Φ whose 'optimal' values are to be determined by making  a minimum.

It is perfectly acceptable to vary any parameters in Φ to attain the lowest possible value for  because the proof outlined
above constrains this expectation value to be above the true lowest eigenstate's energy  for any Φ. The philosophy then is that
the Φ that gives the lowest  is the best because its expectation value is closes to the exact energy.

Linear Variational Calculations 

Quite often a trial wavefunction is expanded as a linear combination of other functions (not the eigenvalues of the Hamiltonian,
since they are not known)

In these cases, one says that a 'linear variational' calculation is being performed. The set of functions { } are usually constructed
to obey all of the boundary conditions that the exact state  obeys, to be functions of the the same coordinates as , and to be of
the same spatial and spin symmetry as Ψ. Beyond these conditions, the { } are nothing more than members of a set of functions
that are convenient to deal with (e.g., convenient to evaluate Hamiltonian matrix elements  that can, in principle, be
made complete if more and more such functions are included in the expansion in Equation  (i.e., increase ).

For such a trial wavefunction, the energy depends quadratically on the 'linear variational'  coefficients:

Minimization of this energy with the constraint that Φ remain normalized, i.e.,

gives rise to a so-called secular or eigenvalue-eigenvector problem:
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If the functions  are orthonormal, then the overlap matrix  reduces to the unit matrix and the above generalized eigenvalue
problem reduces to the more familiar form:

The secular problem, in either form, has as many eigenvalues  and eigenvectors { } as the dimension of the  matrix as .
It can also be shown that between successive pairs of the eigenvalues obtained by solving the secular problem at least one exact
eigenvalue must occur (i.e., , for all i). This observation is referred to as 'the bracketing theorem'.

Variational methods, in particular the linear variational method, are the most widely used approximation techniques in quantum
chemistry. To implement such a method one needs to know the Hamiltonian  whose energy levels are sought and one needs to
construct a trial wavefunction in which some 'flexibility' exists (e.g., as in the linear variational method where the  coefficients
can be varied). In Section 6 this tool will be used to develop several of the most commonly used and powerful molecular orbital
methods in chemistry.
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2.2: Perturbation Theory
Perturbation theory is the second most widely used approximation method in quantum chemistry. It allows one to estimate the
splittings and shifts in energy levels and changes in wavefunctions that occur when an external field (e.g., an electric or magnetic
field or a field that is due to a surrounding set of 'ligands'- a crystal field) or a field arising when a previously-ignored term in the
Hamiltonian is applied to a species whose 'unperturbed' states are known. These 'perturbations' in energies and wavefunctions are
expressed in terms of the (complete) set of unperturbed eigenstates.

Assuming that all of the wavefunctions  and energies  belonging to the unperturbed Hamiltonian  are known

and given that one wishes to find eigenstates  and  of the perturbed Hamiltonian

perturbation theory expresses  and  as power series in the perturbation strength :

The systematic development of the equations needed to determine the  and the  is presented in Appendix D. Here, we
simply quote the few lowest-order results.

The zeroth-order wavefunctions and energies are given in terms of the solutions of the unperturbed problem as follows:

and

This simply means that one must be willing to identify one of the unperturbed states as the 'best' approximation to the state being
sought. This, of course, implies that one must therefore strive to find an unperturbed model problem, characterized by  that
represents the true system as accurately as possible, so that one of the  will be as close as possible to .

The first-order energy correction is given in terms of the zeroth-order (i.e., unperturbed) wavefunction as:

which is identified as the average value of the perturbation taken with respect to the unperturbed function . The so-called first-
order wavefunction  expressed in terms of the complete set of unperturbed functions { } is:

and the second-order correction to the wavefunction is expressed as

An essential point about perturbation theory is that the energy corrections  and wavefunction corrections  are expressed in
terms of integrals over the unperturbed wavefunctions  involving the perturbation (i.e.,  ) and the unperturbed energies

 Perturbation theory is most useful when one has, in hand, the solutions to an unperturbed Schrödinger equation that is
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reasonably 'close' to the full Schrödinger equation whose solutions are being sought. In such a case, it is likely that low-order
corrections will be adequate to describe the energies and wavefunctions of the full problem.

It is important to stress that although the solutions to the full 'perturbed' Schrödinger equation are expressed, as above, in terms of
sums over all states of the unperturbed Schrödinger equation, it is improper to speak of the perturbation as creating excited-state
species. For example, the polarization of the 1s orbital of the Hydrogen atom caused by the application of a static external electric
field of strength E along the z-axis is described, in first-order perturbation theory, through the sum

over all  orbitals labeled by principal quantum number n. The coefficient multiplying each  orbital depends on the energy
gap corresponding to the 1s-to-np 'excitation' as well as the electric dipole integral  between the 1s orbital and
the  orbital.

This sum describes the polarization of the 1s orbital in terms of functions that have  symmetry; by combining an s orbital and 
orbitals, one can form a 'hybrid-like' orbital that is nothing but a distorted 1s orbital. The appearance of the excited  orbitals has
nothing to do with forming excited states; these  orbitals simply provide a set of functions that can describe the response of the
1s orbital to the applied electric field.

The relative strengths and weaknesses of perturbation theory and the variational method, as applied to studies of the electronic
structure of atoms and molecules, are discussed in Section 6.
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The Application of the Schrödinger Equation to the Motions of Electrons and Nuclei in a Molecule Lead to the Chemists' Picture of
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3.1: The Born-Oppenheimer Separation of Electronic and Nuclear Motions
Many elements of chemists' pictures of molecular structure hinge on the point of view that separates the electronic motions from
the vibrational/rotational motions and treats couplings between these (approximately) separated motions as 'perturbations'. It is
essential to understand the origins and limitations of this separated-motions picture.

To develop a framework in terms of which to understand when such separability is valid, one thinks of an atom or molecule as
consisting of a collection of N electrons and M nuclei each of which possesses kinetic energy and among which coulombic
potential energies of interaction arise. To properly describe the motions of all these particles, one needs to consider the full
Schrödinger equation , in which the Hamiltonian H contains the sum (denoted  ) of the kinetic energies of all N
electrons and the coulomb potential energies among the N electrons and the M nuclei as well as the kinetic energy T of the M
nuclei

Here,  is the mass of the nucleus a,  is its charge, and  is the Laplacian with respect to the three cartesian coordinates of
this nucleus (this operator  is given in spherical polar coordinates in Appendix A);  is the distance between the  electron
and the  nucleus,  is the distance between the  and  electrons,  is the electron's mass, and  is the distance from
nucleus a to nucleus b.

The full Hamiltonian H thus contains differential operators over the 3N electronic coordinates (denoted r as a shorthand) and the
3M nuclear coordinates (denoted R as a shorthand). In contrast, the electronic Hamiltonian  is a Hermitian differential operator
in r-space but not in R-space. Although  is indeed a function of the R-variables, it is not a differential operator involving them.

Because He is a Hermitian operator in r-space, its eigenfunctions 

for any values of the R-variables, and form a complete set of functions of r for any values of R. These eigenfunctions and their
eigenvalues  depend on R only because the potentials appearing in  depend on R. The  are the electronic
wavefunctions and electronic energies whose evaluations are treated in the next three Chapters.

The fact that the set of { } is, in principle, complete in r-space allows the full (electronic and nuclear) wavefunction  to have its
r-dependence expanded in terms of the  :

The  functions, carry the remaining R-dependence of  and are determined by insisting that  as expressed here obey the
full Schrödinger equation:

Projecting this equation against  (integrating only over the electronic coordinates because the  are orthonormal only
when so integrated) gives:

where the (R) notation in  has been used to remind one that the integrals < ...> are carried out
only over the r coordinates and, as a result, still depend on the R coordinates.

In the Born-Oppenheimer (BO) approximation, one neglects the so-called nonadiabatic or non-BO couplings on the right-hand
side of the above equation. Doing so yields the following equations for the  functions:
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where the superscript in  is used to indicate that these functions are solutions within the BO approximation only.

These BO equations can be recognized as the equations for the translational, rotational, and vibrational motion of the nuclei on
the 'potential energy surface'  That is, within the BO picture, the electronic energies  considered as functions of the
nuclear positions R, provide the potentials on which the nuclei move. The electronic and nuclear-motion aspects of the Schrödinger
equation are thereby separated.
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3.2: Time Scale Separation
The physical parameters that determine under what circumstances the BO approximation is accurate relate to the motional time

scales of the electronic and vibrational/rotational coordinates.

The range of accuracy of this separation can be understood by considering the differences in time scales that relate to electronic
motions and nuclear motions under ordinary circumstances. In most atoms and molecules, the electrons orbit the nuclei at speeds
much in excess of even the fastest nuclear motions (the vibrations). As a result, the electrons can adjust 'quickly' to the slow
motions of the nuclei. This means it should be possible to develop a model in which the electrons 'follow' smoothly as the nuclei
vibrate and rotate.

This picture is that described by the BO approximation. Of course, one should expect large corrections to such a model for
electronic states in which 'loosely held' electrons exist. For example, in molecular Rydberg states and in anions, where the outer
valence electrons are bound by a fraction of an electron volt, the natural orbit frequencies of these electrons are not much faster (if
at all) than vibrational frequencies. In such cases, significant breakdown of the BO picture is to be expected.
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3.3: Vibration/Rotation States for Each Electronic Surface
The BO picture is what gives rise to the concept of a manifold of potential energy surfaces on which vibrational/rotational motions

occur.

Even within the BO approximation, motion of the nuclei on the various electronic energy surfaces is different because the nature of
the chemical bonding differs from surface to surface. That is, the vibrational/rotational motion on the ground-state surface is
certainly not the same as on one of the excited-state surfaces. However, there are a complete set of wavefunctions  and
energy levels  for each surface  is a Hermitian operator in R-space for each surface (labelled j):

The eigenvalues  must be labelled by the electronic surface (j) on which the motion occurs as well as to denote the particular
state (m) on that surface.
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3.4: Rotation and Vibration of Diatomic Molecules

For a diatomic species, the vibration-rotation  kinetic energy operator can be expressed as follows in terms of the bond

length R and the angles  that describe the orientation of the bond axis relative to a laboratory-fixed coordinate system:

where the square of the rotational angular momentum of the diatomic species is

Because the potential  depends on R but not on  can be written as a product of an angular

part and an R-dependent part; moreover, because  contains the full angle-dependence of  can be written as

The general subscript n, which had represented the state in the full set of 3M-3 R-space coordinates, is replaced by the three
quantum numbers J,M, and v (i.e., once one focuses on the three specific coordinates , a total of three quantum
numbers arise in place of the symbol n).

Substituting this product form for  into the  equation gives:

as the equation for the vibrational (i.e., R-dependent) wavefunction within electronic state j and with the species rotating with 
 as the square of the total angular momentum and a projection along the laboratory-fixed Z-axis of  The fact that

the  functions do not depend on the M quantum number derives from the fact that the  kinetic energy operator does not
explicitly contain ; only  appears in 

The solutions for which J=0 correspond to vibrational states in which the species has no rotational energy; they obey

The differential-operator parts of this equation can be simplified somewhat by substituting  and thus obtaining the

following equation for the new function 

Solutions for which  require the vibrational wavefunction and energy to respond to the presence of the 'centrifugal potential'

given by ; these solutions obey the full coupled V/R equations given above.
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3.5: Separation of Vibration and Rotation
It is common, in developing the working equations of diatomic-molecule rotational/vibrational spectroscopy, to treat the coupling
between the two degrees of freedom using perturbation theory as developed later in this chapter. In particular, one can expand the
centrifugal coupling  around the equilibrium geometry  (which depends, of course, on ):

and treat the terms containing powers of the bond length displacement  as perturbations. The zeroth-order equations read:

and have solutions whose energies separate

and whose wavefunctions are independent of  (because the coupling is not R-dependent in zeroth order)

Perturbation theory is then used to express the corrections to these zeroth order solutions as indicated in Appendix D.
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3.6: The Rigid Rotor and Harmonic Oscillator
Treatment of the rotational motion at the zeroth-order level described above introduces the so-called 'rigid rotor' energy levels and
wavefunctions: ; these same quantities arise when the diatomic molecule is treated as a rigid rod

of length  The spacings between successive rotational levels within this approximation are

where the so-called rotational constant B is given in  as

The rotational level J is (2J+1)-fold degenerate because the energy  is independent of the M quantum number of which there are
(2J+1) values for each J: M= -J, -J+1, -J+2, ... J-2, J-1, J.

The explicit form of the zeroth-order vibrational wavefunctions and energy levels,  depends on the description used
for the electronic potential energy surface  In the crudest useful approximation,  is taken to be a so-called harmonic
potential

as a consequence, the wavefunctions and energy levels reduce to

where  denotes the Hermite polynomial defined by:

The solution of the vibrational differential equation

is treated in EWK, Atkins, and McQuarrie.

These harmonic-oscillator solutions predict evenly spaced energy levels (i.e., no anharmonicity) that persist for all . It is, of
course, known that molecular vibrations display anharmonicity (i.e., the energy levels move closer together as one moves to higher 

) and that quantized vibrational motion ceases once the bond dissociation energy is reached.
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3.7: The Morse Oscillator
The Morse oscillator model is often used to go beyond the harmonic oscillator approximation. In this model, the potential  is
expressed in terms of the bond dissociation energy  and a parameter a related to the second derivative k of  at 

 as follows:

The Morse oscillator energy levels are given by

the corresponding eigenfunctions are also known analytically in terms of hypergeometric functions (see, for example, Handbook of
Mathematical Functions , M. Abramowitz and I. A. Stegun, Dover, Inc. New York, N. Y. (1964)). Clearly, the Morse solutions

display anharmonicity as reflected in the negative term proportional to 
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3.8: Rotation of Polyatomic Molecules
For a non-linear polyatomic molecule, again with the centrifugal couplings to the vibrations evaluated at the equilibrium geometry,
the following terms form the rotational part of the nuclear-motion kinetic energy:

Here,  is the eigenvalue of the moment of inertia tensor:

expressed originally in terms of the cartesian coordinates of the nuclei (a) and of the center of mass in an arbitrary molecule-fixed
coordinate system (and similarly for ). The operator  corresponds to the component of the total rotational
angular momentum J along the direction belonging to the  eigenvector of the moment of inertia tensor.

Molecules for which all three principal moments of inertia (the ) are equal are called 'spherical tops'. For these species, the
rotational Hamiltonian can be expressed in terms of the square of the total rotational angular momentum  :

as a consequence of which the rotational energies once again become

However, the  are not the corresponding eigenfunctions because the operator  now contains contributions from rotations
about three (no longer two) axes (i.e., the three principal axes). The proper rotational eigenfunctions are the 
functions known as 'rotation matrices' (see Sections 3.5 and 3.6 of Zare's book on angular momentum) these functions depend on
three angles (the three Euler angles needed to describe the orientation of the molecule in space) and three quantum numbers- J,M,
and K. The quantum number M labels the projection of the total angular momentum (as ) along the laboratory-fixed z-axis; 
is the projection along one of the internal principal axes ( in a spherical top molecule, all three axes are equivalent, so it does not
matter which axis is chosen).

The energy levels of spherical top molecules are  -fold degenerate. Both the M and K quantum numbers run from -J, in
steps of unity, to J; because the energy is independent of M and of K, the degeneracy is .

Molecules for which two of the three principal moments of inertia are equal are called symmetric top molecules. Prolate symmetric
tops have  ; oblate symmetric tops have  ( it is convention to order the moments of inertia as 

 The rotational Hamiltonian can now be written in terms of  and the component of J along the unique moment of
inertia's axis as:

for prolate tops, and

for oblate tops. Again, the  are the eigenfunctions, where the quantum number K describes the component of the
rotational angular momentum J along the unique molecule-fixed axis (i.e., the axis of the unique moment of inertia). The energy
levels are now given in terms of J and K as follows:
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for prolate tops, and

for oblate tops.

Because the rotational energies now depend on K (as well as on J), the degeneracies are lower than for spherical tops. In particular,
because the energies do not depend on M and depend on the square of K, the degeneracies are (2J+1) for states with K=0 and
2(2J+1) for states with |K| > 0; the extra factor of 2 arises for |K| > 0 states because pairs of states with K = |K| and K = |-K| are
degenerate.
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3.9: Rotation of Linear Molecules
The rotational motion of a linear polyatomic molecule can be treated as an extension of the diatomic molecule case. One obtains
the  as rotational wavefunctions and, within the approximation in which the centrifugal potential is approximated at the
equilibrium geometry of the molecule , the energy levels are:

Here the total moment of inertia I of the molecule takes the place of  in the diatomic molecule case

 is the mass of atom a whose distance from the center of mass of the molecule is  The rotational level with
quantum number J is (2J+1)-fold degenerate again because there are (2J+1) M- values.
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3.10: Rotation of Non-Linear Molecules
For a non-linear polyatomic molecule, again with the centrifugal couplings to the vibrations evaluated at the equilibrium geometry,
the following terms form the rotational part of the nuclear-motion kinetic energy:

Here,  is the eigenvalue of the moment of inertia tensor:

expressed originally in terms of the cartesian coordinates of the nuclei (a) and of the center of mass in an arbitrary molecule-fixed
coordinate system (and similarly for ). The operator  corresponds to the component of the total rotational
angular momentum J along the direction belonging to the  eigenvector of the moment of inertia tensor.

Molecules for which all three principal moments of inertia (the ) are equal are called 'spherical tops'. For these species, the
rotational Hamiltonian can be expressed in terms of the square of the total rotational angular momentum  :

as a consequence of which the rotational energies once again become

However, the  are not the corresponding eigenfunctions because the operator  now contains contributions from rotations
about three (no longer two) axes (i.e., the three principal axes). The proper rotational eigenfunctions are the 
functions known as 'rotation matrices' (see Sections 3.5 and 3.6 of Zare's book on angular momentum) these functions depend on
three angles (the three Euler angles needed to describe the orientation of the molecule in space) and three quantum numbers- J,M,
and K. The quantum number M labels the projection of the total angular momentum (as ) along the laboratory-fixed z-axis; 
is the projection along one of the internal principal axes ( in a spherical top molecule, all three axes are equivalent, so it does not
matter which axis is chosen).

The energy levels of spherical top molecules are  -fold degenerate. Both the M and K quantum numbers run from -J, in
steps of unity, to J; because the energy is independent of M and of K, the degeneracy is .

Molecules for which two of the three principal moments of inertia are equal are called symmetric top molecules. Prolate symmetric
tops have  ; oblate symmetric tops have  ( it is convention to order the moments of inertia as 

 The rotational Hamiltonian can now be written in terms of  and the component of J along the unique moment of
inertia's axis as:

for prolate tops, and

for oblate tops. Again, the  are the eigenfunctions, where the quantum number K describes the component of the
rotational angular momentum J along the unique molecule-fixed axis (i.e., the axis of the unique moment of inertia). The energy
levels are now given in terms of J and K as follows:
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for prolate tops, and

for oblate tops.

Because the rotational energies now depend on K (as well as on J), the degeneracies are lower than for spherical tops. In particular,
because the energies do not depend on M and depend on the square of K, the degeneracies are (2J+1) for states with K=0 and
2(2J+1) for states with |K| > 0; the extra factor of 2 arises for |K| > 0 states because pairs of states with K = |K| and K = |-K| are
degenerate.
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3.11: Chapter Summary
This Chapter has shown how the solution of the Schrödinger equation governing the motions and interparticle potential energies of
the nuclei and electrons of an atom or molecule (or ion) can be decomposed into two distinct problems:

i. solution of the electronic Schrödinger equation for the electronic wavefunctions and energies, both of which depend on the
nuclear geometry and

ii. solution of the vibration/rotation Schrödinger equation for the motion of the nuclei on any one of the electronic energy
surfaces.

This decomposition into approximately separable electronic and nuclearmotion problems remains an important point of view in
chemistry. It forms the basis of many of our models of molecular structure and our interpretation of molecular spectroscopy. It also
establishes how we approach the computational simulation of the energy levels of atoms and molecules; we first compute
electronic energy levels at a 'grid' of different positions of the nuclei, and we then solve for the motion of the nuclei on a particular
energy surface using this grid of data.

The treatment of electronic motion is treated in detail in Sections 2, 3, and 6 where molecular orbitals and configurations and their
computer evaluation is covered. The vibration/rotation motion of molecules on BO surfaces is introduced above, but should be
treated in more detail in a subsequent course in molecular spectroscopy.
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CHAPTER OVERVIEW

4: Atomic Orbitals
Valence atomic orbitals on neighboring atoms combine to form bonding, non-bonding and antibonding molecular orbitals. In
Section 1 the Schrödinger equation for the motion of a single electron moving about a nucleus of charge Z was explicitly solved.
The energies of these orbitals relative to an electron infinitely far from the nucleus with zero kinetic energy were found to depend
strongly on Z and on the principal quantum number n, as were the radial "sizes" of these hydrogenic orbitals. Closed analytical
expressions for the , , and  dependence of these orbitals are given in Appendix B. The reader is advised to also review this
material before undertaking study of this section.

4.1: Shapes of Atomic Orbitals
4.2: Directions of Atomic Orbitals
4.3: Sizes and Energies
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4.1: Shapes of Atomic Orbitals
Shapes of atomic orbitals play central roles in governing the types of directional bonds an atom can form.

All atoms have sets of bound and continuum s, p, d, f, g, etc. orbitals. Some of these orbitals may be unoccupied in the atom's low
energy states, but they are still present and able to accept electron density if some physical process (e.g., photon absorption,
electron attachment, or Lewis-base donation) causes such to occur. For example, the Hydrogen atom has 1s, 2s, 2p, 3s, 3p, 3d, etc.
orbitals. Its negative ion  has states that involve ,  etc. orbital occupancy. Moreover, when an  atom is
placed in an external electronic field, its charge density polarizes in the direction of the field. This polarization can be described in
terms of the orbitals of the isolated atom being combined to yield distorted orbitals (e.g., the 1s and 2p orbitals can "mix" or
combine to yield sp hybrid orbitals, one directed toward increasing field and the other directed in the opposite direction). Thus in
many situations it is important to keep in mind that each atom has a full set of orbitals available to it even if some of these orbitals
are not occupied in the lowest energy state of the atom.
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4.2: Directions of Atomic Orbitals
Atomic orbital directions also determine what directional bonds an atom will form.

Each set of p orbitals has three distinct directions or three different angular momentum m-quantum numbers as discussed in
Appendix G. Each set of d orbitals has five distinct directions or m-quantum numbers, etc; s orbitals are unidirectional in that they
are spherically symmetric, and have only m = 0. Note that the degeneracy of an orbital (2l+1), which is the number of distinct
spatial orientations or the number of m-values, grows with the angular momentum quantum number l of the orbital without bound.

It is because of the energy degeneracy within a set of orbitals, that these distinct directional orbitals (e.g., x, y, z for p orbitals)
may be combined to give new orbitals which no longer possess specific spatial directions but which have specified angular
momentum characteristics. The act of combining these degenerate orbitals does not change their energies. For example, the 

 and  combinations no longer point along the x and y axes, but instead correspond to specific angular

momenta  about the z axis. The fact that they are angular momentum eigenfunctions can be seen by noting that
the x and y orbitals contain  dependences of cos( ) and sin( ), respectively. Thus the above combinations contain 
respectively. The sizes, shapes, and directions of a few s, p, and d orbitals are illustrated below (the light and dark areas represent
positive and negative values, respectively).

Figure 4.3.1: Insert caption here!
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4.3: Sizes and Energies
The size (e.g., average value or expectation value of the distance from the atomic nucleus to the electron) of an atomic orbital is
determined primarily by its principal quantum number n and by the strength of the potential attracting an electron in this orbital to
the atomic center (which has some l-dependence too). The energy (with negative energies corresponding to bound states in which
the electron is attached to the atom with positive binding energy and positive energies corresponding to unbound scattering states)
is also determined by n and by the electrostatic potential produced by the nucleus and by the other electrons. Each atom has an
infinite set of orbitals of each l quantum number ranging from those with low energy and small size to those with higher energy and
larger size.

Atomic orbitals are solutions to an orbital-level Schrödinger equation in which an electron moves in a potential energy field
provided by the nucleus and all the other electrons. Such one-electron Schrödinger equations are discussed, as they pertain to
qualitative and semi-empirical models of electronic structure in Appendix F. The spherical symmetry of the one-electron potential
appropriate to atoms and atomic ions is what makes sets of the atomic orbitals degenerate. Such degeneracies arise in molecules
too, but the extent of degeneracy is lower because the molecule's nuclear coulomb and electrostatic potential energy has lower
symmetry than in the atomic case. As will be seen, it is the symmetry of the potential experienced by an electron moving in the
orbital that determines the kind and degree of orbital degeneracy which arises.

Symmetry operators leave the electronic Hamiltonian H invariant because the potential and kinetic energies are not changed if one
applies such an operator R to the coordinates and momenta of all the electrons in the system. Because symmetry operations involve
reflections through planes, rotations about axes, or inversions through points, the application of such an operation to a product such
as  gives the product of the operation applied to each term in the original product. Hence, one can write:

Now using the fact that H is invariant to R, which means that (RH) = H, this result reduces to:

which says that R commutes with H:

Because symmetry operators commute with the electronic Hamiltonian, the wavefunctions that are eigenstates of H can be labeled
by the symmetry of the point group of the molecule (i.e., those operators that leave H invariant). It is for this reason that one
constructs symmetry-adapted atomic basis orbitals to use in forming molecular orbitals.
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CHAPTER OVERVIEW

5: Molecular Orbitals
Molecular orbitals possess specific topology, symmetry, and energy-level patterns.

5.1: Orbital Interaction Topology
5.2: Orbital Symmetry
5.3: Linear Molecules
5.4: Atoms
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5.1: Orbital Interaction Topology
The orbital interactions determine how many and which molecular orbitals will have low (bonding), intermediate (non-bonding),
and higher (antibonding) energies, with all energies viewed relative to those of the constituent atomic orbitals. The general
patterns that are observed in most compounds can be summarized as follows:

1. If the energy splittings among a given atom's atomic orbitals with the same principal quantum number are small, hybridization
can easily occur to produce hybrid orbitals that are directed toward (and perhaps away from) the other atoms in the molecule. In
the first-row elements (Li, Be, B, C, N, O, and F), the 2s-2p splitting is small, so hybridization is common. In contrast, for Ca,
Ga, Ge, As, and Br it is less common, because the 4s-4p splitting is larger. Orbitals directed toward other atoms can form
bonding and antibonding mos; those directed toward no other atoms will form nonbonding molecular orbitals.

2. In attempting to gain a qualitative picture of the electronic structure of any given molecule, it is advantageous to begin by
hybridizing the atomic orbitals of those atoms which contain more than one ao in their valence shell. Only those atomic orbitals
that are not involved in p-orbital interactions should be so hybridized.

3. Atomic or hybrid orbitals that are not directed in a s-interaction manner toward other atomic orbitals or hybrids on neighboring
atoms can be involved in p-interactions or in nonbonding interactions.

4. Pairs of atomic orbitals or hybrid orbitals on neighboring atoms directed toward one another interact to produce bonding and
antibonding orbitals. The more the bonding orbital lies below the lower-energy ao or hybrid orbital involved in its formation,
the higher the antibonding orbital lies above the higher-energy ao or hybrid orbital. 
 
For example, in formaldehyde, , one forms  hybrids on the C atom; on the O atom, either sp hybrids (with one p
orbital "reserved" for use in forming the  orbitals and another p orbital to be used as a non-bonding orbital lying in the
plane of the molecule) or  hybrids (with the remaining p orbital reserved for the  orbitals) can be used. The H
atoms use their 1s orbitals since hybridization is not feasible for them. The C atom clearly uses its  hybrids to form two CH
and one CO  bonding - antibonding orbital pairs. 
 
The O atom uses one of its sp or  hybrids to form the CO  bond and antibond. When sp hybrids are used in conceptualizing
the bonding, the other sp hybrid forms a lone pair orbital directed away from the CO bond axis; one of the atomic p orbitals is
involved in the CO  orbitals, while the other forms an in-plane non-bonding orbital. Alternatively, when  hybrids
are used, the two  hybrids that do not interact with the C-atom  orbital form the two non-bonding orbitals. Hence, the
final picture of bonding, non-bonding, and antibonding orbitals does not depend on which hybrids one uses as intermediates. 
 
As another example, the 2s and 2p orbitals on the two N atoms of  can be formed into pairs of sp hybrids on each N atom
plus a pair of  atomic orbitals on each N atom. The sp hybrids directed toward the other N atom give rise to bonding 

 orbitals, and the sp hybrids directed away from the other N atom yield nonbonding  orbitals. The p
orbitals, which consist of 2p orbitals on the N atoms directed perpendicular to the N-N bond axis, produce bonding 

 orbitals.
5. In general,  interactions for a given pair of atoms interacting are stronger than  interactions (which, in turn, are stronger than 

 interactions, etc.) for any given sets (i.e., principal quantum number) of atomic orbitals that interact. Hence,  bonding
orbitals (originating from a given set of aos) lie below  bonding orbitals, and  orbitals lie above  orbitals that arise from
the same sets of aos. In the  example, the  bonding orbital formed from the two sp hybrids lies below the  bonding orbital,
but the  orbital lies below the  orbital. In the  example, the two CH and the one CO bonding orbitals have low
energy; the CO  bonding orbital has the next lowest energy; the two O-atom non-bonding orbitals have intermediate energy;
the CO  orbital has somewhat higher energy; and the two CH and one CO antibonding orbitals have the highest energies.

6. If a given ao or hybrid orbital interacts with or is coupled to orbitals on more than a single neighboring atom, multicenter
bonding can occur. For example, in the allyl radical the central carbon atom's  orbital is coupled to the  orbitals on both
neighboring atoms; in linear , the central Li atom's 2s orbital interacts with the 2s orbitals on both terminal Li atoms; in
triangular , the 2s orbitals on each Cu atom couple to each of the other two atoms' 4s orbitals.

7. Multicenter bonding that involves "linear" chains containing N atoms (e.g., as in conjugated polyenes or in chains of Cu or Na
atoms for which the valence orbitals on one atom interact with those of its neighbors on both sides) gives rise to mo energy
patterns in which there are N/2 (if N is even) or  non-degenerate bonding orbitals and the same number of antibonding
orbitals (if N is odd, there is also a single non-bonding orbital).
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8. Multicenter bonding that involves "cyclic" chains of N atoms (e.g., as in cyclic conjugated polyenes or in rings of Cu or Na
atoms for which the valence orbitals on one atom interact with those of its neighbors on both sides and the entire net forms a
closed cycle) gives rise to mo energy patterns in which there is a lowest non-degenerate orbital and then a progression of doubly
degenerate orbitals. If N is odd, this progression includes (N- 1)/2 levels; if N is even, there are (N-2)/2 doubly degenerate
levels and a final nondegenerate highest orbital. These patterns and those that appear in linear multicenter bonding are
summarized in the Figures shown below.

 
Figure 5.1.1: Insert caption here! 

1. In extended systems such as solids, atom-based orbitals combine as above to form so called 'bands' of molecular orbitals. These
bands are continuous rather than discrete as in the above cases involving small polyenes. The energy 'spread' within a band
depends on the overlap among the atom-based orbitals that form the band; large overlap gives rise to a large band width, while
small overlap produces a narrow band. As one moves from the bottom (i.e., the lower energy part) of a band to the top, the
number of nodes in the corresponding band orbital increases, as a result of which its bonding nature decreases. In the figure
shown below, the bands of a metal such as Ni (with 3d, 4s, and 4p orbitals) is illustrated. The d-orbital band is narrow because
the 3d orbitals are small and hence do not overlap appreciably; the 4s and 4p bands are wider because the larger 4s and 4p
orbitals overlap to a greater extent. The d-band is split into  components corresponding to the nature of the overlap
interactions among the constituent atomic d orbitals. Likewise, the p-band is split into  components. The widths of the 

 components of each band are larger than those of the  components because the corresponding  overlap interactions are
stronger. The intensities of the bands at energy E measure the densities of states at that E. The total integrated intensity under a
given band is a measure of the total number of atomic orbitals that form the band.
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Figure 5.1.2: Insert caption here!
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5.2: Orbital Symmetry

Symmetry provides additional quantum numbers or labels to use in describing the
molecular orbitals. Each such quantum number further sub-divides the collection of all
molecular orbitals into sets that have vanishing Hamiltonian matrix elements among
members belonging to different sets.

Orbital interaction "topology" as discussed above plays a most- important role in determining the orbital energy level patterns of a
molecule. Symmetry also comes into play, but in a different manner. Symmetry can be used to characterize the core, bonding,
nonbonding, and antibonding molecular orbitals. Much of this chapter is devoted to how this can be carried out in a systematic
manner. Once the various molecular orbitals have been labeled according to symmetry, it may be possible to recognize additional
degeneracies that may not have been apparent on the basis of orbital-interaction considerations alone. Thus, topology provides the
basic energy ordering pattern and then symmetry enters to identify additional degeneracies.

For example, the three NH bonding and three NH antibonding orbitals in , when symmetry adapted within the  point
group, cluster into  and e molecular orbitals as shown in the Figure below. The N-atom localized non-bonding lone pair orbital
and the N-atom 1s core orbital also belong to  symmetry.

In a second example, the three CH bonds, three CH antibonds, CO bond and antibond, and three O-atom non-bonding orbitals of
the methoxy radical  also cluster into  and e orbitals as shown below. In these cases, point group symmetry allows one
to identify degeneracies that may not have been apparent from the structure of the orbital interactions alone.

Figure 5.2.1: Insert caption here!

The three resultant molecular orbital energies are, of course, identical to those obtained without symmetry above. The three LCAO-
MO coefficients , now expressing the molecular orbitals in terms of the symmetry adapted orbitals are  = ( 0.707, 0.707, 0.0) for
the bonding orbital, (0.0, 0.0, 1.00) for the nonbonding orbital, and (0.707, -0.707, 0.0) for the antibonding orbital. These
coefficients, when combined with the symmetry adaptation coefficients  given earlier, express the three molecular orbitals in
terms of the three atomic orbitals as
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The sum

gives the LCAO-MO coefficients  which, for example, for the bonding orbital, are , in agreement with
what was found earlier without using symmetry.

The low energy orbitals of the  molecule can be used to illustrate the use of symmetry within the primitive ao basis as well as
in terms of hybrid orbitals. The 1s orbital on the Oxygen atom is clearly a nonbonding core orbital. The Oxygen 2s orbital and its
three 2p orbitals are of valence type, as are the two Hydrogen 1s orbitals. In the absence of symmetry, these six valence orbitals
would give rise to a 6x6 secular problem. By combining the two Hydrogen 1s orbitals into 0.707( ) and 0.707(

) symmetry adapted orbitals (labeled  point group; see the Figure below), and recognizing
that the Oxygen 2s and  orbitals belong to  symmetry (the z axis is taken as the  rotation axis and the x axis is taken to be
perpendicular to the plane in which the three nuclei lie) while the  orbital is  and the  orbital is , allows the 6x6 problem
to be decomposed into a 3x3 ( ) secular problem, a 2x2 ( ) secular problem and a 1x1 (  ) problem. These decompositions
allow one to conclude that there is one nonbonding  orbital (the Oxygen  orbital), bonding and antibonding  orbitals ( the
O-H bond and antibond formed by the Oxygen  orbital interacting with 0.707( )), and, finally, a set of bonding,
nonbonding, and antibonding  orbitals (the O-H bond and antibond formed by the Oxygen 2s and  orbitals interacting with
0.707( ) and the nonbonding orbital formed by the Oxygen 2s and  orbitals combining to form the "lone pair" orbital
directed along the z-axis away from the two Hydrogen atoms).

Figure 5.2.2: Insert caption here!

Alternatively, to analyze the  molecule in terms of hybrid orbitals, one first combines the Oxygen 2s,  orbitals
to form four  hybrid orbitals. The valence-shell electron-pair repulsion (VSEPR) model of chemical bonding (see R. J. Gillespie
and R. S. Nyholm, Quart. Rev. 11, 339 (1957) and R. J. Gillespie, J. Chem. Educ. 40, 295 (1963)) directs one to involve all of the
Oxygen valence orbitals in the hybridization because four -bond or nonbonding electron pairs need to be accommodated about the
Oxygen center; no  orbital interactions are involved, of course. Having formed the four  hybrid orbitals, one proceeds as with
the primitive atomic orbitals; one forms symmetry adapted orbitals. In this case, the two Hydrogen 1s orbitals are combined exactly
as above to form

and

The two  hybrids which lie in the plane of the H and O nuclei ( label them L and R) are combined to give symmetry adapted
hybrids: 0.707(L+R) and 0.707(L-R), which are of  symmetry, respectively (Figure Figure 5.2.3). The two  hybrids
that lie above and below the plane of the three nuclei (label them T and B) are also symmetry adapted to form 0.707(T+ B) and
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0.707(TB), which are of  symmetry, respectively. Once again, one has broken the 6x6 secular problem into a 3x3 
block, a 2x2  block and a 1x1  block. Although the resulting bonding, nonbonding and antibonding  orbitals, the bonding
and antibonding  orbitals and the nonbonding  orbital are now viewed as formed from symmetry adapted Hydrogen orbitals
and four Oxygen  orbitals, they are, of course, exactly the same molecular orbitals as were obtained earlier in terms of the
symmetry adapted primitive aos. The formation of hybrid orbitals was an intermediate step which could not alter the final outcome.

Figure 5.2.3: Insert caption here!

That no degenerate molecular orbitals arose in the above examples is a result of the fact that the  point group to which  and
the allyl system belong (and certainly the  subgroup which was used above in the allyl case) has no degenerate representations.
Molecules with higher symmetry such as , and benzene have energetically degenerate orbitals because their molecular
point groups have degenerate representations.

This page titled 5.2: Orbital Symmetry is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons
via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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5.3: Linear Molecules

Linear molecules belong to the axial rotation group. Their symmetry is intermediate in
complexity between nonlinear molecules and atoms.

For linear molecules, the symmetry of the electrostatic potential provided by the nuclei and the other electrons is described by
either the  group. The essential difference between these symmetry groups and the finite point groups which
characterize the non-linear molecules lies in the fact that the electrostatic potential which an electron feels is invariant to rotations
of any amount about the molecular axis (i.e., V( ), for any angle increment ). This means that the operator 
which generates a rotation of the electron's azimuthal angle  by an amount  about the molecular axis commutes with the
Hamiltonian [h,  ] =0.  can be written in terms of the quantum mechanical operator  describing the orbital
angular momentum of the electron about the molecular (z) axis:

Because  commutes with the Hamiltonian and  can be written in terms of  must commute with the Hamiltonian. As a
result, the molecular orbitals  of a linear molecule must be eigenfunctions of the z-component of angular momentum :

The electrostatic potential is not invariant under rotations of the electron about the x or y axes (those perpendicular to the molecular
axis), so  do not commute with the Hamiltonian. Therefore, only  provides a "good quantum number" in the sense
that the operator  commutes with the Hamiltonian.

In summary, the molecular orbitals of a linear molecule can be labeled by their m quantum number, which plays the same role as
the point group labels did for non-linear polyatomic molecules, and which gives the eigenvalue of the angular momentum of the
orbital about the molecule's symmetry axis. Because the kinetic energy part of the Hamiltonian contains , whereas the
potential energy part is independent of , the energies of the molecular orbitals depend on the square of the m quantum number.
Thus, pairs of orbitals with m= ± 1 are energetically degenerate; pairs with m= ± 2 are degenerate, and so on. The absolute value of
m, which is what the energy depends on, is called the  quantum number. Molecular orbitals with  orbitals;
those with  orbitals; and those with  = 2 are  orbitals.

Just as in the non-linear polyatomic-molecule case, the atomic orbitals which constitute a given molecular orbital must have the
same symmetry as that of the molecular orbital. This means that  molecular orbitals are formed, via LCAO-MO, from
m=0, m= ± 1, and m= ± 2 atomic orbitals, respectively. In the diatomic  molecule, for example, the core orbitals are of 
symmetry as are the molecular orbitals formed from the 2s and  atomic orbitals (or their hybrids) on each Nitrogen atom. The
molecular orbitals formed from the atomic ) orbitals are of p symmetry and
have m = -1 and +1.

For homonuclear diatomic molecules and other linear molecules which have a center of symmetry, the inversion operation (in
which an electron's coordinates are inverted through the center of symmetry of the molecule) is also a symmetry operation. Each
resultant molecular orbital can then also be labeled by a quantum number denoting its parity with respect to inversion. The symbols
g (for gerade or even) and u (for ungerade or odd) are used for this label. Again for , the core orbitals are of 
symmetry, and the bonding and antibonding  orbitals formed from the 2s and  orbitals on the two Nitrogen atoms are of 

 symmetry.
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Figure 5.4.1: Insert caption here!

The bonding  molecular orbital pair (with m = +1 and -1) is of  symmetry whereas the corresponding antibonding orbital is of 
 symmetry. Examples of such molecular orbital symmetries are shown above.

The use of hybrid orbitals can be illustrated in the linear-molecule case by considering the  molecule. Because two  bonding
and antibonding molecular orbital pairs are involved in  (one with m = +1, one with m = -1), VSEPR theory guides one to form
sp hybrid orbitals from each of the Nitrogen atom's 2s and  (which is also the 2p orbital with m = 0) orbitals. Ignoring the core
orbitals, which are of  symmetry as noted above, one then symmetry adapts the four sp hybrids (two from each atom) to
build one  orbital involving a bonding interaction between two sp hybrids pointed toward one another, an antibonding  orbital
involving the same pair of sp orbitals but coupled with opposite signs, a nonbonding  orbital composed of two sp hybrids pointed
away from the interatomic region combined with like sign, and a nonbonding  orbital made of the latter two sp hybrids combined
with opposite signs. The two  orbitals (m= +1 and -1) on each Nitrogen atom are then symmetry adapted to produce a pair of
bonding  orbitals (with m = +1 and -1) and a pair of antibonding  orbitals (with m = +1 and -1). This hybridization and
symmetry adaptation thereby reduces the 8x8 secular problem (which would be 10x10 if the core orbitals were included) into a 2x2

 problem (one bonding and one nonbonding), a 2x2  problem (one bonding and one nonbonding), an identical pair of 1x1 
problems (bonding), and an identical pair of 1x1  problems (antibonding).

Another example of the equivalence among various hybrid and atomic orbital points of view is provided by the CO molecule.
Using, for example, sp hybrid orbitals on C and O, one obtains a picture in which there are: two core  orbitals corresponding to
the O-atom 1s and C-atom 1s orbitals; one CO bonding, two non-bonding, and one CO antibonding orbitals arising from the four sp
hybrids; a pair of bonding and a pair of antibonding  orbitals formed from the two p orbitals on O and the two p orbitals on C.
Alternatively, using  hybrids on both C and O, one obtains: the two core  orbitals as above; a CO bonding and antibonding
orbital pair formed from the  hybrids that are directed along the CO bond; and a single  bonding and antibonding  orbital
set. The remaining two  orbitals on C and the two on O can then be symmetry adapted by forming ± combinations within each
pair to yield: an  non-bonding orbital (from the + combination) on each of C and O directed away from the CO bond axis; and a 

 orbital on each of C and O that can subsequently overlap to form the second  bonding and  antibonding orbital pair.

It should be clear from the above examples, that no matter what particular hybrid orbitals one chooses to utilize in conceptualizing
a molecule's orbital interactions, symmetry ultimately returns to force one to form proper symmetry adapted combinations which,
in turn, renders the various points of view equivalent. In the above examples and in several earlier examples, symmetry adaptation
of, for example,  orbital pairs (e.g., ) generated orbitals of pure spatial symmetry. In fact, symmetry combining
hybrid orbitals in this manner amounts to forming other hybrid orbitals. For example, the above ± combinations of  hybrids
directed to the left (L) and right (R) of some bond axis generate a new sp hybrid directed along the bond axis but opposite to the 

 hybrid used to form the bond and a non-hybridized p orbital directed along the L-to-R direction. In the CO example, these
combinations of  hybrids on O and C produce sp hybrids on O and C and  orbitals on O and C.

This page titled 5.3: Linear Molecules is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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5.4: Atoms

Atoms belong to the full rotation symmetry group; this makes their symmetry analysis the
most complex to treat.

In moving from linear molecules to atoms, additional symmetry elements arise. In particular, the potential field experienced by an
electron in an orbital becomes invariant to rotations of arbitrary amounts about the x, y, and z axes; in the linear-molecule case, it is
invariant only to rotations of the electron's position about the molecule's symmetry axis (the z axis). These invariances are, of
course, caused by the spherical symmetry of the potential of any atom. This additional symmetry of the potential causes the
Hamiltonian to commute with all three components of the electron's angular momentum:

It is straightforward to show that H also commutes with the operator , defined as the sum of the squares of the three individual
components of the angular momentum

Because , , and  do not commute with one another, orbitals which are eigenfunctions of H cannot be simultaneous
eigenfunctions of all three angular momentum operators. However, because , , and  do commute with , orbitals can be
found which are eigenfunctions of H, of  and of any one component of L; it is convention to select  as the operator which,
along with H and , form a mutually commutative operator set of which the orbitals are simultaneous eigenfunctions.

So, for any atom, the orbitals can be labeled by both l and m quantum numbers, which play the role that point group labels did for
non-linear molecules and  did for linear molecules. Because (i) the kinetic energy operator in the electronic Hamiltonian explicitly
contains , (ii) the Hamiltonian does not contain additional  factors, and (iii) the potential energy part of the
Hamiltonian is spherically symmetric (and commutes with ), the energies of atomic orbitals depend upon the l quantum
number and are independent of the m quantum number. This is the source of the 2l+1- fold degeneracy of atomic orbitals.

The angular part of the atomic orbitals is described in terms of the spherical harmonics ; that is, each atomic orbital  can be
expressed as

The explicit solutions for the Yl,m and for the radial wavefunctions  are given in Appendix B. The variables  give the
position of the electron in the orbital in spherical coordinates. These angular functions are, as discussed earlier, related to the
cartesian (i.e., spatially oriented) orbitals by simple transformations; for example, the orbitals with l=2 and m=2,1,0,-1,-2 can be
expressed in terms of the  orbitals. Either set of orbitals is acceptable in the sense that each orbital is
an eigenfunction of H; transformations within a degenerate set of orbitals do not destroy the Hamiltonian- eigenfunction feature.
The orbital set labeled with l and m quantum numbers is most useful when one is dealing with isolated atoms (which have spherical
symmetry), because m is then a valid symmetry label, or with an atom in a local environment which is axially symmetric (e.g., in a
linear molecule) where the m quantum number remains a useful symmetry label. The cartesian orbitals are preferred for describing
an atom in a local environment which displays lower than axial symmetry (e.g., an atom interacting with a diatomic molecule in 

 symmetry).

The radial part of the orbital (r) as well as the orbital energy  depend on l because the Hamiltonian itself contains ;

they are independent of m because the Hamiltonian has no m-dependence. For bound orbitals, (r) decays exponentially for
large r (as ), and for unbound (scattering) orbitals, it is oscillatory at large r with an oscillation period related to the
deBroglie wavelength of the electron. In  (r) there are (n-l-1) radial nodes lying between r=0 and . These nodes provide
differential stabilization of low-l orbitals over high-l orbitals of the same principal quantum number n. That is, penetration of outer
shells is greater for low-l orbitals because they have more radial nodes; as a result, they have larger amplitude near the atomic
nucleus and thus experience enhanced attraction to the positive nuclear charge.
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of an orbital depends strongly on , weakly on  and is independent of . It also depends strongly on the nuclear charge and on the
potential produced by the other electrons. This potential is often characterized qualitatively in terms of an effective nuclear charge 

 which is the true nuclear charge of the atom Z minus a screening component  which describes the repulsive effect of the
electron density lying radially inside the electron under study. Because, for a given n, low-l orbitals penetrate closer to the nucleus
than do high-l orbitals, they have higher  values (i.e., smaller  values) and correspondingly smaller average sizes and larger
binding energies.
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CHAPTER OVERVIEW

6: Quantum Mechanics in Reactions
Along "reaction paths", orbitals can be connected one-to-one according to their symmetries and energies. This is the origin of the
Woodward-Hoffmann rules.

6.1: Reduction in Symmetry Along Reaction Paths
6.2: Orbital Correlation Diagrams - Origins of the Woodward-Hoffmann Rules
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6.1: Reduction in Symmetry Along Reaction Paths

As fragments are brought together to form a larger molecule, the symmetry of the nuclear
framework (recall the symmetry of the Coulombic potential experienced by electrons

depends on the locations of the nuclei) changes. However, in some cases, certain
symmetry elements persist throughout the path connecting the fragments and the product

molecule. These preserved symmetry elements can be used to label the orbitals throughout
the 'reaction'.

The point-group, axial- and full-rotation group symmetries which arise in nonlinear molecules, linear molecules, and atoms,
respectively, are seen to provide quantum numbers or symmetry labels which can be used to characterize the orbitals appropriate
for each such species. In a physical event such as interaction with an external electric or magnetic field or a chemical process such
as collision or reaction with another species, the atom or molecule can experience a change in environment which causes the
electrostatic potential which its orbitals experience to be of lower symmetry than that of the isolated atom or molecule. For
example, when an atom interacts with another atom to form a diatomic molecule or simply to exchange energy during a collision,
each atom's environment changes from being spherically symmetric to being axially symmetric. When the formaldehyde molecule
undergoes unimolecular decomposition to produce  along a path that preserves  symmetry, the orbitals of the CO
moiety evolve from  symmetry to axial symmetry.

It is important, therefore to be able to label the orbitals of atoms, linear, and nonlinear molecules in terms of their full symmetries
as well in terms of the groups appropriate to lower-symmetry situations. This can be done by knowing how the representations of a
higher symmetry group decompose into representations of a lower group. For example, the  functions appropriate for spherical
symmetry, which belong to a 2l+1 fold degenerate set in this higher symmetry, decompose into doubly degenerate pairs of
functions ; etc., plus a single non-degenerate function , in axial symmetry. Moreover, because  no
longer commutes with the Hamiltonian whereas  does, orbitals with different l-values but the same m-values can be coupled. As
the  molecule is formed from two N atoms, the 2s and  orbitals, both of which belong to the same  symmetry in the axial
rotation group but which are of different symmetry in the isolated-atom spherical symmetry, can mix to form the sg bonding
orbital, the su antibonding, as well as the  and  nonbonding lone-pair orbitals. The fact that 2s and 2p have different l-values
no longer uncouples these orbitals as it did for the isolated atoms, because l is no longer a "good" quantum number.

Another example of reduced symmetry is provided by the changes that occur as  fragments into OH and H. The  bonding
orbitals  and in-plane lone pair  and the * antibonding  become a' orbitals (see the Figure
below); the out-of-plane  lone pair orbital becomes a'' (in Appendix IV of Electronic Spectra and Electronic Structure of
Polyatomic Molecules , G. Herzberg, Van Nostrand Reinhold Co., New York, N.Y. (1966) tables are given which allow one to
determine how particular symmetries of a higher group evolve into symmetries of a lower group).

Figure 6.1.1: Insert caption here!
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To further illustrate these points dealing with orbital symmetry, consider the insertion of CO into  along a path which preserves 
 symmetry. As the insertion occurs, the degenerate  bonding orbitals of CO become  orbitals. The antibonding *

orbitals of CO also become . The  bonding orbital of , and the 
 The orbitals of the reactant  are energy-ordered and labeled according to 

symmetry in the Figure shown below as are the orbitals of the product  + CO.

Figure 6.1.2: Insert caption here!

When these orbitals are connected according to their symmetries as shown above, one reactant orbital to one product orbital
starting with the low-energy orbitals and working to increasing energy, an orbital correlation diagram (OCD) is formed. These
diagrams play essential roles in analyzing whether reactions will have symmetry-imposed energy barriers on their potential energy
surfaces along the reaction path considered in the symmetry analysis. The essence of this analysis, which is covered in detail in
Chapter 12, can be understood by noticing that the sixteen electrons of ground-state  do not occupy their orbitals with the
same occupancy pattern, symmetry-by-symmetry, as do the sixteen electrons of ground-state  + CO. In particular,  places
a pair of electrons in the second  does not; on the other hand,  + CO places two electrons in the sixth

 does not. The mismatch of the orbitals near the  orbitals is the source of the mismatch
in the electronic configurations of the ground-states of  + CO. These mismatches give rise, as shown in Chapter 12,
to symmetry-caused energy barriers on the  reaction potential energy surface.
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and/or curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.

H2

C2v π b1 and b2 π

 and b1 b2 σg  becomes H2 a1

 antibonding   orbital becomes  .σu H2 b2 COH2 C2v

H2

COH2

H2 COH2

 orbital while  +COb2 H2 H2

 orbital while  COa1 H2 5 , 6 ,  and 2a1 a1 b2

CO and H2 H2

CO → +COH2 H2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/60549?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/06%3A_Quantum_Mechanics_in_Reactions/6.01%3A_Reduction_in_Symmetry_Along_Reaction_Paths
https://creativecommons.org/licenses/by-nc-sa/4.0
http://simons.hec.utah.edu/
http://simons.hec.utah.edu/TheoryPage/BookPDF/


6.2.1 https://chem.libretexts.org/@go/page/60550

6.2: Orbital Correlation Diagrams - Origins of the Woodward-Hoffmann Rules

Connecting the energy-ordered orbitals of reactants to those of products according to
symmetry elements that are preserved throughout the reaction produces an orbital
correlation diagram.

In each of the examples cited above, symmetry reduction occurred as a molecule or atom approached and interacted with another
species. The "path" along which this approach was thought to occur was characterized by symmetry in the sense that it preserved
certain symmetry elements while destroying others. For example, the collision of two Nitrogen atoms to produce  clearly occurs
in a way which destroys spherical symmetry but preserves axial symmetry. In the other example used above, the formaldehyde
molecule was postulated to decompose along a path which preserves  symmetry while destroying the axial symmetries of CO
and  The actual decomposition of formaldehyde may occur along some other path, but if it were to occur along the proposed
path, then the symmetry analysis presented above would be useful.

The symmetry reduction analysis outlined above allows one to see new orbital interactions that arise (e.g., the 2s and 
interactions in the  example) as the interaction increases. It also allows one to construct orbital correlation diagrams
(OCD's) in which the orbitals of the "reactants" and "products" are energy ordered and labeled by the symmetries which are
preserved throughout the "path", and the orbitals are then correlated by drawing lines connecting the orbitals of a given symmetry,
one-by-one in increasing energy, from the reactants side of the diagram to the products side. As noted above, such orbital
correlation diagrams play a central role in using symmetry to predict whether photochemical and thermal chemical reactions will
experience activation barriers along proposed reaction paths (this subject is treated in Chapter 12).

To again illustrate the construction of an OCD, consider the p orbitals of 1,3- butadiene as the molecule undergoes disrotatory
closing (notice that this is where a particular path is postulated; the actual reaction may or may not occur along such a path) to form
cyclobutene. Along this path, the plane of symmetry which bisects and is perpendicular to the  bond is preserved, so the
orbitals of the reactant and product are labeled as being even-e or odd-o under reflection through this plane. It is not proper to label
the orbitals with respect to their symmetry under the plane containing the four C atoms; although this plane is indeed a symmetry
operation for the reactants and products, it does not remain a valid symmetry throughout the reaction path.

N2

C2v

.H2

2pz

N +N → N2

−C2 C3
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Figure 6.2.1: Insert caption here!

The four  orbitals of 1,3-butadiene are of the following symmetries under the preserved plane (see the orbitals in the Figure
above):  The * and * orbitals of cyclobutane which evolve from the four active
orbitals of the 1,3-butadiene are of the following symmetry and energy order:  Connecting these
orbitals by symmetry, starting with the lowest energy orbital and going through the highest energy orbital, gives the following
OCD:

Figure 6.2.2: Insert caption here!

The fact that the lowest two orbitals of the reactants, which are those occupied by the four  electrons of the reactant, do not
correlate to the lowest two orbitals of the products, which are the orbitals occupied by the two  electrons of the
products, will be shown later in Chapter 12 to be the origin of the activation barrier for the thermal disrotatory rearrangement (in
which the four active electrons occupy these lowest two orbitals) of 1,3-butadiene to produce cyclobutene.

If the reactants could be prepared, for example by photolysis, in an excited state having orbital occupancy  then reaction
along the path considered would not have any symmetry-imposed barrier because this singly excited configuration correlates to a
singly-excited configuration  of the products. The fact that the reactant and product configurations are of equivalent
excitation level causes there to be no symmetry constraints on the photochemically induced reaction of 1,3-butadiene to produce
cyclobutene. In contrast, the thermal reaction considered first above has a symmetry-imposed barrier because the orbital occupancy
is forced to rearrange (by the occupancy of two electrons) from the ground-state wavefunction of the reactant to smoothly evolve
into that of the product.

It should be stressed that although these symmetry considerations may allow one to anticipate barriers on reaction potential energy
surfaces, they have nothing to do with the thermodynamic energy differences of such reactions. Symmetry says whether there will
be symmetry-imposed barriers above and beyond any thermodynamic energy differences. The enthalpies of formation of reactants
and products contain the information about the reaction's overall energy balance.

As another example of an OCD, consider the  recombination reaction mentioned above. The orbitals of the atoms
must first be labeled according to the axial rotation group (including the inversion operation because this is a homonuclear
molecule). The core 1s orbitals are symmetry adapted to produce  orbitals (the number 1 is used to indicate that these
are the lowest energy orbitals of their respective symmetries); the 2s orbitals generate  orbitals; the 2p orbitals
combine to yield , a pair of  orbitals, a pair of  orbitals, and the  orbital, whose bonding, nonbonding, and
antibonding nature was detailed earlier. In the two separated Nitrogen atoms, the two orbitals derived from the 2s atomic orbitals
are degenerate, and the six orbitals derived from the Nitrogen atoms' 2p orbitals are degenerate. At the equilibrium geometry of the 

 molecule, these degeneracies are lifted, Only the degeneracies of the  orbitals, which are dictated by the
degeneracy of +m and -m orbitals within the axial rotation group, remain.

As one proceeds inward past the equilibrium bond length of , toward the unitedatom limit in which the two Nitrogen nuclei are
fused to produce a Silicon nucleus, the energy ordering of the orbitals changes. Labeling the orbitals of the Silicon atom according
to the axial rotation group, one finds the 1s is , the 3s orbital is , the 3p orbitals
are  The following OCD is obtained when one connects the orbitals of the
two separated Nitrogen atoms (properly symmetry adapted) to those of the  molecule and eventually to those of the Silicon
atom.
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Figure 6.2.3: Insert caption here!

The fact that the separated-atom and united-atom limits involve several crossings in the OCD can be used to explain barriers in the
potential energy curves of such diatomic molecules which occur at short internuclear distances. It should be noted that the Silicon
atom's 3p orbitals of  symmetry and its 3d orbitals of  symmetry correlate with higher energy orbitals of  not with
the valence orbitals of this molecule, and that the 3su antibonding orbital of N2 correlates with a higher energy orbital of Silicon (in
particular, its 4p orbital).
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CHAPTER OVERVIEW

7: Further Characterization of Molecular Orbitals
The most elementary molecular orbital models contain symmetry, nodal pattern, and approximate energy information

7.1: The LCAO-MO Expansion and the Orbital-Level Schrödinger Equation
7.2: Determining the Effective Potential
7.3: The Hückel Parameterization
7.4: The Extended Hückel Method
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7.1: The LCAO-MO Expansion and the Orbital-Level Schrödinger Equation
In the simplest picture of chemical bonding, the valence molecular orbitals  are constructed as linear combinations of valence
atomic orbitals  according to the LCAOMO formula:

The core electrons are not explicitly included in such a treatment, although their effects are felt through an electrostatic potential V
that has the following properties:

1. V contains contributions from all of the nuclei in the molecule exerting coulombic attractions on the electron, as well as
coulombic repulsions and exchange interactions exerted by the other electrons on this electron;

2. As a result of the (assumed) cancellation of attractions from distant nuclei and repulsions from the electron clouds (i.e., the
core, lone-pair, and valence orbitals) that surround these distant nuclei, the effect of V on any particular mo  depends
primarily on the atomic charges and local bond polarities of the atoms over which  is delocalized.

As a result of these assumptions, qualitative molecular orbital models can be developed in which one assumes that each mo fi
obeys a one-electron Schrödinger equation

Here the orbital-level hamiltonian h contains the kinetic energy of motion of the electron and the potential V mentioned above:

Expanding the mo  in the LCAO-MO manner, substituting this expansion into the above Schrödinger equation, multiplying on
the left by , and integrating over the coordinates of the electron generates the following orbital-level eigenvalue problem:

If the constituent atomic orbitals { } have been orthonormalized as discussed earlier in this chapter, the overlap integrals 
reduce to .
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7.2: Determining the Effective Potential
In the most elementary models of orbital structure, the quantities that explicitly define the potential  are not computed from first
principles as they are in so-called ab initio methods. Rather, either experimental data or results of ab initio calculations are used to
determine the parameters in terms of which  is expressed. The resulting empirical or semi-empirical methods discussed below
differ in the sophistication used to include electron-electron interactions as well as in the manner experimental data or ab initio
computational results are used to specify .

If experimental data is used to parameterize a semi-empirical model, then the model should not be extended beyond the level at
which it has been parameterized. For example, experimental bond energies, excitation energies, and ionization energies may be
used to determine molecular orbital energies which, in turn, are summed to compute total energies. In such a parameterization it
would be incorrect to subsequently use these molecular orbitals to form a wavefunction, as in Sections 3 and 6, that goes beyond
the simple 'product of orbitals' description. To do so would be inconsistent because the more sophisticated wavefunction would
duplicate what using the experimental data (which already contains mother nature's electronic correlations) to determine the
parameters had accomplished.

Alternatively, if results of ab initio theory at the single-configuration orbital-product wavefunction level are used to define the
parameters of a semi-empirical model, it would then be proper to use the semi-empirical orbitals in a subsequent higher-level
treatment of electronic structure as done in Section 6.
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7.3: The Hückel Parameterization
In the most simplified embodiment of the above orbital-level model, the following additional approximations are introduced.

Approximation 1: Diagonal Component 

The diagonal values , which are usually denoted , are taken to be equal to the energy of an electron in the
atomic orbital  and, as such, are evaluated in terms of atomic ionization energies (IP's) and electron affinities (EA's):

for atomic orbitals that are occupied in the atom, and

for atomic orbitals that are not occupied in the atom.

These approximations assume that contributions in V arising from coulombic attraction to nuclei other than the one on which  is
located, and repulsions from the core, lone-pair, and valence electron clouds surrounding these other nuclei cancel to an extent that 

 contains only potentials from the atom on which  sits.

It should be noted that the IP's and EA's of valence-state orbitals are not identical to the experimentally measured IP's and EA's of
the corresponding atom, but can be obtained from such information. For example, the 2p valence-state IP (VSIP) for a Carbon atom
is the energy difference associated with the hypothetical process

If the energy differences for the "promotion" of C

and for the promotion of 

are known, the desired VSIP is given by:

The EA of the 2p orbital is obtained from the

energy gap, which means that . Some common IP's of valence 2p orbitals in eV are as follows: C (11.16), N
(14.12),  (28.71), O (17.70),  (31.42),  (37.28).

Approximation 2: Nearest Neighbors Approximation 

The off-diagonal elements  are taken as zero if  belong to the same atom because the atomic
orbitals are assumed to have been constructed to diagonalize the one-electron hamiltonian appropriate to an electron moving in that
atom. They are set equal to a parameter denoted  reside on neighboring atoms that are chemically bonded. If 
and  reside on atoms that are not bonded neighbors, then the off-diagonal matrix element is set equal to zero.

Approximation 3: Off-Diagonal Component 
The geometry dependence of the  parameters is often approximated by assuming that  is proportional to the overlap 
between the corresponding atomic orbitals:
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Here  is a constant (having energy units) characteristic of the bonding interaction between ; its value is usually
determined by forcing the molecular orbital energies obtained from such a qualitative orbital treatment to yield experimentally
correct ionization potentials, bond dissociation energies, or electronic transition energies.

It is sometimes assumed that the overlap matrix  is the identity matrix. This means that overlap between the orbitals is
neglected

The three approximations above form the basis of the so-called Hückel model. Its implementation requires knowledge of the
atomic  and  values, which are eventually expressed in terms of experimental data, as well as a means of calculating the
geometry dependence of the 's (e.g., some method for computing overlap matrices  ).
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7.4: The Extended Hückel Method
It is well known that bonding and antibonding orbitals are formed when a pair of atomic orbitals from neighboring atoms interact.
The energy splitting between the bonding and antibonding orbitals depends on the overlap between the pair of atomic orbitals.
Also, the energy of the antibonding orbital lies higher above the arithmetic mean  of the energies of the
constituent atomic orbitals  than the bonding orbital lies below . If overlap is ignored, as in conventional Hückel
theory (except in parameterizing the geometry dependence of ), the differential destabilization of antibonding orbitals
compared to stabilization of bonding orbitals can not be accounted for.

By parameterizing the off-diagonal Hamiltonian matrix elements in the following overlap-dependent manner:

and explicitly treating the overlaps among the constituent atomic orbitals {cm} in solving the orbital-level Schrödinger equation

Hoffmann introduced the so-called extended Hückel method. He found that a value for K= 1.75 gave optimal results when using
Slater-type orbitals as a basis (and for calculating the ). The diagonal  elements are given, as in the conventional
Hückel method, in terms of valence-state IP's and EA's. Cusachs later proposed a variant of this parameterization of the off-
diagonal elements:

For first- and second-row atoms, the 1s or (2s, 2p) or (3s,3p, 3d) valence-state ionization energies ( ), the number of valence
electrons (#Elec.) as well as the orbital exponents ( ) of Slater-type orbitals used to calculate the overlap matrix
elements  corresponding are given below.

Table 7.4.1: Insert caption here!

In the Hückel or extended Hückel methods no explicit reference is made to electron-electron interactions although such
contributions are absorbed into the V potential, and hence into the  parameters of Hückel theory or the 
parameters of extended Hückel theory. As electron density flows from one atom to another (due to electronegativity differences),
the electron-electron repulsions in various atomic orbitals changes. To account for such charge-density-dependent coulombic
energies, one must use an approach that includes explicit reference to inter-orbital coulomb and exchange interactions. There exists
a large family of semi-empirical methods that permit explicit treatment of electronic interactions; some of the more commonly used
approaches are discussed in Appendix F.
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CHAPTER OVERVIEW

8: Electronic Configurations
One of the goals of quantum chemistry is to allow practicing chemists to use knowledge of the electronic states of fragments
(atoms, radicals, ions, or molecules) to predict and understand the behavior (i.e., electronic energy levels, geometries, and
reactivities) of larger molecules. In the preceding Section, orbital correlation diagrams were introduced to connect the orbitals of
the fragments along a 'reaction path' leading to the orbitals of the products. In this Section, analogous connections are made among
the fragment and product electronic states, again labeled by appropriate symmetries. To realize such connections, one must first
write down N-electron wavefunctions that possess the appropriate symmetry; this task requires combining symmetries of the
occupied orbitals to obtain the symmetries of the resulting states.

8.1: Orbitals Do Not Provide the Complete Picture; Their Occupancy By the N Electrons Must Be Specified
8.2: Even N-Electron Configurations are Not Mother Nature's True Energy States
8.3: Mean-Field Models
8.4: Configuration Interaction (CI) Describes the Correct Electronic States
8.5: Summary
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8.1: Orbitals Do Not Provide the Complete Picture; Their Occupancy By the N
Electrons Must Be Specified
Knowing the orbitals of a particular species provides one information about the sizes, shapes, directions, symmetries, and energies
of those regions of space that are available to the electrons (i.e., the complete set of orbitals that are available). This knowledge
does not determine into which orbitals the electrons are placed. It is by describing the electronic configurations (i.e., orbital
occupancies such as  or ) appropriate to the energy range under study that one focuses on how the
electrons occupy the orbitals. Moreover, a given configuration may give rise to several energy levels whose energies differ by
chemically important amounts. for example, the  configuration of the Carbon atom produces nine degenerate 

 state. These three energy levels differ in energy by 1.5 eV and 1.2 eV,
respectively.
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8.2: Even N-Electron Configurations are Not Mother Nature's True Energy States
Moreover, even single-configuration descriptions of atomic and molecular structure (e.g.,  for the Oxygen atom) do not
provide fully correct or highly accurate representations of the respective electronic wavefunctions. As will be shown in this Section
and in more detail in Section 6, the picture of N electrons occupying orbitals to form a configuration is based on a so-called "mean
field" description of the coulomb interactions among electrons. In such models, an electron at r is viewed as interacting with an
"averaged" charge density arising from the N-1 remaining electrons:

Here  represents the probability density for finding electrons at  is the mutual Coulomb repulsion between

electron density at r and r'. Analogous mean-field models arise in many areas of chemistry and physics, including electrolyte theory
(e.g., the Debye-Hückel theory), statistical mechanics of dense gases (e.g., where the Mayer-Mayer cluster expansion is used to
improve the ideal-gas mean field model), and chemical dynamics (e.g., the vibrationally averaged potential of interaction).

In each case, the mean-field model forms only a starting point from which one attempts to build a fully correct theory by effecting
systematic corrections (e.g., using perturbation theory) to the mean-field model. The ultimate value of any particular meanfield
model is related to its accuracy in describing experimental phenomena. If predictions of the mean-field model are far from the
experimental observations, then higher-order corrections (which are usually difficult to implement) must be employed to improve
its predictions. In such a case, one is motivated to search for a better model to use as a starting point so that lower-order
perturbative (or other) corrections can be used to achieve chemical accuracy (e.g., ± 1 kcal/mole).

In electronic structure theory, the single-configuration picture (e.g., the  description of the oxygen atom) forms the
mean-field starting point; the configuration interaction (CI) or perturbation theory techniques are then used to systematically
improve this level of description.

The single-configuration mean-field theories of electronic structure neglect correlations among the electrons. That is, in expressing
the interaction of an electron at r with the N-1 other electrons, they use a probability density  that is independent of the
fact that another electron resides at r.

The single-configuration mean-field theories of electronic structure neglect correlations
among the electrons.

In fact, the so-called conditional probability density for finding one of N-1 electrons at r', given that an electron is at r certainly
depends on r. As a result, the mean-field coulomb potential felt by a  single-
configuration description of the Carbon atom is:

In this example, the density  is the sum of the charge densities of the orbitals occupied by the five other electrons 
, and is not dependent on the fact that an electron resides at r.
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8.3: Mean-Field Models
The Mean-Field Model, Which Forms the Basis of Chemists' Pictures of Electronic Structure of Molecules, Is Not Very Accurate

The magnitude and "shape" of such a mean-field potential is shown below for the Beryllium atom. In this figure, the nucleus is at
the origin, and one electron is placed at a distance from the nucleus equal to the maximum of the 1s orbital's radial probability
density (near 0.13 Å). The radial coordinate of the second is plotted as the abscissa; this second electron is arbitrarily constrained to
lie on the line connecting the nucleus and the first electron (along this direction, the inter-electronic interactions are largest). On the
ordinate, there are two quantities plotted: (i) the Self-Consistent Field (SCF) mean-field potential , and (ii) the

so-called Fluctuation potential (F), which is the true coulombic  interaction potential minus the SCF potential.

Figure 8.3.1: Insert caption here!

As a function of the inter-electron distance, the fluctuation potential decays to zero more rapidly than does the SCF potential. For
this reason, approaches in which F is treated as a perturbation and corrections to the mean-field picture are computed perturbatively
might be expected to be rapidly convergent (whenever perturbations describing long-range interactions arise, convergence of
perturbation theory is expected to be slow or not successful). However, the magnitude of F is quite large and remains so over an
appreciable range of inter-electron distances. The resultant corrections to

The resultant corrections to the SCF picture are therefore quite large when measured in kcal/mole. For example, the differences 
 between the true (state-of-the-art quantum chemical calculation) energies of interaction among the four electrons in Be and the

SCF mean-field estimates of these interactions are given in the table shown below in eV (recall that 1 eV = 23.06 kcal/mole).

Table 8.3.1: Insert caption here!

To provide further insight why the SCF mean-field model in electronic structure theory is of limited accuracy, it can be noted that
the average value of the kinetic energy plus the attraction to the Be nucleus plus the SCF interaction potential for one of the 2s
orbitals of Be with the three remaining electrons in the  configuration is:

the analogous quantity for the 2p orbital in the  configuration is:

the corresponding value for the 1s orbital is (negative and) of even larger magnitude. The SCF average coulomb interaction
between the two 2s orbitals of  Be is:
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This data clearly shows that corrections to the SCF model (see the above table) represent significant fractions of the inter-electron
interaction energies (e.g., 1.234 eV compared to 5.95- 1.234 = 4.72 eV for the two 2s electrons of Be), and that the interelectron
interaction energies, in turn, constitute significant fractions of the total energy of each orbital (e.g., 5.95 -1.234 eV = 4.72 eV out of
-15.4 eV for a 2s orbital of Be).

The task of describing the electronic states of atoms and molecules from first principles and in a chemically accurate manner (± 1
kcal/mole) is clearly quite formidable. The orbital picture and its accompanying SCF potential take care of "most" of the
interactions among the N electrons (which interact via long-range coulomb forces and whose dynamics requires the application of
quantum physics and permutational symmetry). However, the residual fluctuation potential, although of shorter range than the bare
coulomb potential, is large enough to cause significant corrections to the mean-field picture. This, in turn, necessitates the use of
more sophisticated and computationally taxing techniques (e.g., high order perturbation theory or large variational expansion
spaces) to reach the desired chemical accuracy.

Mean-field models are obviously approximations whose accuracy must be determined so scientists can know to what degree they
can be "trusted". For electronic structures of atoms and molecules, they require quite substantial corrections to bring them into line
with experimental fact. Electrons in atoms and molecules undergo dynamical motions in which their coulomb repulsions cause
them to "avoid" one another at every instant of time, not only in the average-repulsion manner that the mean-field models embody.
The inclusion of instantaneous spatial correlations among electrons is necessary to achieve a more accurate description of atomic
and molecular electronic structure.
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8.4: Configuration Interaction (CI) Describes the Correct Electronic States
The most commonly employed tool for introducing such spatial correlations into electronic wavefunctions is called configuration
interaction (CI); this approach is described briefly later in this Section and in considerable detail in Section 6. Briefly, one employs
the (in principle, complete as shown by P. O. Löwdin, Rev. Mod. Phys. 32 , 328 (1960)) set of N-electron configurations that

i. can be formed by placing the N electrons into orbitals of the atom or molecule under study, and that
ii. possess the spatial, spin, and angular momentum symmetry of the electronic state of interest.

This set of functions is then used, in a linear variational function, to achieve, via the CI technique, a more accurate and dynamically
correct description of the electronic structure of that state. For example, to describe the ground 1S state of the Be atom, the 1s22s2
configuration (which yields the mean-field description) is augmented by including other configurations such as 

etc., all of which have overall  spin and angular momentum symmetry.
The excited  states are also combinations of all such configurations. Of course, the ground-state wavefunction is dominated by
the  and excited states contain dominant contributions from , etc. configurations. The resultant CI wavefunctions
are formed as shown in Section 6 as linear combinations of all such configurations.

To clarify the physical significance of mixing such configurations, it is useful to consider what are found to be the two most
important such configurations for the ground 1S state of the Be atom:

As proven in Chapter 13.III, this two-configuration description of Be's electronic structure is equivalent to a description is which
two electrons reside in the 1s orbital (with opposite,  spins) while the other pair reside in 2s-2p hybrid orbitals (more
correctly, polarized orbitals) in a manner that instantaneously correlates their motions:

where 

The so-called polarized orbital pairs ) are formed by mixing into the 2s orbital an amount of the  orbital,
with the mixing amplitude determined by the ratio of . As will be detailed in Section 6, this ratio is proportional to the
magnitude of the coupling  between the two configurations and inversely proportional to the energy
difference  for these configurations. So, in general, configurations that have similar
energies (Hamiltonian expectation values) and couple strongly give rise to strongly mixed polarized orbital pairs. The result of
forming such polarized orbital pairs are described pictorially below.

In each of the three equivalent terms in this wavefunction, one of the valence electrons moves in a 2s+a2p orbital polarized in one
direction while the other valence electron moves in the 2s-a2p orbital polarized in the opposite direction. For example, the first
term  describes one electron occupying a  polarized
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orbital while the other electron occupies the  orbital. In this picture, the electrons reduce their mutual coulomb repulsion
by occupying different regions of space; in the SCF mean-field picture, both electrons reside in the same 2s region of space. In this
particular example, the electrons undergo angular correlation to "avoid" one another. The fact that equal amounts of x, y, and z
orbital polarization appear in Y is what preserves the  symmetry of the wavefunction. 
 
The fact that the CI wavefunction

mixes its two configurations with opposite sign is of significance. As will be seen later in Section 6, solution of the Schrödinger
equation using the CI method in which two configurations (e.g.,  are employed gives rise to two solutions.
One approximates the ground state wave function; the other approximates an excited state. The former is the one that mixes the two
configurations with opposite sign.

To understand why the latter is of higher energy, it suffices to analyze a function of the form

in a manner analogous to above. In this case, it can be shown that

There is a fundamental difference, however, between the polarized orbital pairs introduced earlier  and the
corresponding functions  appearing here. The probability densities embodied in the former

describe constructive (for the + case) and destructive (for the - case) superposition of the probabilities of the 2s and 2p orbitals. The
probability densities of  are

These densities are identical to one another and do not describe polarized orbital densities. Therefore, the CI wavefunction which
mixes the two configurations with like sign, when analyzed in terms of orbital pairs, places the electrons into orbitals 

 whose densities do not permit the electrons to avoid one another. Rather, both orbitals have the same
spatial density , which gives rise to higher coulombic interaction energy for this state.
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8.5: Summary
In summary, the dynamical interactions among electrons give rise to instantaneous spatial correlations that must be handled to
arrive at an accurate picture of atomic and molecular structure. The simple, single-configuration picture provided by the mean-field
model is a useful starting point, but improvements are often needed. In Section 6, methods for treating electron correlation will be
discussed in greater detail.

For the remainder of this Section, the primary focus is placed on forming proper Nelectron wavefunctions by occupying the orbitals
available to the system in a manner that guarantees that the resultant N-electron function is an eigenfunction of those operators that
commute with the N-electron Hamiltonian.

For polyatomic molecules, these operators include point-group symmetry operators (which act on all N electrons) and the spin
angular momentum ( ) of all of the electrons taken as a whole (this is true in the absence of spin-orbit coupling which is
treated later as a perturbation). For linear molecules, the point group symmetry operations involve rotations  of all N electrons
about the principal axis, as a result of which the total angular momentum  of the N electrons (taken as a whole) about this axis
commutes with the Hamiltonian, H. Rotation of all N electrons about the x and y axes does not leave the total coulombic potential
energy unchanged, so  do not commute with H. Hence for a linear molecule,  are the operators that
commute with H. For atoms, the corresponding operators are  (again, in the absence of spin-orbit coupling)
where each operator pertains to the total orbital or spin angular momentum of the N electrons.

To construct N-electron functions that are eigenfunctions of the spatial symmetry or orbital angular momentum operators as well as
the spin angular momentum operators, one has to "couple" the symmetry or angular momentum properties of the individual
spinorbitals used to construct the N-electrons functions. This coupling involves forming direct product symmetries in the case of
polyatomic molecules that belong to finite point groups, it involves vector coupling orbital and spin angular momenta in the case of
atoms, and it involves vector coupling spin angular momenta and axis coupling orbital angular momenta when treating linear
molecules. Much of this Section is devoted to developing the tools needed to carry out these couplings.
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CHAPTER OVERVIEW

9: Symmetry of Electronic Wavefunctions
Electronic wavefuntions must be constructed to have permutational antisymmetry because the N electrons are indistinguishable
Fermions

9.1: Electronic Configurations
9.2: Antisymmetric Wavefunctions
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9.1: Electronic Configurations
Atoms, linear molecules, and non-linear molecules have orbitals which can be labeled either according to the symmetry appropriate
for that isolated species or for the species in an environment which produces lower symmetry. These orbitals should be viewed as
regions of space in which electrons can move, with, of course, at most two electrons (of opposite spin) in each orbital. Specification
of a particular occupancy of the set of orbitals available to the system gives an electronic configuration. For example, 
is an electronic configuration for the Oxygen atom (and for the F  ion and the  is another configuration
for O, . These configurations represent situations in which the electrons occupy low-energy orbitals of the system
and, as such, are likely to contribute strongly to the true ground and low-lying excited states and to the low-energy states of
molecules formed from these atoms or ions.

Specification of an electronic configuration does not, however, specify a particular electronic state of the system. In the above 
 example, there are many ways (fifteen, to be precise) in which the 2p orbitals can be occupied by the four electrons. As

a result, there are a total of fifteen states which cluster into three energetically distinct levels, lying within this single configuration.
The  configuration contains thirty-six states which group into six distinct energy levels (the word level is used to
denote one or more state with the same energy). Not all states which arise from a given electronic configuration have the same
energy because various states occupy the degenerate (e.g., 2p and 3p in the above examples) orbitals differently. That is, some
states have orbital occupancies of the form

while others have

as a result, the states can have quite different coulombic repulsions among the electrons (the state with two doubly occupied
orbitals would lie higher in energy than that with two singly occupied orbitals). Later in this Section and in Appendix G techniques
for constructing wavefunctions for each state contained within a particular configuration are given in detail. Mastering these tools
is an important aspect of learning the material in this text.

In summary, an atom or molecule has many orbitals (core, bonding, non-bonding, Rydberg, and antibonding) available to it;
occupancy of these orbitals in a particular manner gives rise to a configuration. If some orbitals are partially occupied in this
configuration, more than one state will arise; these states can differ in energy due to differences in how the orbitals are occupied. In
particular, if degenerate orbitals are partially occupied, many states can arise and have energies which differ substantially because
of differences in electron repulsions arising in these states. Systematic procedures for extracting all states from a given
configuration, for labeling the states according to the appropriate symmetry group, for writing the wavefunctions corresponding to
each state and for evaluating the energies corresponding to these wavefunctions are needed. Much of Chapters 10 and 11 are
devoted to developing and illustrating these tools.
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9.2: Antisymmetric Wavefunctions

General Concepts 

The total electronic Hamiltonian

where  and  label electrons and a and b label the nuclei (whose charges are denoted ), commutes with the operators  which permute the
names of the electrons  and . This, in turn, requires eigenfunctions of  to be eigenfunctions of . In fact, the set of such permutation
operators form a group called the symmetric group. In the present text, we will not exploit the full group theoretical nature of these operators;
we will focus on the simple fact that all wavefunctions must be eigenfunctions of the  operator.

Because  obeys

the eigenvalues of the  operators must be +1 or - 1. Electrons are Fermions (i.e., they have half-integral spin) and they must have
wavefunctions which are odd under permutation of any pair:

Bosons such as photons or deuterium nuclei (i.e., species with integral spin quantum numbers) have wavefunctions, which are even under
permutation and obey

These permutational symmetries are not only characteristics of the exact eigenfunctions of  belonging to any atom or molecule containing
more than a single electron, but they are also conditions which must be placed on any acceptable model or trial wavefunction (e.g., in a
variational sense) which one constructs.

In particular, within the orbital model of electronic structure (discussed in Section 6), one can not construct trial wavefunctions which are
simple spin-orbital products (i.e., an orbital multiplied by an α or β spin function for each electron) such as

Such spin-orbital product functions must be made permutationally antisymmetric if the N-electron trial function is to be properly
antisymmetric. This can be accomplished for any such product wavefunction by applying the following antisymmetrizer operator:

where  is the number of electrons,  runs over all N! permutations, and s p is +1 or -1 depending on whether the permutation P contains an
even or odd number of pairwise permutations (e.g., 231 can be reached from 123 by two pairwise permutations:

so 231 would have s p =1). The permutation operator  in  acts on a product wavefunction and permutes the ordering of the spin-orbitals.

For example,

where the convention is that electronic coordinates , and  correspond to the orbitals as they appear in the product (e.g., the term φ 3 φ 2
φ 1 represents φ 3 (r 1 ) φ 2 (r 2 ) φ 1 (r 3 )).

It turns out that the permutations  can be allowed either to act on the "names" or labels of the electrons, keeping the order of the spin-orbitals
fixed, or to act on the spin- orbitals, keeping the order and identity of the electrons' labels fixed. The resultant wavefunction, which contains N!
terms, is exactly the same regardless of how one allows the permutations to act. Because we wish to use the above convention in which the
order of the electronic labels remains fixed as 1, 2, 3, ... N, we choose to think of the permutations acting on the names of the spin-orbitals. It
should be noted that the effect of A on any spin-orbital product is to produce a function that is a sum of N! terms. In each of these terms the
same spin-orbitals appear, but the order in which they appear differs from term to term.
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Antisymmetrization does not alter the overall orbital occupancy; it simply "scrambles" any
knowledge of which electron is in which spin-orbital.

The antisymmetrized orbital product  is represented by the short hand | φ_1 φ_2 φ_3 | and is referred to as a Slater determinant. The
origin of this notation can be made clear by noting that (1/ √ N!) times the determinant of a matrix whose rows are labeled by the index i of the
spin-orbital φ i and whose columns are labeled by the index j of the electron at r j is equal to the above function:

The general structure of such Slater determinants is illustrated below:

The antisymmetry of many-electron spin-orbital products places constraints on any acceptable model wavefunction, which give rise to
important physical consequences. For example, it is antisymmetry that makes a function of the form | 1s α 1s α | vanish (thereby enforcing the
Pauli exclusion principle) while | 1s α 2s α | does not vanish, except at points r 1 and r 2 where , and hence is acceptable. The
Pauli principle is embodied in the fact that if any two or more columns (or rows) of a determinant are identical, the determinant vanishes.
Antisymmetry also enforces indistinguishability of the electrons in that

That is, two wavefunctions which differ simply by the ordering of their spin-orbitals are equal to within a sign (+/- 1); such an overall sign
difference in a wavefunction has no physical consequence because all physical properties depend on the product Ψ * Ψ , which appears in any
expectation value expression.

The antisymmetry of many-electron spin-orbital products places constraints on any acceptable
model wavefunction.

Physical Consequences of Antisymmetry 

Once the rules for evaluating energies of determinental wavefunctions and for forming functions which have proper spin and spatial symmetries
have been put forth (in Chapter 11), it will be clear that antisymmetry and electron spin considerations, in addition to orbital occupancies, play
substantial roles in determining energies and that it is precisely these aspects that are responsible for energy splittings among states arising from
one configuration. A single example may help illustrate this point. Consider the  configuration of ethylene (ignore the other orbitals and
focus on the properties of these two). As will be shown below when spin angular momentum is treated in full, the triplet spin states (e.g., 

) of this configuration are:

and

The singlet spin state is:

To understand how the three triplet states have the same energy and why the singlet state has a different energy, and an energy different than the
 triplet even though these two states are composed of the same two determinants, we proceed as follows:

Step 1. We express the bonding  and antibonding  orbitals in terms of the atomic p-orbitals from which they are formed:

and

where R and L denote the p-orbitals on the left and right carbon atoms, respectively.
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Step 2. We substitute these expressions into the Slater determinants that form the singlet and triplet states and collect terms and throw out
terms for which the determinants vanish.
Step 3. This then gives the singlet and triplet states in terms of atomic-orbital occupancies where it is easier to see the energy equivalences
and differences. Let us begin with the triplet states:

The singlet state can be reduced in like fashion:

Notice that all three triplet states involve atomic orbital occupancy in which one electron is on one atom while the other is on the second carbon
atom. In contrast, the singlet state places both electrons on one carbon (it contains two terms; one with the two electrons on the left carbon and
the other with both electrons on the right carbon). In a "valence bond" analysis of the physical content of the singlet and triplet  states, it
is clear that the energy of the triplet states will lie below that of the singlet because the singlet contains "zwitterion" components that can be
denoted , while the three triplet states are purely "covalent". This case provides an excellent example of how the spin and
permutational symmetries of a state "conspire" to qualitatively affect its energy and even electronic character as represented in its atomic orbital
occupancies. Understanding this should provide ample motivation for learning how to form proper antisymmetric spin (and orbital) angular
momentum eigenfunctions for atoms and molecules.

The energy of the triplet states will lie below that of the singlet
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10: Angular Momentum and Group Symmetries of Electronic Wavefunctions
Electronic wavefunctions must also possess proper symmetry. These include angular momentum and point group symmetries

10.1: Angular Momentum Symmetry and Strategies for Angular Momentum Coupling
10.2: Electron Spin Angular Momentum
10.3: Coupling of Angular Momenta
10.4: Atomic Term Symbols and Wavefunctions
10.5: Atomic Configuration Wavefunctions
10.6: Inversion Symmetry
10.7: Review of Atomic Cases
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10.1: Angular Momentum Symmetry and Strategies for Angular Momentum Coupling
Because the total Hamiltonian of a many-electron atom or molecule forms a mutually commutative set of operators with , ,
and A = (Ö1/N!)Sp sp P, the exact eigenfunctions of  must be eigenfunctions of these operators. Being an eigenfunction of 
forces the eigenstates to be odd under all . Any acceptable model or trial wavefunction should be constrained to also be an
eigenfunction of these symmetry operators.

If the atom or molecule has additional symmetries (e.g., full rotation symmetry for atoms, axial rotation symmetry for linear
molecules and point group symmetry for nonlinear polyatomics), the trial wavefunctions should also conform to these spatial
symmetries. This Chapter addresses those operators that commute with , , , and  and among one another for atoms,
linear, and non-linear molecules. As treated in detail in Appendix G, the full non-relativistic N-electron Hamiltonian of an atom or
molecule

commutes with the following operators:

i. The inversion operator i and the three components of the total orbital angular momentum  as well as the

components of the total spin angular momentum  for atoms (but not the individual electrons'  etc).
Hence,  are the operators we need to form eigenfunctions of, and L, , S, and MS are the "good" quantum
numbers.

ii.  as well as the N-electron  for linear molecules (also i, if the molecule has a center of

symmetry). Hence,  are the operators we need to form eigenfunctions of, and  are the "good"
quantum numbers; L no longer is! iii.

iii.  as well as all point group operations for non-linear polyatomic molecules. Hence  and the point group
operations are used to characterize the functions we need to form. When we include spin-orbit coupling into H (this adds
another term to the potential that involves the spin and orbital angular momenta of the electrons),  no longer
commute with H. However,  now do commute with H.

This page titled 10.1: Angular Momentum Symmetry and Strategies for Angular Momentum Coupling is shared under a CC BY-NC-SA 4.0
license and was authored, remixed, and/or curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.
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10.2: Electron Spin Angular Momentum
Individual electrons possess intrinsic spin characterized by angular momentum quantum numbers  and ; for electrons, s = 1/2
and ms = 1/2, or -1/2. The  spin state of the electron is represented by the symbol  and the  state is
represented by . These spin functions obey:

and

The  spin functions are connected via lowering  and raising  operators, which are defined in terms of the x and y
components of S as follows:

and

In particular . These expressions are examples of the more general relations
(these relations are developed in detail in Appendix G) which all angular momentum operators and their eigenstates obey:

and

In a many-electron system, one must combine the spin functions of the individual electrons to generate eigenfunctions of the total 
 also follow from the fact that the total angular momentum of

a collection of particles is the sum of the angular momenta, component-by-component, of the individual angular momenta) and
total  operators because only these operators commute with the full Hamiltonian, H, and with the permutation operators . No
longer are the individual  good quantum numbers; these operators do not commute with .

Spin states which are eigenfunctions of the total  can be formed by using angular momentum coupling methods or the
explicit construction methods detailed in Appendix (G). In the latter approach, one forms, consistent with the given electronic
configuration, the spin state having maximum  eigenvalue (which is easy to identify as shown below and which corresponds to a
state with S equal to this maximum  eigenvalue) and then generating states of lower  values and lower S values using the
angular momentum raising and lowering operators

To illustrate, consider a three-electron example with the configuration 1s2s3s. Starting with the determinant |  |, which
has the maximum  and hence has  (this function is denoted |  in the additive form 

 to generate the following combination of three determinants:
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which, according to the above identities, must equal

So the state  can be solved for in terms of the three determinants to give

The states with  can be obtained by further application of  to  (actually, the  can
be identified as the "spin flipped" image of the state with  and the one with  can be formed by interchanging all
a's and b's in the  state).

Of the eight total spin states (each electron can take on either  spin and there are three electrons, so the number of states is 
), the above process has identified proper combinations which yield the four states with  Doing so consumed the

determinants with  one combination of the three determinants with  and one combination of the three
determinants with . There still remain two combinations of the  and two combinations of the 
determinants to deal with. These functions correspond to two sets of  eigenfunctions having .
Combinations of the determinants must be used in forming the  functions to keep the  eigenfunctions orthogonal to
the above  functions (which is required because  is a hermitian operator whose eigenfunctions belonging to different
eigenvalues must be orthogonal). The two independent  states an be formed by simply constructing combinations
of the above three determinants with  which are orthogonal to the  combination given above and orthogonal to each
other. For example,

are acceptable (as is any combination of these two functions generated by a unitary transformation ). A pair of independent
orthonormal states with  can be generated by applying  to each of these two functions ( or by
constructing a pair of orthonormal functions which are combinations of the three determinants with 

 function obtained as detailed above).

The above treatment of a three-electron case shows how to generate quartet (spin states are named in terms of their spin
degeneracies 2S+1) and doublet states for a configuration of the form 1s2s3s. Not all three-electron configurations have both
quartet and doublet states; for example, the  configuration only supports one doublet state. The methods used above to
generate  and  states are valid for any three-electron situation; however, some of the determinental functions vanish if
doubly occupied orbitals occur as for  In particular, the  and  and  and

 |  determinants vanish because they violate the Pauli principle; only  and  do
not vanish. These two remaining determinants form the ,  doublet spin functions which pertain to the 
configuration. It should be noted that all closed-shell components of a configuration (e.g., the  part of  or the 
part of  ) must involve  spin functions for each doubly occupied orbital and, as such, can contribute
nothing to the total  value; only the open-shell components need to be treated with the angular momentum operator tools to
arrive at proper total-spin eigenstates.

In summary, proper spin eigenfunctions must be constructed from antisymmetric (i.e., determinental) wavefunctions as
demonstrated above because the total  and total  remain valid symmetry operators for many-electron systems. Doing so
results in the spinadapted wavefunctions being expressed as combinations of determinants with coefficients determined via spin
angular momentum techniques as demonstrated above. In configurations with closed-shell components, not all spin functions are
possible because of the antisymmetry of the wavefunction; in particular, any closed-shell parts must involve  spin pairings for
each of the doubly occupied orbitals, and, as such, contribute zero to the total .
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10.3: Coupling of Angular Momenta

Vector Coupling 

Given two angular momenta (of any kind)  when one generates states that are eigenstates of their vector sum 
, one can obtain  values of

This can apply to two electrons for which the total spin S can be 1 or 0 as illustrated in detail above, or to a p and a d orbital for
which the total orbital angular momentum L can be 3, 2, or 1. Thus for a  electronic configuration, 

 energy levels (and corresponding wavefunctions) arise. Here the term symbols are specified as the
spin degeneracy (2S+1) and the letter that is associated with the L-value. If spin-orbit coupling is present, the  level further splits
into J= 4, 3, and 2 levels which are denoted 

This simple "vector coupling" method applies to any angular momenta. However, if the angular momenta are "equivalent" in the
sense that they involve indistinguishable particles that occupy the same orbital shell (e.g., 

 involves 3 non-equivalent electrons;  involves 2 equivalent electrons and
one non-equivalent electron), the Pauli principle eliminates some of the expected term symbols (i.e., when the corresponding
wavefunctions are formed, some vanish because their Slater determinants vanish). Later in this section, techniques for dealing with
the equivalent-angular momenta case are introduced. These techniques involve using the above tools to obtain a list of candidate
term symbols after which Pauli-violating term symbols are eliminated.

Figure 10.3.1: Illustration of the vector model of orbital angular momentum. Image used with permisison (Public Domain;
Maschen)

Non-Vector Coupling 
For linear molecules, one does not vector couple the orbital angular momenta of the individual electrons (because only 
commutes with H), but one does vector couple the electrons' spin angular momenta. Coupling of the electrons' orbital angular
momenta involves simply considering the various  eigenvalues that can arise from adding the  values of the individual
electrons. For example, coupling two p orbitals (each of which can have m = ±1) can give

 = 1+1, 1-1, -1+1, and -1-1, or 2, 0, 0, and -2.

The level with  = ±2 is called a D state (much like an orbital with m = ±2 is called a d orbital), and the two states with  = 0
are called S states. States with  eigenvalues of  are degenerate because the total energy is independent of which
direction the electrons are moving about the linear molecule's axis (just a  orbitals are degenerate). Again, if the two
electrons are non-equivalent, all possible couplings arise (e.g., a  states).
In contrast, if the two electrons are equivalent, certain of the term symbols are Pauli forbidden. Again, techniques for dealing with
such cases are treated later in this Chapter.
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Direct Products for Non-Linear Molecules 

For non-linear polyatomic molecules, one vector couples the electrons' spin angular momenta but their orbital angular momenta are
not even considered. Instead, their point group symmetries must be combined, by forming direct products, to determine the
symmetries of the resultant spin-orbital product states. For example, the  configuration in  symmetry gives rise to 

 term symbols. The  configuration in  symmetry gives  term symbols. For
two equivalent electrons such as in the  configuration, certain of the  term symbols are Pauli
forbidden. Once again, the methods needed to identify which term symbols arise in the equivalent-electron case are treated later.

One needs to learn how to tell which term symbols will be Pauli excluded, and to learn how to write the spin-orbit product
wavefunctions corresponding to each term symbol and to evaluate the corresponding term symbols' energies.

This page titled 10.3: Coupling of Angular Momenta is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Jack Simons via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.
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10.4: Atomic Term Symbols and Wavefunctions

Non-Equivalent Orbital Term Symbols 

When coupling non-equivalent angular momenta (e.g., a spin and an orbital angular momenta or two orbital angular momenta of
non-equivalent electrons), one vector couples using the fact that the coupled angular momenta range from the sum of the two
individual angular momenta to the absolute value of their difference. For example, when coupling the spins of two electrons, the
total spin S can be 1 or 0; when coupling a p and a d orbital, the total orbital angular momentum can be 3, 2, or 1. Thus for a 
electronic configuration,  energy levels (and corresponding wavefunctions) arise. The energy
differences among these levels has to do with the different electron-electron repulsions that occur in these levels; that is, their
wavefunctions involve different occupancy of the p and d orbitals and hence different repulsion energies. If spin-orbit coupling is
present, the L and S angular momenta are further vector coupled. For example, the  level splits into J= 4, 3, and 2 levels which
are denoted  The energy differences among these J-levels are caused by spin-orbit interactions.

Figure 10.4.1: Illustration of L-S coupling. Total angular momentum J is purple, orbital L is blue, and spin S is green.

Equivalent Orbital Term Symbols 

If equivalent angular momenta are coupled (e.g., to couple the orbital angular momenta of a  configuration), one must use
the "box" method to determine which of the term symbols, that would be expected to arise if the angular momenta were
nonequivalent, violate the Pauli principle. To carry out this step, one forms all possible unique (determinental) product states with
non-negative  values and arranges them into groups according to their  values. For example, the boxes
appropriate to the  orbital occupancy are shown below:

Figure 10.4.1: Insert caption here!

There is no need to form the corresponding states with negative  values because they are simply "mirror
images" of those listed above. For example, the state with  which can be obtained from the

 state  by replacing  and replacing .

Given the box entries, one can identify those term symbols that arise by applying the following procedure over and over until all
entries have been accounted for:

1. One identifies the highest  value (this gives a value of the total spin quantum number that arises, S) in the box. For the
above example, the answer is S = 1.

2. For all product states of this  value, one identifies the highest  value (this gives a value of the total orbital angular
momentum, L, that can arise for this S ). For the above example, the highest 

3. Knowing an S, L combination, one knows the first term symbol that arises from this configuration. In the  example, this is 
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4. Because the level with this L and S quantum numbers contains (2L+1)(2S+1) states with  quantum numbers
running from -L to L and from -S to S, respectively, one must remove from the original box this number of product states. To do
so, one simply erases from the box one entry with each such ML and MS value. Actually, since the box need only show those
entries with non-negative ML and MS values, only these entries need be explicitly deleted. In the  example, this amounts to
deleting nine product states with  values of 1,1; 1,0; 1,-1; 0,1; 0,0; 0,-1; -1,1; -1,0; -1,-1.

5. After deleting these entries, one returns to step 1 and carries out the process again. For the  example, the box after deleting
the first nine product states looks as follows (those that appear in italics should be viewed as already cancelled in counting all of
the  states):

Figure 10.4.2: Insert caption here!

It should be emphasized that the process of deleting or crossing off entries in various  boxes involves only counting how
many states there are; by no means do we identify the particular  wavefunctions when we cross out any particular
entry in a box. For example, when the  product is deleted from the  box in accounting for the states in
the  level, we do not claim that  itself is a member of the  level; the  product state could just as well been
eliminated when accounting for the  states. As will be shown later, the  state with  will be a combination of

Returning to the  example at hand, after the  term symbol's states have been accounted for, the highest  value is 0 (hence
there is an S=0 state), and within this  value, the highest  value is 2 (hence there is an L=2 state). This means there is a 
level with five states having  = 2,1,0,-1,-2. Deleting five appropriate entries from the above box (again denoting deletions by
italics) leaves the following box:

Figure 10.4.3: Insert caption here!

The only remaining entry, which thus has the highest  values, has  Thus there is also a  level
in the  configuration.

Thus, unlike the non-equivalent  case, in which  levels arise, only the  arise in
the  situation. This "box method" is necessary to carry out whenever one is dealing with equivalent angular momenta.

If one has mixed equivalent and non-equivalent angular momenta, one can determine all possible couplings of the equivalent
angular momenta using this method and then use the simpler vector coupling method to add the non-equivalent angular momenta to
each of these coupled angular momenta. For example, the  configuration can be handled by vector coupling (using the
straightforward non-equivalent procedure) L=2 (the d orbital) and  (the third electron's spin) to each of 
The result is 
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10.5: Atomic Configuration Wavefunctions
To express, in terms of Slater determinants, the wavefunctions corresponding to each of the states in each of the levels, one
proceeds as follows:

1. For each  combination for which one can write down only one product function (i.e., in the non-equivalent angular
momentum situation, for each case where only one product function sits at a given box row and column point), that product
function itself is one of the desired states. For the  example, the  (as well as their four other 

 "mirror images") are members of the  level (since they have  = ±1) and  and its  mirror image
are members of the  level (since they have  = ±2).

2. After identifying as many such states as possible by inspection, one uses  to generate states that belong to the same
term symbols as those already identified but which have higher or lower  values.

3. If, after applying the above process, there are term symbols for which states have not yet been formed, one may have to
construct such states by forming linear combinations that are orthogonal to all those states that have thus far been found.

To illustrate the use of raising and lowering operators to find the states that can not be identified by inspection, let us again focus on
the  case. Beginning with three of the  states that are easy to recognize, , we apply 
to obtain the  functions:

so,

The same process applied to  gives

and

respectively.

The  function can be acted on with  to generate 

so,
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The  term symbol is handled in like fashion. Beginning with the , one applies  to generate the  =
1 state:

so,

Applying  once more generates the  state:

so,

Notice that the  states of  and of  are given in terms of the three determinants that appear in the "center" of
the  box diagram:

The only state that has eluded us thus far is the  state, which also has . To construct this state, which must
also be some combination of the three determinants with , we use the fact that the  wavefunction must be
orthogonal to the  are eigenfunctions of the hermitian operator  having
different eigenvalues. The state that is normalized and is a combination of  is given as
follows:
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10.6: Inversion Symmetry
One more quantum number, that relating to the inversion (i) symmetry operator can be used in atomic cases because the total
potential energy  is unchanged when all of the electrons have their position vectors subjected to inversion (i.e., ). This
quantum number is straightforward to determine. Because each  state discussed previously consists of a few (or,
in the case of configuration interaction several) symmetry adapted combinations of Slater determinant functions, the effect of the
inversion operator on such a wavefunction  can be determined by:

i. applying i to each orbital occupied in  thereby generating a ± 1 factor for each orbital (+1 for s, d, g, i, etc orbitals; -1 for p, f,
h, j, etc orbitals),

ii. multiplying these  factors to produce an overall sign for the character of  under .

When this overall sign is positive, the function  is termed "even" and its term symbol is appended with an "e" superscript (e.g.,
the  level of the  atom, which has  occupancy is labeled ); if the sign is negative  is called "odd" and the term
symbol is so amended (e.g., the  level of   ion is labeled ).
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10.7: Review of Atomic Cases
The orbitals of an atom are labeled by  and  quantum numbers; the orbitals belonging to a given energy and  value are -

fold degenerate. The many-electron Hamiltonian, H, of an atom and the antisymmetrizer operator  commute

with total , as in the linear-molecule case. The additional symmetry present in the spherical atom reflects itself in the

fact that , and  now also commute with  and . However, since  does not commute with \ or , new quantum
numbers can not be introduced as symmetry labels for these other components of . A new symmetry label does arise when

is introduced;  commutes with H, A , and , so proper eigenstates (and trial wavefunctions) can be labeled with ,
and H quantum numbers.

To identify the states which arise from a given atomic configuration and to construct properly symmetry-adapted determinental
wave functions corresponding to these symmetries, one must employ L and  angular momentum tools. One
first identifies those determinants with maximum  (this then defines the maximum S value that occurs); within that set of
determinants, one then identifies the determinant(s) with maximum  (this identifies the highest L value). This determinant has S
and L equal to its  values (this can be verified, for example for L, by acting on this determinant with  in the form

and realizing that  acting on the state must vanish); other members of this L,S energy level can be constructed by sequential
application of . Having exhausted a set of (2L+1)(2S+1) combinations of the determinants belonging to

the given configuration, one proceeds to apply the same procedure to the remaining determinants (or combinations thereof). One
identifies the maximum  which thereby specifies another S, L label and a new "maximum"
state. The determinental functions corresponding to these L,S (and various  ) values can be constructed by applying 

 to this "maximum" state. This process is continued until all of the states and their determinental wave functions are
obtained.

As illustrated above, any  configuration gives rise to  levels which contain nine, five, and one state
respectively. The use of L and S angular momentum algebra tools allows one to identify the wavefunctions corresponding to these
states. As shown in detail in Appendix G, in the event that spin-orbit coupling causes the Hamiltonian, H, not to commute with L
or with S but only with their vector sum J = L + S, then these  eigenfunctions must be coupled (i.e., recombined) to
generate  eigenstates. The steps needed to effect this coupling are developed and illustrated for the above  configuration
case in Appendix G.

In the case of a pair of non-equivalent p orbitals (e.g., in a  configuration), even more states would arise. They can also be
found using the tools provided above. Their symmetry labels can be obtained by vector coupling (see Appendix G) the spin and
orbital angular momenta of the two subsystems. The orbital angular momentum coupling with l = 1 and l = 1 gives L = 2, 1, and 0
or D, P, and S states. The spin angular momentum coupling with s =1/2 and s = 1/2 gives S = 1 and 0, or triplet and singlet states.
So, vector coupling leads to the prediction that  states can be formed from a pair of non-
equivalent p orbitals. It is seen that more states arise when non-equivalent orbitals are involved; for equivalent orbitals, some
determinants vanish, thereby decreasing the total number of states that arise.
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CHAPTER OVERVIEW

11: Evaluating the Matrix Elements of N-electron Wavefunctions
One must be able to evaluate the matrix elements among properly symmetry adapted N-electron configuration functions for any
operator, the electronic Hamiltonian in particular. The Slater-Condon rules provide this capability

11.1: Configuration State Functions can Express the Full N-Electron Wavefunction
11.2: The Slater-Condon Rules Give Expressions for the Operator Matrix Elements Among the CSFs
11.3: The Slater-Condon Rules
11.4: Examples of Applying the Slater-Condon Rules
11.S: Evaluating the Matrix Elements of N-electron Wavefunctions (Summary)
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11.1: Configuration State Functions can Express the Full N-Electron Wavefunction
It has been demonstrated that a given electronic configuration can yield several space- and spin- adapted determinental
wavefunctions; such functions are referred to as configuration state functions (CSFs). These CSF wavefunctions are not the exact
eigenfunctions of the many-electron Hamiltonian, H; they are simply functions which possess the space, spin, and permutational
symmetry of the exact eigenstates. As such, they comprise an acceptable set of functions to use in, for example, a linear variational
treatment of the true states.

In such variational treatments of electronic structure, the N-electron wavefunction  is expanded as a sum over all CSFs that
possess the desired spatial and spin symmetry:

Here, the  represent the CSFs that are of the correct symmetry, and the  are their expansion coefficients to be determined in
the variational calculation. If the spin-orbitals used to form the determinants, that in turn form the CSFs { }, are orthonormal one
electron functions (i.e., ), then the CSFs can be shown to be orthonormal functions of N electrons

In fact, the Slater determinants themselves also are orthonormal functions of N electrons whenever orthonormal spin-orbitals are
used to form the determinants.

The above expansion of the full N-electron wavefunction is termed a "configuration-interaction" (CI) expansion. It is, in principle,
a mathematically rigorous approach to expressing  because the set of all determinants that can be formed from a complete set of
spin-orbitals can be shown to be complete. In practice, one is limited to the number of orbitals that can be used and in the number
of CSFs that can be included in the CI expansion. Nevertheless, the CI expansion method forms the basis of the most commonly
used techniques in quantum chemistry.

In general, the optimal variational (or perturbative) wavefunction for any (i.e., the ground or excited) state will include
contributions from spin-and space-symmetry adapted determinants derived from all possible configurations. For example, although
the determinant with L =1, S = 1,  arising from the  configuration may contribute strongly to the true
ground electronic state of the Carbon atom, there will be contributions from all configurations which can provide these L, S, 

 values (e.g., the  configurations will also contribute, although the 
 will not because the latter two configurations are odd under inversion symmetry whereas the

state under study is even).

The mixing of CSFs from many configurations to produce an optimal description of the true electronic states is referred to as
configuration interaction (CI). Strong CI (i.e., mixing of CSFs with large amplitudes appearing for more than one dominant CSF)
can occur, for example, when two CSFs from different electronic configurations have nearly the same Hamiltonian expectation
value. For example, the  and   configurations of Be and the analogous  configurations of all alkaline
earth atoms are close in energy because the ns-np orbital energy splitting is small for these elements; the 
configurations of ethylene become equal in energy, and thus undergo strong CI mixing, as the CC  bond is twisted by 90° in
which case the  orbitals become degenerate.

Within a variational treatment, the relative contributions of the spin-and space symmetry adapted CSFs are determined by solving a
secular problem for the eigenvalues (  ) and eigenvectors (  ) of the matrix representation H of the full many-electron
Hamiltonian H within this CSF basis:

The eigenvalue  gives the variational estimate for the energy of the  state, and the entries in the corresponding eigenvector 
 give the contribution of the  CSF to the  wavefunction  in the sense that

where 
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11.2: The Slater-Condon Rules Give Expressions for the Operator Matrix Elements
Among the CSFs
To form the  matrix, one uses the so-called Slater-Condon rules which express all non-vanishing determinental matrix
elements involving either one- or two- electron operators (one-electron operators are additive and appear as

two-electron operators are pairwise additive and appear as

Because the CSFs are simple linear combinations of determinants with coefficients determined by space and spin symmetry, the 
 matrix in terms of determinants can be used to generate the  matrix over CSFs.

The Slater-Condon rules give the matrix elements between two determinants

and

for any quantum mechanical operator that is a sum of one- and two- electron operators (F + G). It expresses these matrix elements
in terms of one-and two-electron integrals involving the spin-orbitals that appear in | > and | '> and the operators f and g.

As a first step in applying these rules, one must examine | > and | '> and determine by how many (if any) spin-orbitals | > and | '>
differ. In so doing, one may have to reorder the spin-orbitals in one of the determinants to achieve maximal coincidence with those
in the other determinant; it is essential to keep track of the number of permutations ( ) that one makes in achieving maximal
coincidence. The results of the Slater-Condon rules given below are then multiplied by  to obtain the matrix elements
between the original | > and | '>. The final result does not depend on whether one chooses to permute | > or | '>.

Once maximal coincidence has been achieved, the Slater-Condon (SC) rules provide the following prescriptions for evaluating the
matrix elements of any operator F + G containing a one-electron part  and a two-electron part  (the

Hamiltonian is, of course, a specific example of such an operator; the electric dipole operator  and the electronic kinetic

energy  are examples of one-electron operators (for which one takes g = 0); the electron-electron coulomb interaction 

 is a two-electron operator (for which one takes f = 0)):

The Slater–Condon rules express integrals of one- and two-body operators over
wavefunctions constructed as Slater determinants of orthonormal orbitals in terms of the
individual orbitals. In doing so, the original integrals involving N-electron wavefunctions
are reduced to sums over integrals involving at most two molecular orbitals, or in other
words, the original 3N dimensional integral is expressed in terms of many three- and six-
dimensional integrals.
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11.3: The Slater-Condon Rules
The Slater–Condon rules express integrals of one- and two-body operators over wavefunctions constructed as Slater determinants
of orthonormal orbitals in terms of the individual orbitals. In doing so, the original integrals involving N-electron wavefunctions
are reduced to sums over integrals involving at most two molecular orbitals

i. If |> and |'> are identical, then

where the sums over i and j run over all spin-orbitals in | >;

ii. If | > and | '> differ by a single spin-orbital mismatch (  ),

where the sum over j runs over all spin-orbitals in | > except  ;

iii. If | > and | '> differ by two spin-orbitals (  ),

(note that the F contribution vanishes in this case);

iv. If | > and | '> differ by three or more spin orbitals, then

v. For the identity operator I, the matrix elements < | I | '> = 0 if | > and | '> differ by one or more spin-orbitals (i.e., the Slater
determinants are orthonormal if their spin-orbitals are).

Recall that each of these results is subject to multiplication by a factor of  to account for possible ordering differences in the
spin-orbitals in | > and | '>.

In these expressions,

is used to denote the one-electron integral

and  (or in short hand notation < i j| k l >) represents the two-electron integral

The notation < i j | k l> introduced above gives the two-electron integrals for the g(r,r') operator in the so-called Dirac notation, in
which the i and k indices label the spin-orbitals that refer to the coordinates r and the j and l indices label the spin-orbitals referring
to coordinates r'. The r and r' denote  (with  spin functions). The fact that r
and r' are integrated and hence represent 'dummy' variables introduces index permutational symmetry into this list of integrals. For
example,

the final two equivalences are results of the Hermitian nature of g(r,r').

It is also common to represent these same two-electron integrals in a notation referred to as Mulliken notation in which:

⟨|F +G|⟩ = ⟨ |f | ⟩+ [⟨ |g| − ⟨ |g| ⟩] ,∑
i

ϕi ϕi ∑
i>j

ϕiϕj ϕiϕj ϕiϕj ϕjϕi

( ≠ϕp ϕ′
p

⟨|F +G ⟩ = ⟨ |f | ⟩+ [⟨ |g| ⟩− ⟨ |g| ⟩] ,|′ ϕp ϕ′
p ∑

j

ϕpϕj ϕ′
pϕj ϕpϕj ϕjϕ′

p

ϕp

≠ϕp ϕ′
p

⟨|F +G ⟩ = ⟨ |g| ⟩− ⟨ |g| ⟩|′ ϕpϕq ϕ′
pϕ′

q ϕpϕq ϕ′
qϕ′

p

< |F +G >= 0;|′

(−1)Np

< |f | >ϕi ϕj

∫ (r)f(r) (r)drϕ*
i ϕj

< |g| >ϕiϕj ϕkϕl

∫ (r)g(r, ) (r) ( )drdϕ*
i

r′ ϕk ϕl r
′ r′

r, θ,ϕ, σ and  , , ,r′ θ′ ϕ′ σ′ σ and   being the α or βσ′

< ij|kl >=< ji|lk >=< kl|ij =< lk|ji ;>* >*

∫ (r) ( )g(r, ) (r) ( )drd = (ik|jl).ϕ*
i ϕ*
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Here, the indices i and k, which label the spin-orbital having variables r are grouped together, and j and l, which label spin-orbitals
referring to the r' variables appear together. The above permutational symmetries, when expressed in terms of the Mulliken integral
list read:

If the operators f and g do not contain any electron spin operators, then the spin integrations implicit in these integrals (all of the 
are spin-orbitals, so each  is accompanied by an  or  spin function and each  involves the adjoint of one of the  or  spin
functions) can be carried out as , thereby yielding integrals over spatial
orbitals. These spin integration results follow immediately from the general properties of angular momentum eigenfunctions
detailed in Appendix G; in particular, because  are eigenfunctions of  with different eigenvalues, they must be
orthogonal .

The essential results of the Slater-Condon rules are:

1. The full N! terms that arise in the N-electron Slater determinants do not have to be treated explicitly, nor do the N!(N! + 1)/2
Hamiltonian matrix elements among the N! terms of one Slater determinant and the N! terms of the same or another Slater
determinant

2. All such matrix elements, for any one- and/or two-electron operator can be expressed in terms of one- or two-electron integrals
over the spin-orbitals that appear in the determinants.

3. The integrals over orbitals are three or six dimensional integrals, regardless of how many electrons N there are.
4. These integrals over mo's can, through the LCAO-MO expansion, ultimately be expressed in terms of one- and two-electron

integrals over the primitive atomic orbitals. It is only these ao-based integrals that can be evaluated explicitly (on high speed
computers for all but the smallest systems).

This page titled 11.3: The Slater-Condon Rules is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack
Simons via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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11.4: Examples of Applying the Slater-Condon Rules
It is wise to gain some experience using the Slater-Condon rules, so let us consider a few illustrative example problems.

1. What is the contribution to the total energy of the  level of Carbon made by the two 2p orbitals alone? Of course, the two 1s
and two 2s spin-orbitals contribute to the total energy, but we artificially ignore all such contributions in this example to
simplify the problem. 
 
Because all nine of the  states have the same energy, we can calculate the energy of any one of them; it is therefore prudent
to choose an "easy" one 

 
The energy of this state is . The SC rules tell us this equals: 

 
where the short hand notation \(I_j =< j | f | j > is introduced. 
 
If the contributions from the two 1s and two 2s spin-orbitals are now taken into account, one obtains a total energy that also
contains 

2. Is the energy of another  state equal to the above state's energy? Of course, but it may prove informative to prove this. 
Consider the  state whose energy is: 

 

 

 

 
Which is, indeed, the same as the other  energy obtained above

3. What energy would the singlet state  have? 

The  example can be used (changing the sign on the two determinants) to give 

 
Note, this is the  component of the  state; it is, of course, not a 1P state because no such state exists for two
equivalent p electrons

4. What is the CI matrix element coupling ? 
These two determinants differ by two spin-orbitals, so 

P3

P3

P ( = 1, = 1) = | α α|.3 ML MS p1 p0

< | α α|H| α α| >p1 p0 p1 p0

+ + < 2 2 |2 2 > − < 2 2 |2 2 >,I2p1
I2p0

p1 p0 p1 p0 p1 p0 p0 p1

2 +2 + < 1s1s|1s1s > +4 < 1s2s|1s2s > −2 < 1s2s|2s1s > + < 2s2s|2s2s > +2 < 1s2 |1s2 > −I1s I2s p1 p1

< 1s2 |2 1s > +2 < 1s2 |1s2 > − < 1s2 |2 1s > +2 < 2s2 |2s2 > − < 2s2 |2 2s > +2p1 p1 p0 p0 p0 p0 p1 p1 p1 p1

< 2s2 |2s2 > − < 2s2 |2 2s >.p0 p0 p0 p0

P3

= 0, = 1MS ML

< [| α β| + | β α|]|H| < [| α β| + | β α|] >
1

2
–

√
p1 p0 p1 p0 p1 p0 p1 p0

1

2
–

√

= [ + + < 2 2 |2 2 > + + + < 2 2 |2 2 >]
1

2
I2p1

I2p0
p1 p0 p1 p0 I2p1

I2p0
p1 p0 p1 p0

[− < 2 2 |2 2 > − < 2 2 |2 2 >]
1

2
p1 p0 p0 p1 p1 p0 p0 p1

= + + < 2 2 |2 2 > − < 2 2 |2 2 >.I2p1
I2p0

p1 p0 p1 p0 p1 p0 p0 p1

P3

< [| α β| − | β α|]1
2√

p1 p0 p1 p0

P = 03 MS

E = + + < 2 2 |2 2 > + < 2 2 |2 2 >.I2p1
I2p0

p1 p0 p1 p0 p1 p0 p0 p1

= 1ML D1

|1 2 | and |1 3 |s2 s2 s2 s2

< |1sα1sβ2sα2sβ|H|1sα1sβ3sα3sβ| >=< 2s2s|3s3s >=< 2s3s|3s2s >

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/63315?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/11%3A_Evaluating_the_Matrix_Elements_of_N-electron_Wavefunctions/11.04%3A_Examples_of_Applying_the_Slater-Condon_Rules


11.4.2 https://chem.libretexts.org/@go/page/63315

 
(note, this is an exchange-type integral).

5. What is the CI matrix element coupling |?
These two determinants differ by two spin-orbitals, so 

 
(note, again this is an exchange-type integral).

6. What is the Hamiltonian matrix element coupling  and ? 

The first determinant differs from the  determinant by one spin-orbital, as does the second (after it is placed into maximal
coincidence by making one permutation), so 

 

 

7. What is the element coupling  and ? 

 
This result should not surprise you because  is an S=0 singlet state while  is the 

component of the S=1 triplet state.
8. What is the  electric dipole matrix element between ? Is the second

function a singlet or triplet? It is a singlet in disguise; by interchanging the  and thus introducing a (-1), this
function is clearly identified as  which is a singlet. 

 
The first determinant differs from the latter two by one spin orbital in each case, so 

9. What is the electric dipole matrix elements between the  state and the 

state? 

 

 

|παπβ| and | α βπ* π*

< |παπβ|H| α β| >=< ππ| >=< π | π >π* π* π*π* π* π*

|παπβ| [|πα β| − |πβ α|]1
2√

π* π*
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–
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–
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10. As another example of the use of the SC rules, consider the configuration interaction which occurs between the  and 
 CSFs in the Be atom. 

The CSFs corresponding to these two configurations are as follows: 

 
and 

 
The determinental Hamiltonian matrix elements needed to evaluate the 2x2  matrix appropriate to these two CSFs are
evaluated via the SC rules. The first such matrix element is: 

 
where 

 

 
and 

 
are the orbital-level one-electron, coulomb, and exchange integrals , respectively. 
 
Coulomb integrals  describe the coulombic interaction of one charge density (  above) with another charge density (
above); exchange integrals  describe the interaction of an overlap charge density (i.e., a density of the form  ) with
itself (  in the above). 
 
The spin functions  which accompany each orbital in  have been eliminated by carrying out the spin
integrations as discussed above. Because H contains no spin operators, this is straightforward and amounts to keeping integrals 

 only  are of the same spin and integrals 
 are of the same spin. The physical content of the

above energy (i.e., Hamiltonian expectation value) of the  determinant is clear:  is the sum of the
expectation values of the one-electron (i.e., kinetic energy and electron-nuclear coulomb interaction) part of the Hamiltonian for
the four occupied spin-orbitals;  contains the coulombic repulsions among all pairs of
occupied spin-orbitals minus the exchange interactions among pairs of spin-orbitals with like spin. 
 
The determinental matrix elements linking  are as follows: 

 

 

1 2s2 s2

1 2s2 p2 S1

= |1sα1sβ2sα2sβ|Φi

= [|1sα1sβ2 α2 β| − |1sα1sβ2 α2 β| − |1sα1sβ2 α2 α2 β|] .Φ2
1

3
–

√
p0 p0 p1 p−1 p−1 p−1 p1

HK,L

< |1sα1sβ2sα2sβ|H|1sα1sβ2sα2sβ| >= 2 +2 + +4 + −2 ,h1s h2s J1s,2s J1s,2s J2s,2s K1s,2s

=< | − | >,hi ϕi

−ℏ2

2me

∇2 4e2

r
ϕi

=< | | >,Ji,j ϕiϕj

e2

r12
ϕiϕj

=< | | >Kij ϕiϕj

e2

r12
ϕjϕi

Jij ϕ2
i ϕ2

j

Kij ϕiϕj

 with ϕiϕj ϕiϕj

α and β |1sα1sβ2sα2sβ|

< |f | >ϕi ϕj  and ϕi ϕj

< |g| > only if   and   are of the same spin and   and ϕiϕj ϕkϕl ϕi ϕk ϕj ϕl

|1sα1sβ2sα2sβ| 2 +2h1s h2s

+4 + −2J1s,1s J1s,2s J2s,2s K1s,2s

 and Φ1 Φ2

< |1sα1sβ2sα2sβ|H|1sα1sβ2 α2 β| >=< 2s2s|2 2 >,p0 p0 p0 p0

< |1sα1sβ2sα2sβ|H|1sα1sβ2p1α2 β| >=< 2s2s|2 2 >,p−1 p1 p−1
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where the Dirac convention has been introduced as a shorthand notation for the two electron integrals (e.g., 
represents . 
 
The three integrals shown above can be seen to be equal and to be of the exchange integral form by expressing the integrals in
terms of integrals over cartesian functions and recognizing identities due to the equivalence of the  orbitals.
For example, 

 

 
(here the two imaginary terms cancel and the two remaining real integrals are equal); 

 
this is because  

 

These integrals are clearly of the exchange type because they involve the coulombic interaction of the  overlap
charge density with itself. 
Moving on, the matrix elements among the three determinants in  are given as follows: 

 
( ); 

 
 

 
 

 

 

< |1sα1sβ2sα2sβ|H|1sα1sβ2 α2 β| >=< 2s2s|2 2 >,p−1 p1 p−1 p1

< 2s2s|2 2 >p0 p0

∫ 2 ( )2 ( ) 2 ( )2 ( )d d )s* r1 s* r2
e2

r12
p0 r1 p0 r2 r1 r2

2 , 2 ,  and 2px py pz

< 2s2s|2 2 >= [< 2s2s|[2 + i2 ][2 − i2 ] >] =p1 p−1
1

2
–√

2

px py px py

[< 2s2s|xx > + < 2s2s|yy > +i < 2s2s|yx > −i < 2s2s|xy >] =< 2s2s|xx >=
1

2
K2s,x

< 2s2s2 2 >=< 2s2s|zz >=< 2s2s|xx >=p0 p0 K2s,x

= = ;K2s,z K2s,x K2s,y

< 2s2s|2 2 >= [< 2s2s|[2 − i2 ][2 + i2 ] >] =p−1 p1
1

2
px py px py

< 2s2s|xx >= ∫ 2 ( )2 ( ) 2 ( )2 ( )d d = .s* r1 s* r2
e2

r12
px r1 px r2 r1 r2 K2s,x

2s2px,y,orz

Φ2

< |1sα1sβ2 α2 β|H|1sα1sβ2 α2 β| >= 2 +2 + +4 −2p0 p0 p0 p0 h1s h2p J1s,1s J1s,2p K1s,2p

 and   are independent of whether the 2p orbital is 2 , 2 ,  or 2J1s,2p K1s,2p px py pz

< |1sα1sβ2 α2 β|H|1sα1sβ2 α2 β| >= 2 +2 + +4 −2 + < 2 2 |2 2 >;p1 p−1 p1 p−1 h1s h2p J1s,1s J1s,2p K1s,2p p1 p−1 p1 p−1

< |1sα1sβ2 α2 β|H|1sα1sβ2 α2 β| >= 2 +2 + +4 −2 + < 2 2 |2 2 >;p−1 p1 p−1 p1 h1s h2p J1s,1s J1s,2p K1s,2p p−1 p1 p−1 p1

< |1sα1sβ2 α2 β|H|1sα1sβ2 α2 β| >=< 2 2 |2 2 >p0 p0 p1 p−1 p0 p0 p1 p−1

< |1sα1sβ2 α2 β|H|1sα1sβ2 α2 β| >=< 2 2 |2 2 >p0 p0 p−1 p1 p0 p0 p−1 p1

< |1sα1sβ2 α2 β|H|1sα1sβ2 α2 β| >=< 2 2 |2 2 >p1 p−1 p−1 p1 p1 p−1 p−1 p1
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Certain of these integrals can be recast in terms of cartesian integrals for which equivalences are easier to identify as follows: 

 

 

 

 
 
Finally, the 2x2 CI matrix corresponding to the CSFs  and  can be formed from the above determinental matrix elements;
this results in:

 

 

 
The lowest eigenvalue of this matrix provides this CI calculation's estimate of the groundstate  energy of Be; its eigenvector
provides the CI amplitudes for  in this ground-state wavefunction. The other root of the 2x2 secular problem gives
an approximation to another  state of higher energy, in particular, a state dominated by the 

 CSF. 

11. As another example, consider the matrix elements which arise in electric dipole transitions between two singlet electronic
states: 

 Here  is the one-electron operator describing the interaction of an electric field of magnitude

and polarization E with the instantaneous dipole moment of the electrons (the contribution to the dipole operator arising from
the nuclear charges  does not contribute because, when placed between , this zero-electron operator

yields a vanishing integral because  are orthogonal). 
 
When the states  are described as linear combinations of CSFs as introduced earlier ( ), these

matrix elements can be expressed in terms of CSF-based matrix elements <  >. The fact that the electric dipole

operator is a one-electron operator, in combination with the SC rules, guarantees that only states for which the dominant
determinants differ by at most a single spin-orbital (i.e., those which are "singly excited") can be connected via electric dipole
transitions through first order (i.e., in a one-photon transition to which the <  > matrix elements pertain). It is for

this reason that light with energy adequate to ionize or excite deep core electrons in atoms or molecules usually causes such
ionization or excitation rather than double ionization or excitation of valence-level electrons; the latter are two-electron events. 
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In, for example, the  excitation of an olefin, the ground and excited states are dominated by CSFs of the form (where all
but the "active"  orbitals are not explicitly written) : 

 
and 

 
The electric dipole matrix element between these two CSFs can be found, using the SC rules, to be

 
Notice that in evaluating the second determinental integral , a sign change occurs when one puts
the two determinants into maximum coincidence; this sign change then makes the minus sign in  yield a positive sign in the
final result.
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11.S: Evaluating the Matrix Elements of N-electron Wavefunctions (Summary)
In all of the examples in Chapter 11, the Slater-Condon rules were used to reduce matrix elements of one- or two- electron
operators between determinental functions to one- or two- electron integrals over the orbitals which appear in the determinants. In
any ab initio electronic structure computer program there must exist the capability to form symmetry-adapted CSFs and to
evaluate, using these SC rules, the Hamiltonian and other operators' matrix elements among these CSFs in terms of integrals over
the Molecular Orbitals that appear in the CSFs. The Slater-Condon rules provide not only the tools to compute quantitative matrix
elements; they allow one to understand in qualitative terms the strengths of interactions among CSFs. In the following section, the
SC rules are used to explain why chemical reactions in which the reactants and products have dominant CSFs that differ by two
spin-orbital occupancies often display activation energies that exceed the reaction endoergicity.

This page titled 11.S: Evaluating the Matrix Elements of N-electron Wavefunctions (Summary) is shared under a CC BY-NC-SA 4.0 license and
was authored, remixed, and/or curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform; a
detailed edit history is available upon request.
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12.1: Concepts of Configuration and State Energies

Plots of CSF Energies Give Configuration Correlation Diagrams 

The energy of a particular electronic state of an atom or molecule has been expressed in terms of Hamiltonian matrix elements,
using the Slater-Condon rules, over the various spin-and spatially adapted determinants or CSFs which enter into the state
wavefunction.

The diagonal matrix elements of H in the CSF basis multiplied by the appropriate CI amplitudes  represent the
energy of the  CSF weighted by the strength (  ) of that CSF in the wavefunction. The off-diagonal elements represent the
effects of mixing among the CSFs; mixing is strongest whenever two or more CSFs have nearly the same energy ( i.e., 

 ) and there is strong coupling ( i.e.,  is large ). Whenever the CSFs are widely
separated in energy, each wavefunction is dominated by a single CSF.

CSFs Interact and Couple to Produce States and State Correlation Diagrams 
Just as orbital energies connected according to their symmetries and plotted as functions of geometry constitute an orbital
correlation diagram, plots of the diagonal CSF energies, connected according to symmetry, constitute a configuration correlation
diagram (CCD). If, near regions where energies of CSFs of the same symmetry cross (according to the direct product rule of group
theory discussed in Appendix E, only CSFs of the same symmetry mix because only they have non-vanishing 
matrix elements), CI mixing is allowed to couple the CSFs to give rise to "avoided crossings", then the CCD is converted into a so-
called state correlation diagram ( SCD ).

CSFs that Differ by Two Spin-Orbitals Interact Less Strongly than CSFs that Differ by One Spin-
Orbital 
The strengths of the couplings between pairs of CSFs whose energies cross are evaluated through the Slater-Condon rules. CSFs
that differ by more than two spin-orbital occupancies do not couple; the Slater-Condon rules give vanishing Hamiltonian matrix
elements for such pairs. Pairs that differ by two spin-orbitals  have interaction strengths
determined by the two-electron integrals < ab | a'b' > - < ab | b'a'>. Pairs that differ by a single spin-orbital 

 are coupled by the one- and two- electron parts of 
 Usually, couplings among CSFs that differ by two spin-orbitals are much weaker

than those among CSFs that differ by one spin-orbital. In the latter case, the full strength of H is brought to bear, whereas in the
former, only the electron-electron coulomb potential is operative.

State Correlation Diagrams 
In the SCD, the energies are connected by symmetry but the configurational nature as reflected in the  coefficients changes as
one passes through geometries where crossings in the CCD occur. The SCD is the ultimate product of an orbital and configuration
symmetry and energy analysis and gives one the most useful information about whether reactions will or will not encounter barriers
on the ground and excited state surfaces.

As an example of the application of CCD's and SCD's, consider the disrotatory closing of 1,3-butadiene to produce cyclobutene.
The OCD given earlier for this proposed reaction path is reproduced below.

E = ⟨ |H| ⟩ .∑
I,J

ΦI ΦJ CICJ

⟨ |H| ⟩ΦI ΦI CICI

I th C 2
I

< |H| >≠< |H| >ΦI ΦI ΦJ ΦJ < |H| >ΦI ΦJ

< |H| >ΦI ΦJ

(e. g. |. . . . . . . . |vs|. . . . . . . . |)ϕa ϕb ϕa′ ϕb′

(e. g. |. . . . . . . . |vs|. . . . . . . . |)ϕa ϕa′

H :< a|f |b > + [< aj|bj> − < aj|jb >].∑
j

CI
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Figure 12.1.1: Insert caption here!

Recall that the symmetry labels e and o refer to the symmetries of the orbitals under reflection through the one  plane that is
preserved throughout the proposed disrotatory closing. Low-energy configurations (assuming one is interested in the thermal or
low-lying photochemically excited-state reactivity of this system) for the reactant molecule and their overall space and spin
symmetry are as follows:

 
For the product molecule, on the other hand, the low-lying states are

Notice that although the lowest energy configuration at the reactant geometry  and the lowest energy configuration
at the product geometry  are both of 1Even symmetry, they are not the same configurations; they involve
occupancy of different symmetry orbitals. 
 
In constructing the CCD, one must trace the energies of all four of the above CSFs (actually there are more because the singlet and
triplet excited CSFs must be treated independently) along the proposed reaction path. In doing so, one must realize that the 
CSF has low energy on the reactant side of the CCD because it corresponds to  orbital occupancy, but on the product side, it
corresponds to  orbital occupancy and is thus of very high energy. Likewise, the  CSF has low energy on the product
side where it is  but high energy on the reactant side where it corresponds to  The low-lying singly excited CSFs are 

 at both reactant and product geometries; in the former case, they correspond to  occupancy and at the latter to 
 occupancy. Plotting the energies of these CSFs along the disrotatory reaction path results in the CCD shown below.

 
Figure 12.1.2: Insert caption here!

If the two Even CSFs which cross are allowed to interact (the Slater-Condon rules give their interaction strength in terms of the
exchange integral  ) to produce states which are combinations of the two
1Even CSFs, the following SCD results:
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Figure 12.1.3: Insert caption here!

This SCD predicts that the thermal (i.e., on the ground electronic surface) disrotatory rearrangement of 1,3-butadiene to produce
cyclobutene will experience a symmety-imposed barrier which arises because of the avoided crossing of the two 1Even
configurations; this avoidance occurs because the orbital occupancy pattern (i.e., the configuration) which is best for the ground
state of the reactant is not identical to that of the product molecule. The SCD also predicts that there should be no symmetry-
imposed barrier for the singlet or triplet excited-state rearrangement, although the reaction leading from excited 1,3-butadiene to
excited cyclobutene may be endothermic on the grounds of bond strengths alone.  
 
It is also possible to infer from the SCD that excitation of the lowest singlet  state of 1,3-butadiene would involve a low
quantum yield for producing cyclobutene and would, in fact, produce ground-state butadiene. As the reaction proceeds along the
singlet  surface this Odd state intersects the ground 1Even surface on the reactant side of the diagram; internal conversion (
i.e., quenching from the Odd to the Even surfaces induced by using a vibration of odd symmetry to "digest" the excess energy
(much like vibronic borrowing in spectroscopy) can lead to production of ground-state reactant molecules. Some fraction of such
events will lead to the system remaining on the Odd surface until, further along the reaction path, the Odd surface again
intersects the Even surface on the product side at which time quenching to produce ground-state products can occur. Although, in
principle, it is possible for some fraction of the events to follow the Odd surface beyond this second intersection and to thus lead
to Odd product molecules that might fluoresce, quenching is known to be rapid in most polyatomic molecules; as a result,
reactions which are chemiluminescent are rare. An appropriate introduction to the use of OCD's, CCD's, and SCD's as well as the
radiationless processes that can occur in thermal and photochemical reactions is given in the text Energetic Principles of
Chemical Reactions , J. Simons, Jones and Bartlett, Boston (1983).
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12.2: Mixing of Covalent and Ionic Configurations
As chemists, much of our intuition concerning chemical bonds is built on simple models introduced in undergraduate chemistry
courses. The detailed examination of the  molecule via the valence bond and molecular orbital approaches forms the basis of our
thinking about bonding when confronted with new systems. Let us examine this model system in further detail to explore the
electronic states that arise by occupying two orbitals (derived from the two 1s orbitals on the two hydrogen atoms) with two
electrons. 
 
In total, there exist six electronic states for all such two-orbital, two-electron systems. The heterolytic fragments X + Y: and X: + Y
produce two singlet states; the homolytic fragments X  + Y  produce one singlet state and a set of three triplet states having  =
1, 0, and -1. Understanding the relative energies of these six states , their bonding and antibonding characters, and which molecular
state dissociates to which asymptote are important. 
 
Before proceeding, it is important to clarify the notation  which is designed to be applicable to neutral
as well as charged species. In all cases considered here, only two electrons play active roles in the bond formation. These electrons
are represented by the dots. The symbols X  are used to denote species in which a single electron is attached to the
respective fragment. By X: , we mean that both electrons are attached to the X- fragment; Y means that neither electron resides on
the Y- fragment. Let us now examine the various bonding situations that can occur; these examples will help illustrate and further
clarify this notation.

The  Case in Which Homolytic Bond Cleavage is Favored 
To consider why the two-orbital two-electron single bond formation case can be more complex than often thought, let us consider
the  system in more detail. In the molecular orbital description of , both bonding sg and antibonding su mos appear. There are
two electrons that can both occupy the sg mo to yield the ground electronic state ; however, they can also occupy
both orbitals to yield  and , or both can occupy the su mo to give the 1Sg +(su 2) state. As
demonstrated explicitly below, these latter two states dissociate heterolytically to X + Y: = , and are sufficiently high in
energy relative to X• + Y• = H + H that we ordinarily can ignore them. However, their presence and character are important in the
development of a full treatment of the molecular orbital model for  and are essential to a proper treatment of cases in which
heterolytic bond cleavage is favored.

Cases in Which Heterolytic Bond Cleavage is Favored 

For some systems one or both of the heterolytic bond dissociation asymptotes (e.g., X+ Y: or X: + Y) may be lower in energy than

the homolytic bond dissociation asymptote. Thus, the states that are analogues of the ) states of  can no

longer be ignored in understanding the valence states of the XY molecules. This situation arises quite naturally in systems
involving transition metals, where interactions between empty metal or metal ion orbitals and 2-electron donor ligands are
ubiquitous.

Two classes of systems illustrate cases for which heterolytic bond dissociation lies lower than the homolytic products. The first
involves transition metal dimer cations, . Especially for metals to the right side of the periodic table, such cations can be
considered to have ground-state electron configurations with  character, where the d electrons are not heavily involved in
the bonding and the s bond is formed primarily from the metal atom s orbitals. If the  bond is homolytically broken, one forms 

 For most metals, this dissociation asymptote lies higher in energy than the heterolytic
products X: + Y = M  + , since the latter electron configurations correspond to the ground states for the
neutrals and ions, respectively. A prototypical species which fits this bonding picture is  
 
The second type of system in which heterolytic cleavage is favored arises with a metal-ligand complex having an atomic metal ion
(with a  configuration) and a two electron donor, L: . A prototype is (Ag  which was observed to photodissociate to
form  rather than the lower energy (heterolytically cleaved) dissociation limit Y + X:
= 
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Analysis of Two-Electron, Two-Orbital, Single-Bond Formation 

The resultant family of six electronic states can be described in terms of the six configuration state functions (CSFs) that arise when
one occupies the pair of bonding  molecular orbitals with two electrons. The CSFs are combinations of
Slater determinants formed to generate proper spin- and spatial symmetry- functions.

The spin- and spatial- symmetry adapted N-electron functions referred to as CSFs can be formed from one or more Slater
determinants. For example, to describe the singlet CSF corresponding to the closed-shell  orbital occupancy, a single Slater
determinant

suffices. An analogous expression for the  CSF is given by
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12.3: Various Types of Configuration Mixing

Essential CI 

The above examples of the use of CCD's show that, as motion takes place along the proposed reaction path, geometries may be
encountered at which it is essential to describe the electronic wavefunction in terms of a linear combination of more than one CSF:

where the I are the CSFs which are undergoing the avoided crossing. Such essential configuration mixing is often referred to as
treating "essential CI".

Dynamical CI 
To achieve reasonable chemical accuracy (e.g., ± 5 kcal/mole) in electronic structure calculations it is necessary to use a
multiconfigurational  even in situations where no obvious strong configuration mixing (e.g., crossings of CSF energies) is
present. For example, in describing the  bonding electron pair of an olefin or the  electron pair in alkaline earth atoms, it is
important to mix in doubly excited CSFs of the form  and , respectively. The reasons for introducing such a CI-level
treatment were treated for an alkaline earth atom earlier in this chapter.

Briefly, the physical importance of such doubly-excited CSFs can be made clear by using the identity:

where

This allows one to interpret the combination of two CSFs which differ from one another by a double excitation from one orbital 
 to another  as equivalent to a singlet coupling of two different (non-orthogonal) orbitals . This

picture is closely related to the so-called generalized valence bond (GVB) model that W. A. Goddard and his co-workers have
developed (see W. A. Goddard and L. B. Harding, Annu. Rev. Phys. Chem. 29 , 363 (1978)). In the simplest embodiment of the
GVB model, each electron pair in the atom or molecule is correlated by mixing in a CSF in which that electron pair is "doubly
excited" to a correlating orbital. The direct product of all such pair correlations generates the GVB-type wavefunction. In the GVB
approach, these electron correlations are not specified in terms of double excitations involving CSFs formed from orthonormal spin
orbitals; instead, explicitly non-orthogonal GVB orbitals are used as described above, but the result is the same as one would obtain
using the direct product of doubly excited CSFs.

In the olefin example mentioned above, the two non-orthogonal "polarized orbital pairs" involve mixing the  and  orbitals to
produce two left-right polarized orbitals as depicted below:

In this case, one says that the  electron pair undergoes left-right correlation when the  CSF is mixed into the CI
wavefunction.

Ψ =∑
I

CI ΦI

ΦI

Ψ

π2 ns2

(π*)2 np2

|. . ϕαϕβ. . | − |. . α β. . |CI C2 ϕ′ ϕ′

= [|. . (ϕ −x )α(ϕ +x )β. . | − |. . (ϕ −x )β(ϕ +x )α. . |] ,
CI

2
ϕ′ ϕ′ ϕ′ ϕ′

x =
C2

C1

−−−

√

(ϕ) ( )ϕ′ (ϕ −x ) and (ϕ +x )ϕ′ ϕ′

π π*

π2 (π*)2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/63350?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/12%3A_Quantum_Mechanical_Picture_of_Bond_Making_and_Breaking_Reactions/12.03%3A__Various_Types_of_Configuration_Mixing


12.3.2 https://chem.libretexts.org/@go/page/63350

In the alkaline earth atom case, the polarized orbital pairs are formed by mixing the ns and np orbitals (actually, one must mix in
equal amounts of  symmetry in this case), and give rise to angular correlation of
the electron pair. Use of an  CSF for the alkaline earth calculation would contribute in-out or radial correlation because,
in this case, the polarized orbital pair formed from the ns and (n+1)s orbitals would be radially polarized.

The use of doubly excited CSFs is thus seen as a mechanism by which  can place electron pairs , which in the single-
configuration picture occupy the same orbital, into different regions of space (i.e., one into a member of the polarized orbital pair)
thereby lowering their mutual coulombic repulsions. Such electron correlation effects are referred to as "dynamical electron
correlation"; they are extremely important to include if one expects to achieve chemically meaningful accuracy (i.e., ± 5
kcal/mole).

This page titled 12.3: Various Types of Configuration Mixing is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.
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CHAPTER OVERVIEW

13: Molecular Rotation and Vibration
Treating the full internal nuclear-motion dynamics of a polyatomic molecule is complicated. It is conventional to examine the
rotational movement of a hypothetical "rigid" molecule as well as the vibrational motion of a non-rotating molecule, and to then
treat the rotation-vibration couplings using perturbation theory.

13.1: Rotational Motions of Rigid Molecules
13.2: Vibrational Motion Within the Harmonic Approximation
13.3: Anharmonicity

This page titled 13: Molecular Rotation and Vibration is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Jack Simons via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.
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13.1: Rotational Motions of Rigid Molecules
In Chapter 3 and Appendix G the energy levels and wavefunctions that describe the rotation of rigid molecules are described.
Therefore, in this Chapter these results will be summarized briefly and emphasis will be placed on detailing how the corresponding
rotational Schrödinger equations are obtained and the assumptions and limitations underlying them.

Linear Molecules 
As given in Chapter 3, the Schrödinger equation for the angular motion of a rigid (i.e., having fixed bond length R) diatomic
molecule is

or more succinctly in terms of the angular momentum operator as

The Hamiltonian in this problem contains only the kinetic energy of rotation; no potential energy is present because the molecule is
undergoing unhindered "free rotation". The angles  describe the orientation of the diatomic molecule's axis relative to a
laboratory-fixed coordinate system, and  is the reduced mass of the diatomic molecule

The Eigenfunctions and Eigenvalues 

The eigenvalues corresponding to each eigenfunction are straightforward to find because  is proportional to the  operator
whose eigenvalues have already been determined. The resultant rotational energies are given as:

and are independent of . Thus each energy level is labeled by  and is -fold degenerate (because  ranges from  to 
). The rotational constant B (defined as  depends on the molecule's bond length and reduced mass. Spacings between

successive rotational levels (which are of spectroscopic relevance because angular momentum selection rules often restrict  to
1,0, and -1) are given by

Within this "rigid rotor" model, the absorption spectrum of a rigid diatomic molecule should display a series of peaks, each of
which corresponds to a specific  transition. The energies at which these peaks occur should grow linearly with J. An
example of such a progression of rotational lines is shown in the figure below.

Figure 13.1.1: Insert caption here!

The energies at which the rotational transitions occur appear to fit the  formula rather well. The intensities of
transitions from level J to level J+1 vary strongly with J primarily because the population of molecules in the absorbing level varies
with J. These populations PJ are given, when the system is at equilibrium at temperature T, in terms of the degeneracy (2J+1) of the

 level and the energy of this level B J(J+1) :
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where  is the rotational partition function:

For low values of , the degeneracy is low and the  factor is near unity. As J increases, the degeneracy grows linearly but

the  factor decreases more rapidly. As a result, there is a value of J, given by taking the derivative of 
with respect to J and setting it equal to zero,

at which the intensity of the rotational transition is expected to reach its maximum.

The eigenfunctions belonging to these energy levels are the spherical harmonics  which are normalized according to

These functions are identical to those that appear in the solution of the angular part of Hydrogen-like atoms. The above energy
levels and eigenfunctions also apply to the rotation of rigid linear polyatomic molecules; the only difference is that the moment of
inertia  entering into the rotational energy expression is given by

where  is the mass of the  is its distance from the center of mass of the molecule. This moment of inertia
replaces  in the earlier rotational energy level expressions.

Non-Linear Molecules 
The rotational kinetic energy operator for a rigid polyatomic molecule is shown in Appendix G to be

where the  (k = a, b, c) are the three principal moments of inertia of the molecule (the eigenvalues of the moment of inertia
tensor). This tensor has elements in a Cartesian coordinate system (K, K' = X, Y, Z) whose origin is located at the center of mass of
the molecule that are computed as:

The components of the quantum mechanical angular momentum operators along the three principal axes are:
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The angles  are the Euler angles needed to specify the orientation of the rigid molecule relative to a laboratory-fixed
coordinate system. The corresponding square of the total angular momentum operator  can be obtained as

and the component along the lab-fixed Z axis 

The Eigenfunctions and Eigenvalues for Special Cases 

Spherical Tops 

When the three principal moment of inertia values are identical, the molecule is termed a spherical top. In this case, the total
rotational energy can be expressed in terms of the total angular momentum operator 

As a result, the eigenfunctions of  are those of  (and 
 is the component of J along the lab-fixed Z-axis

and commutes with  act on different angles). The energies associated with such
eigenfunctions are

for all K (i.e.,  quantum numbers) ranging from -J to J in unit steps and for all M (i.e.,  quantum numbers) ranging from -J to
J. Each energy level is therefore  degenarate because there are 2J + 1 possible K values and 2J + 1 possible M values for
each J.

The eigenfunctions of  are given in terms of the set of rotation matrices 

which obey

Symmetric Tops 

Molecules for which two of the three principal moments of inertia are equal are called symmetric tops. Those for which the unique
moment of inertia is smaller than the other two are termed prolate symmetric tops; if the unique moment of inertia is larger than
the others, the molecule is an oblate symmetric top. Again, the rotational kinetic energy, which is the full rotational Hamiltonian,
can be written in terms of the total rotational angular momentum operator  and the component of angular momentum along the
axis with the unique principal moment of inertia:

for prolate tops and

for oblate tops.

As a result, the eigenfunctions of , and the corresponding energy levels are:
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for prolate toops

for oblate tops, again for K and M (i.e.,  quantum numbers, respectively) ranging from -J to J in unit steps. Since
the energy now depends on K, these levels are only 2J + 1 degenerate due to the 2J + 1 different M values that arise for each J
value. The eigenfunctions  are the same rotation matrix functions as arise for the spherical-top case.

Asymmetric Tops 

The rotational eigenfunctions and energy levels of a molecule for which all three principal moments of inertia are distinct (a so-
called asymmetric top) can not easily be expressed in terms of the angular momentum eigenstates and the J, M, and K quantum
numbers. However, given the three principal moments of inertia , a matrix representation of each of the three
contributions to the rotational Hamiltonian

can be formed within a basis set of the {|J, M, K>} rotation matrix functions. This matrix will not be diagonal because the |J, M,
K> functions are not eigenfunctions of the asymmetric top . However, the matrix can be formed in this basis and subsequently
brought to diagonal form by finding its eigenvectors {  and its eigenvalues . The vector coefficients express the
asymmetric top eigenstates as

Because the total angular momentum  still commutes with , each such eigenstate will contain only one J-value, and hence 
 can also be labeled by a J quantum number:

To form the only non-zero matrix elements of  within the  basis, one can use the following properties of the
rotation-matrix functions:

Each of the elements of  must, of course, be multiplied, respectively, by  summed together to form
the matrix representation of  The diagonalization of this matrix then provides the asymmetric top energies and wavefunctions.

This page titled 13.1: Rotational Motions of Rigid Molecules is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
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13.2: Vibrational Motion Within the Harmonic Approximation
The simple harmonic motion of a diatomic molecule was treated in Chapter 1, and will not be repeated here. Instead, emphasis is
placed on polyatomic molecules whose electronic energy's dependence on the 3N Cartesian coordinates of its N atoms can be
written (approximately) in terms of a Taylor series expansion about a stable local minimum. We therefore assume that the molecule
of interest exists in an electronic state for which the geometry being considered is stable (i.e., not subject to spontaneous
geometrical distortion).

The Taylor series expansion of the electronic energy is written as:

where V(0) is the value of the electronic energy at the stable geometry under study,  is the displacement of the  Cartesian

coordinate away from this starting position,  is the gradient of the electronic energy along this direction, and the  are the

second derivative or Hessian matrix elements along these directions  If the starting geometry corresponds to a

stable species, the gradient terms will all vanish (meaning this geometry corresponds to a minimum, maximum, or saddle point),
and the Hessian matrix will possess 3N - 5 (for linear species) or 3N -6 (for non-linear molecules) positive eigenvalues and 5 or 6
zero eigenvalues (corresponding to 3 translational and 2 or 3 rotational motions of the molecule). If the Hessian has one negative
eigenvalue, the geometry corresponds to a transition state (these situations are discussed in detail in Chapter 20).

From now on, we assume that the geometry under study corresponds to that of a stable minimum about which vibrational motion
occurs. The treatment of unstable geometries is of great importance to chemistry, but this Chapter deals with vibrations of stable
species. For a good treatment of situations under which geometrical instability is expected to occur, see Chapter 2 of the text
Energetic Principles of Chemical Reactions by J. Simons. A discussion of how local minima and transition states are located on
electronic energy surfaces is provided in Chapter 20 of the present text.

The Newton Equations of Motion for Vibration 

The Kinetic and Potential Energy Matrices

Truncating the Taylor series at the quadratic terms (assuming these terms dominate because only small displacements from the
equilibrium geometry are of interest), one has the so-called harmonic potential:

The classical mechanical equations of motion for the 3N { } coordinates can be written in terms of the above potential energy and
the following kinetic energy function:

where  denotes the time rate of change of the coordinate  is the mass of the atom on which the  Cartesian coordinate
resides. The Newton equations thus obtained are:

where the force along the  coordinate is given by minus the derivative of the potential V along this coordinate 

within the harmonic approximation.

These classical equations can more compactly be expressed in terms of the time evolution of a set of so-called mass weighted
Cartesian coordinates defined as:

in terms of which the Newton equations become
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and the mass-weighted Hessian matrix elements are

The Harmonic Vibrational Energies and Normal Mode Eigenvectors

Assuming that the  undergo some form of sinusoidal time evolution:

and substituting this into the Newton equations produces a matrix eigenvalue equation:

in which the eigenvalues are the squares of the so-called normal mode vibrational frequencies and the eigenvectors give the
amplitudes of motion along each of the 3N mass weighted Cartesian coordinates that belong to each mode.

Within this harmonic treatment of vibrational motion, the total vibrational energy of the molecule is given as

as a product of 3N-5 or 3N-6 harmonic oscillator functions  are for each normal mode within this picture, the energy gap
between one vibrational level and another in which one of the  quantum numbers is increased by unity (the origin of this
"selection rule" is discussed in Chapter 15) is

The harmonic model thus predicts that the "fundamental"  transition should
occur at the same energy, and the overtone (v=0 Æ v=2) transitions should occur at exactly twice this energy.

The Use of Symmetry 

Symmetry Adapted Modes

It is often possible to simplify the calculation of the normal mode frequencies and eigenvectors by exploiting molecular point group
symmetry. For molecules that possess symmetry, the electronic potential  displays symmetry with respect to displacements of
symmetry equivalent Cartesian coordinates. For example, consider the water molecule at its  equilibrium geometry as
illustrated in the figure below. A very small movement of the  molecule's left H atom in the positive x direction 
produces the same change in V as a correspondingly small displacement of the right H atom in the negative x direction 
Similarly, movement of the left H in the positive y direction  produces an energy change identical to movement of the right
H in the positive y direction 

Figure 13.2.1: Insert caption here!

The equivalence of the pairs of Cartesian coordinate displacements is a result of the fact that the displacement vectors are
connected by the point group operations of the  group. In particular, reflection of  through the yz plane produces ,
and reflection of  through this same plane yields 

More generally, it is possible to combine sets of Cartesian displacement coordinates { } into so-called symmetry adapted
coordinates { }, where the index  labels the irreducible representation and j labels the particular combination of that
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symmetry. These symmetry adapted coordinates can be formed by applying the point group projection operators to the individual
Cartesian displacement coordinates.

To illustrate, again consider the  molecule in the coordinate system described above. The 3N = 9 mass weighted Cartesian
displacement coordinates  can be symmetry adapted by applying the following four
projection operators:

to each of the 9 original coordinates. Of course, one will not obtain 9 x 4 = 36 independent symmetry adapted coordinates in this
manner; many identical combinations will arise, and only 9 will be independent.

The independent combination of \(\textbf{ a_1 symmetry } (normalized to produce vectors of unit length) are

Those of  symmetry are

and the combinations

are of  symmetry, whereas

is of  symmetry.

Point Group Symmetry of the Harmonic Potential

These nine  are expressed as unitary transformations of the original mass weighted Cartessian coordinates:

These transformation coefficients { } can be used to carry out a unitary transformation of the 9x9 mass-weighted Hessian
matrix. In so doing, we need only form blocks

within which the symmetries of the two modes are identical. The off-diagonal elements
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vanish because the potential  point group
symmetry operations.

As a result, the 9x9 mass-weighted Hessian eigenvalue problem can be sub divided into two 3x3 matrix problems ( of 
symmetry), one 2x2 matrix of 

 is formed as follows:

The  blocks are formed in a similar manner. The eigenvalues of each of these blocks provide the squares of the
harmonic vibrational frequencies, the eigenvectors provide the normal mode displacements as linear combinations of the symmetry
adapted { }.

Regardless of whether symmetry is used to block diagonalize the mass-weighted Hessian, six (for non-linear molecules) or five (for
linear species) of the eigenvalues will equal zero. The eigenvectors belonging to these zero eigenvalues describe the 3 translations
and 2 or 3 rotations of the molecule. For example,

are three translation eigenvectors of  symmetry, and

is a rotation (about the Y-axis in the figure shown above) of  symmetry. This rotation vector can be generated by applying the
 The fact that rotation about the Y-axis is of 

 (n.b.,
care must be taken to realize that the axis convention used in the above figure is different than that implied in the character table;
the latter has the Z-axis out of the molecular plane, while the figure calls this the X-axis). The other two rotations are of 

 character table of Appendix E) and involve spinning of the molecule about the X- and Z- axes
of the figure drawn above, respectively.

So, of the 9 cartesian displacements, 3 are of  Of these, there are three translations 
 and three rotations  This leaves two vibrations of  symmetry. For the 

example treated here, the three non zero eigenvalues of the mass-weighted Hessian are therefore of  symmetry. They
describe the symmetric and asymmetric stretch vibrations and the bending mode, respectively as illustrated below.

Figure 13.2.2: Insert caption here!

The method of vibrational analysis presented here can work for any polyatomic molecule. One knows the mass-weighted Hessian
and then computes the non-zero eigenvalues which then provide the squares of the normal mode vibrational frequencies. Point
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group symmetry can be used to block diagonalize this Hessian and to label the vibrational modes according to symmetry.
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13.3: Anharmonicity
The electronic energy of a molecule, ion, or radical at geometries near a stable structure can be expanded in a Taylor series in
powers of displacement coordinates as was done in the preceding section of this Chapter. This expansion leads to a picture of
uncoupled harmonic vibrational energy levels

and wavefunctions

The spacing between energy levels in which one of the normal-mode quantum numbers increases by unity

is predicted to be independent of the quantum number vj . This picture of evenly spaced energy levels

is an incorrect aspect of the harmonic model of vibrational motion, and is a result of the quadratic model for the potential energy
surface 

The Expansion of E(v) in Powers of  

Experimental evidence clearly indicates that significant deviations from the harmonic oscillator energy expression occur as the
quantum number  grows. In Chapter 1 these deviations were explained in terms of the diatomic molecule's true potential V(R)
deviating strongly from the harmonic  potential at higher energy (and hence larger  as shown in the
following figure.

Figure 13.3.1: Insert caption here!

At larger bond lengths, the true potential is "softer" than the harmonic potential, and eventually reaches its asymptote which lies at
the dissociation energy  above its minimum. This negative deviation of the true V(R) from  causes the true
vibrational energy levels to lie below the harmonic predictions.

It is convention to express the experimentally observed vibrational energy levels, along each of the 3N-5 or 6 independent modes,
as follows:

The first term is the harmonic expression. The next is termed the first anharmonicity; it (usually) produces a negative contribution

to E  that varies as . The spacings between successive  energy levels is then given by:

E( . . . ) = ℏ ( + )v1 V3N−5 or 6 ∑
j=1

3N−5 or 6

ωj vj

1

2

Ψ( . . . ( ).x1 x3N−5 or 6 =3N−5 or 
j=1 Ψvj xj

Δ = E(. . . +1. . . ) −E(. . . . . . ) = ℏEvj vj vj ωj

Δ = Δ = Δ =. . .E0 E1 E2

V ( ).xj

(v + ) .
1

2

vj

(E −1
2k

Ee)2 |R − |)Re

De (R −1
2k

Re)2

E( ) = ℏ[ ( + )−(ωx +(ωy +(ωz +. . .]vj ωj vj

1

2
)j( + )vj

1

2

2

)j( + )vj

1

2

3

)j( + )vj

1

2

4

( )vj ( + )vj
1
2

2
→ +1vj vj

Δ = E() +1) −E( )Evj vj vj

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/64793?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/13%3A_Molecular_Rotation_and_Vibration/13.03%3A_Anharmonicity


13.3.2 https://chem.libretexts.org/@go/page/64793

A plot of the spacing between neighboring energy levels versus  should be linear for values of vj where the harmonic and first
overtone terms dominate. The slope of such a plot is expected to be  and the small  intercept should be 

 Such a plot of experimental data, which clearly can be used to determine the  parameter of the
vibrational mode of study, is shown in the figure below.

Figure 13.3.2: Insert caption here!

The Birge-Sponer Extrapolation 
These so-called Birge-Sponer plots can also be used to determine dissociation energies of molecules. By linearly extrapolating the
plot of experimental  values to large vj values, one can find the value of  at which the spacing between neighboring
vibrational levels goes to zero. This value , max specifies the quantum number of the last bound vibrational level for the
particular potential energy function  of interest. The dissociation energy  can then be computed by adding to  (the
zero point energy along this mode) the sum of the spacings between neighboring vibrational energy levels from 

:

Since experimental data are not usually available for the entire range of  values (from 0 to ,max), this sum must be computed
using the anharmonic expression for  :

Alternatively, the sum can be computed from the Birge-Sponer graph by measuring the area under the straight-line fit to the graph
of 

This completes our introduction to the subject of rotational and vibrational motions of molecules (which applies equally well to
ions and radicals). The information contained in this Section is used again in Section 5 where photon-induced transitions between
pairs of molecular electronic, vibrational, and rotational eigenstates are examined. More advanced treatments of the subject matter
of this Section can be found in the text by Wilson, Decius, and Cross, as well as in Zare's text on angular momentum.
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CHAPTER OVERVIEW

14: Time-dependent Quantum Dynamics
The interaction of a molecular species with electromagnetic fields can cause transitions to occur among the available molecular
energy levels (electronic, vibrational, rotational, and nuclear spin). Collisions among molecular species likewise can cause
transitions to occur. Time-dependent perturbation theory and the methods of molecular dynamics can be employed to treat such
transitions.

14.1: Time-Dependent Vector Potentials
14.2: Time-Dependent Perturbation Theory
14.3: Application to Electromagnetic Perturbations
14.4: The "Long-Wavelength" Approximation
14.5: The Kinetics of Photon Absorption and Emission
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14.1: Time-Dependent Vector Potentials
The full N-electron non-relativistic Hamiltonian H discussed earlier in this text involves the kinetic energies of the electrons and of
the nuclei and the mutual Coulombic interactions among these particles

When an electromagnetic field is present, this is not the correct Hamiltonian, but it can be modified straightforwardly to obtain the
proper H.

The Time-Dependent Vector  Potential 

The only changes required to achieve the Hamiltonian that describes the same system in the presence of an electromagnetic field
are to replace the momentum operators P  and p  for the nuclei and electrons, respectively, by (P\(_a\) - Z  e/c A(R ,t)) and (p  -
e/c A(rj ,t)). Here Za e is the charge on the ath nucleus, -e is the charge of the electron, and c is the speed of light.

The vector potential A depends on time t and on the spatial location r of the particle in the following manner:

The circular frequency of the radiation  (radians per second) and the wave vector k (the magnitude of k is |k| = , where  is the
wavelength of the light) control the temporal and spatial oscillations of the photons. The vector  characterizes the strength
(through the magnitude of ) of the field as well as the direction of the A potential; the direction of propagation of the photons is
given by the unit vector k/|k|. The factor of 2 in the definition of A allows one to think of  as measuring the strength of both 

 and  components of the  function.

The Electric  

The electric ,t) fields of the photons are expressed in terms of the vector potential A as

The E field lies parallel to the  vector, and the H field is perpendicular to ; both are perpendicular to the direction of
propagation of the light k/|k|. E and H have the same phase because they both vary with time and spatial location as 

 The relative orientations of these vectors are shown below.

Figure 14.1.1: Insert caption here!

The Resulting Hamiltonian 

Replacing the nuclear and electronic momenta by the modifications shown above in the kinetic energy terms of the full electronic
and nuclear-motion hamiltonian results in the following additional factors appearing in H:

H = −( ) + [(− ) − ]+ + .∑
a=1,M

ℏ2

2ma

∇2
a ∑

j

ℏ2

2me

∇2
j ∑

a

Za

e2

rj,a
∑
j<k

e2

rj,k
∑
a<b

ZaZb

e2

Ra,b

A(r, t)

a j a a j

A(r, t) = 2 cos(ωt −k ⋅ r).A0

ω 2π

λ
λ

Ao

Ao

A0

ei(ωt−k⋅r) ei(ωt−k⋅r) cos(ωt −k ⋅ r)

E(r, t) and Magnetic H(r, t) Fields 

E(r, t) and magnetic H(r

E(r, t) = − = sin(ωt −k ⋅ r)
1

3

∂A

∂t

ω

c
A0

H(r, t) = ∇ x A  = 2 sin(ωt −k ⋅ r). k x Ao

Ao Ao

sin(ωt −k ⋅ r).

= [ A( , t) ⋅ +( ) |A( , t) ]+Hint ∑
j

ieℏ

cme

rj ∇j

e2

2mec2
rj |

2

[(i )A( , t) ⋅ +( ) |A( , t) ] .∑
a

Za

eℏ

cma

Ra ∇a

Z2
a e2

2mac2
Ra |2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/60590?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/14%3A_Time-dependent_Quantum_Dynamics/14.01%3A_Time-Dependent_Vector_Potentials


14.1.2 https://chem.libretexts.org/@go/page/60590

These so-called interaction perturbations  are what induces transitions among the various electronic/vibrational/rotational
states of a molecule. The one-electron additive nature of  plays an important role in determining the kind of transitions that 

 can induce. For example, it causes the most intense electronic transitions to involve excitation of a single electron from one
orbital to another (e.g., the Slater-Condon rules).
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14.2: Time-Dependent Perturbation Theory
The mathematical machinery needed to compute the rates of transitions among molecular states induced by such a time-dependent
perturbation is contained in time dependent perturbation theory (TDPT). The development of this theory proceeds as follows. One
first assumes that one has in-hand all of the eigenfunctions { } and eigenvalues { } that characterize the Hamiltonian  of
the molecule in the absence of the external perturbation:

One then writes the time-dependent Schrödinger equation

in which the full Hamiltonian is explicitly divided into a part that governs the system in the absence of the radiation field and 
which describes the interaction with the field.

Perturbative Solution 
By treating  as of zeroth order (in the field strength | |), expanding  order-by order in the field-strength parameter:

realizing that Hint contains terms that are both first- and second- order in 

and then collecting together all terms of like power of , one obtains the set of time dependent perturbation theory equations.
The lowest order such equations read:

The zeroth order equations can easily be solved because  is independent of time. Assuming that at  (we use
the index i to denote the initial state), this solution is:

The first-order correction to  can be found by (i) expanding  in the complete set of zeroth-order states { }:

(ii) using the fact that

,

and (iii) substituting all of this into the equation that Y1 obeys. The resultant equation for the coefficients that appear in the first-
order equation can be written as
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or

Defining

his equation can be cast in terms of an easy-to-solve equation for the  coefficients:

Assuming that the electromagnetic field  is turned on at t=0, and remains on until t = T, this equation for  can be
integrated to yield:
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14.3: Application to Electromagnetic Perturbations

First-Order Fermi-Wentzel "Golden Rule" 

Using the earlier expressions for  and for A(r,t)

and

it is relatively straightforward to carry out the above time integration to achieve a final expression for , which can then be

substituted into  to obtain the final expression for the first-order estimate of the probability amplitude for

the molecule appearing in the state  after being subjected to electromagnetic radiation from t = 0 until t = T. This final
expression reads:

where

is the resonance frequency for the transition between "initial" state 

Defining the time-independent parts of the above expression as

this result can be written as

The modulus squared  gives the probability of finding the molecule in the final state  at time T, given that it was in 
at time t = 0. If the light's frequency  is tuned close to the transition frequency  of a particular transition, the term whose
denominator contains  will dominate the term with  in its denominator. Within this "near-resonance"
condition, the above probability reduces to:

This is the final result of the first-order time-dependent perturbation theory treatment of light-induced transitions between states 
.
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The so-called sinc-function

as shown in the figure below is strongly peaked near , and displays secondary maxima (of decreasing amplitudes) near 
, ... . In the  limit, this function becomes narrower and narrower, and the area under it

grows with T. Physically, this means that when the molecules are exposed to the light source for long times (large T), the sinc
function emphasizes  values near  (i.e., the on-resonance  values). These properties of the sinc function will play important
roles in what follows.

Figure 14.3.1: Insert caption here!

In most experiments, light sources have a "spread" of frequencies associated with them; that is, they provide photons of various
frequencies. To characterize such sources, it is common to introduce the spectral source function g( ) d  which gives the
probability that the photons from this source have frequency somewhere between . For narrow-band lasers, g(  is a
sharply peaked function about some "nominal" frequency ; broader band light sources have much broader g( ) functions.

When such non-monochromatic light sources are used, it is necessary to average the above formula for  over the g( ) d
probability function in computing the probability of finding the molecule in state  after time T, given that it was in  up until t
= 0, when the light source was turned on. In particular, the proper expression becomes:

If the light-source function is "tuned" to peak near  and if  is much broader (in -space) than the 

 function, g( ) can be replaced by its value at the peak of the  function, yielding:

The fact that the probability of excitation from  grows linearly with the time T over which the light source is turned on
implies that the rate of transitions between these two states is constant and given by:
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this is the so-called first-order Fermi-Wentzel "golden rule" expression for such transition rates. It gives the rate as the square of a
transition matrix element between the two states involved, of the first order perturbation multiplied by the light source function 

 evaluated at the transition frequency .

Higher Order Results 
Solution of the second-order time-dependent perturbation equations,

which will not be treated in detail here, gives rise to two distinct types of contributions to the transition probabilities between 
:

There will be matrix elements of the form

arising when .

There will be matrix elements of the form

arising from expanding  and using the earlier result for the first-order amplitudes . Because both

types of second-order terms vary quadratically with the A(r,t) potential, and because A has time dependence of the form 
, these terms contain portions that vary with time as  As a result, transitions between initial and final

states  whose transition frequency is  can be induced when ; in this case, one speaks of coherent two-
photon induced transitions in which the electromagnetic field produces a perturbation that has twice the frequency of the "nominal"
light source frequency .

This page titled 14.3: Application to Electromagnetic Perturbations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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14.4: The "Long-Wavelength" Approximation
To make progress in further analyzing the first-order results obtained above, it is useful to consider the wavelength  of the light
used in most visible/ultraviolet, infrared, or microwave spectroscopic experiments. Even the shortest such wavelengths (ultraviolet)
are considerably longer than the spatial extent of all, but the largest molecules (i.e., polymers and biomolecules for which the
approximations we introduce next are not appropriate).

In the definition of the essential coupling matrix element 

the factors  and  can be expanded as:

Because |k| = , and the scales of  are of the dimension of the molecule,  are less than unity in
magnitude, within this so-called "long-wavelength" approximation.

Electric Dipole Transitions 

Introducing these expansions into the expression for af,i gives rise to terms of various powers in . The lowest order terms are:

and are called "electric dipole" terms, and are denoted E1. To see why these matrix elements are termed E1, we use the following
identity (see Chapter 1) between the momentum operator  and the corresponding position operator r:

This derives from the fact that H contains  ). Substituting these
expressions into the above , one obtains:

where  is the electric dipole moment operator for the electrons and nuclei:

The fact that the E1 approximation to  contains matrix elements of the electric dipole operator between the initial and final
states makes it clear why this is called the electric dipole contribution to ; within the E1 notation, the E stands for electric
moment and the 1 stands for the first such moment (i.e., the dipole moment).

Within this approximation, the overall rate of transitions is given by:
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Recalling that ,

the magnitude of  can be replaced by that of E, and this rate expression becomes

This expresses the widely used E1 approximation to the Fermi-Wentzel golden rule.

Magnetic Dipole and Electric Quadrupole Transitions 
When E1 predictions for the rates of transitions between states vanish (e.g., for symmetry reasons as discussed below), it is
essential to examine higher order contributions to . The next terms in the above long-wavelength expansion vary as  and have
the form:

For reasons soon to be shown, they are called electric quadrupole (E2) and magnetic dipole (M1) terms. Clearly, higher and higher
order terms can be so generated. Within the longwavelength regime, however, successive terms should decrease in magnitude
because of the successively higher powers of  that they contain.

To further analyze the above E2 + M1 factors, let us label the propagation direction of the light as the z-axis (the axis along which
k lies) and the direction of  as the x-axis. These axes are so-called "lab-fixed" axes because their orientation is determined by
the direction of the light source and the direction of polarization of the light source's E field, both of which are specified by
laboratory conditions. The molecule being subjected to this light can be oriented at arbitrary angles relative to these lab axes. With
the x, y, and z axes so defined, the above expression for  (E2+M1) becomes

Now writing (for both )

and using

the contributions of  (E2+M1) can be rewritten as

The operator  that appears above is the z,x element of the electric quadrupole moment operator  ; it is for

this reason that this particular component is labeled E2 and denoted the electric quadrupole contribution.

The remaining  contribution to  (E2+M1) can be rewritten in a form that makes its content more clear by

first noting that
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contains the y-component of the angular momentum operator. Hence, the following contribution to  (E2+M1) arises:

The magnetic dipole moment of the electrons about the y axis is

that of the nuclei is

The  (M1) term thus describes the interaction of the magnetic dipole moments of the electrons and nuclei with the magnetic
field (of strength |H| =  k) of the light (which lies along the y axis):

The total rate of transitions from  is given, through first-order in perturbation theory, by

where  is a sum of its E1, E2, M1, etc. pieces. In the next chapter, molecular symmetry will be shown to be of use in analyzing
these various pieces. It should be kept in mind that the contributions caused by E1 terms will dominate, within the long-wavelength
approximation, unless symmetry causes these terms to vanish. It is primarily under such circumstances that consideration of M1
and E2 transitions is needed.

This page titled 14.4: The "Long-Wavelength" Approximation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.
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14.5: The Kinetics of Photon Absorption and Emission

The Phenomenological Rate Laws 

Before closing this chapter, it is important to emphasize the context in which the transition rate expressions obtained here are most
commonly used. The perturbative approach used in the above development gives rise to various contributions to the overall rate
coefficient for transitions from an initial state  ; these contributions include the electric dipole, magnetic
dipole, and electric quadrupole first order terms as well contributions arising from second (and higher) order terms in the
perturbation solution.

In principle, once the rate expression

has been evaluated through some order in perturbation theory and including the dominant electromagnetic interactions, one can
make use of these state-to-state rates , which are computed on a per-molecule basis, to describe the time evolution of the
populations of the various energy levels of the molecule under the influence of the light source's electromagnetic fields.

For example, given two states, denoted i and f, between which transitions can be induced by photons of frequency wf,i, the
following kinetic model is often used to describe the time evolution of the numbers of molecules ni and nf in the respective states:

Here,  are the rates (per molecule) of transitions for the  transitions respectively. As noted above,
these rates are proportional to the intensity of the light source (i.e., the photon intensity) at the resonant frequency and to the square
of a matrix element connecting the respective states. This matrix element square is  in the
latter. Because the perturbation operator whose matrix elements are  is Hermitian (this is true through all orders of
perturbation theory and for all terms in the long-wavelength expansion), these two quantities are complex conjugates of one
another, and, hence , from which it follows that  This means that the state-to-state absorption and
stimulated emission rate coefficients (i.e., the rate per molecule undergoing the transition) are identical. This result is referred to as
the principle of microscopic reversibility.

Quite often, the states between which transitions occur are members of levels that contain more than a single state. For example, in
rotational spectroscopy a transition between a state in the J = 3 level of a diatomic molecule and a state in the J = 4 level involve
such states; the respective levels are 2J+1 = 7 and 2J+1 = 9 fold degenerate, respectively.

To extend the above kinetic model to this more general case in which degenerate levels occur, one uses the number of molecules in
each level (  for the two levels in the above example) as the time dependent variables. The kinetic equations then
governing their time evolution can be obtained by summing the state-to-state equations over all states in each level

and realizing that each state within a given level can undergo transitions to all states within the other level (hence the total rates of
production and consumption must be summed over all states to or from which transitions can occur). This generalization results in
a set of rate laws for the populations of the respective levels:
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Here,  are the degeneracies of the two levels (i.e., the number of states in each level) and the , which are
equal as described above, are the state-to-state rate coefficients introduced earlier.

Spontaneous and Stimulated Emission 

It turns out (the development of this concept is beyond the scope of this text) that the rate at which an excited level can emit
photons and decay to a lower energy level is dependent on two factors:

i. the rate of stimulated photon emission as covered above and
ii. the rate of spontaneous photon emission.

The former rate  at the resonance frequency. It is
conventional to separate out this intensity factor by defining an intensity independent rate coefficient  for this process as:

Clearly, , the perturbation matrix elements, and the 
 The spontaneous rate of transition from the excited to the lower level is found to be

independent of photon intensity, because it deals with a process that does not require collision with a photon to occur, and is
usually denoted  The rate of photon-stimulated upward transitions from state f to state i 

 so it is written by convention as:

An important relation between the  parameters exists and is based on the identity  that connects the state-
to-state rate coefficients:

This relationship will prove useful in the following sections.

Saturated Transitions and Transparency 
Returning to the kinetic equations that govern the time evolution of the populations of two levels connected by photon absorption
and emission, and adding in the term needed for spontaneous emission, one finds (with the initial level being of the lower energy):

where g = g( ) denotes the light intensity at the resonance frequency. At steady state, the populations of these two levels are given
by setting

When the light source's intensity is so large as to render >>  (i.e., when the rate of spontaneous emission is small
compared to the stimulated rate), this population ratio reaches , which was shown earlier to equal  In this case,
one says that the populations have been saturated by the intense light source. Any further increase in light intensity will result in
zero increase in the rate at which photons are being absorbed. Transitions that have had their populations saturated by the
application of intense light sources are said to display optical transparency because they are unable to absorb (nor emit) any
further photons because of their state of saturation.

 and gi gf  and Ri,f Rf,i

 (per molecule) is proportional to the light intensity g( )gfRi,f ωf,i
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2π factor in the earlier expression for  .Ri,f
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( =  in the present case) is also proportional to g( ),giRf,i giRi,f ωf,i
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ω

= = 0 :
dNi

dt

dNf

dt
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Equilibrium and Relations Between A and B Coefficients 

When the molecules in the two levels being discussed reach equilibrium (at which time the  also holds) with a
photon source that itself is in equilibrium characterized by a temperature T, we must have:

where  are the degeneracies of the states labeled f and i. The photon source that is characterized by an equilibrium
temperature T is known as a black body radiator, whose intensity profile ) (in erg  sec) is know to be of the form:

Equating the kinetic result that must hold at equilibrium:

to the thermodynamic result:

and using the above black body g( ) expression and the identity

one can solve for the  coefficient. Doing so yields:

Summary 
In summary, the so-called Einstein A and B rate coefficients connecting a lower-energy initial state  and a final state  are
related by the following conditions:

and

These phenomenological level-to-level rate coefficients are related to the state-to-state  coefficients derived by applying
perturbation theory to the electromagnetic perturbation through

The A and B coefficients can be used in a kinetic equation model to follow the time evolution of the populations of the
corresponding levels:

= = 0
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These equations possess steady state solutions

which, for large , produce saturation conditions:
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and/or curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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15.1: Rotational Transitions
Within the approximation that the electronic, vibrational, and rotational states of a molecule can be treated as independent, the total
molecular wavefunction of the "initial" state is a product

of an electronic function 

In microwave spectroscopy, the energy of the radiation lies in the range of fractions of a ; such
energies are adequate to excite rotational motions of molecules but are not high enough to excite any but the weakest vibrations
(e.g., those of weakly bound Van der Waals complexes). In rotational transitions, the electronic and vibrational states are thus left
unchanged by the excitation process; hence 

Applying the first-order electric dipole transition rate expressions

obtained in Chapter 14 to this case requires that the E1 approximation

be examined in further detail. Specifically, the electric dipole matrix elements  must be

analyzed for  being of the product form shown above.

The integrations over the electronic coordinates contained in  as well as the integrations over vibrational degrees of
freedom yield "expectation values" of the electric dipole moment operator because the electronic and vibrational components of 

 are identical:

is the dipole moment of the initial electronic state (which is a function of the internal geometrical degrees of freedom of the
molecule, denoted R); and

is the vibrationally averaged dipole moment for the particular vibrational state labeled  mave has components
along various directions and can be viewed as a vector "locked" to the molecule's internal coordinate axis (labeled a, b, c as below).

Figure 15.1.1: Insert caption here!

The rotational part of the integral is not of the expectation value form because the initial rotational function 
. This integral has the form:

=Φi ψeiχviϕri

,  a vibrational function  ,  and a rotational function ψei χvi ϕri

.  A similar product expression holds for the "final" wavefunction  .Φf

c  through several cm−1 m−1

=  and  = .ψei ψef χvi χvf

= 2πg( )|Ri,f ωf,i αf,i|
2

=( ) g( )| ⋅ ⟨ |μ| ⟩Ri,f
2π

ℏ2
ωf,i E0 Φf Φi |2

⟨ |μ| ⟩ with μ = e + eΦf Φi ∑
j

rj ∑
a

Za Ra

 and Φi Φf

⟨ |μ| ⟩,Φf Φi

 and Φi Φf

⟨ |μ| ⟩ = μ(R)ψei ψei

⟨ |μ(R)| ⟩ =χvi χvi μave

.  The vector χvi μave

⟨ |μ| ⟩Φf Φi

 is not the same as the final ϕir ϕfr
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or linear molecules whose initial and final rotational wavefunctions are , respectively, and

for spherical or symmetric top molecules (here,  are the normalized rotational wavefunctions described

in Chapter 13 and in Appendix G). The angles  refer to how the molecule-fixed coordinate system is oriented with
respect to the space-fixed X, Y, Z axis system.

Linear Molecules 

For linear molecules, the vibrationally averaged dipole moment  lies along the molecular axis; hence its orientation in the lab-
fixed coordinate system can be specified in terms of the same angles  that are used to describe the rotational functions 

 Therefore, the three components of the  integral can be written as:

where  is the magnitude of the averaged dipole moment. If the molecule has no dipole moment, all of the above electric dipole
integrals vanish and the intensity of E1 rotational transitions is zero.

The three E1 integrals can be further analyzed by noting that cos
 and using the angular momentum coupling methods

illustrated in Appendix G. In particular, the result given in that appendix:

when multiplied by D , yields:

To use this result in the present linear-molecule case, we note that the  functions are related by:

The normalization factor is now  because the  are no longer functions of , and thus the need to

integrate over  disappears. Likewise, the   disappears for K = 0.

We now use these identities in the three E1 integrals of the form

⟨ | | ⟩ = ∫ ( (θ,ϕ)) (θ,ϕ) sinθ dθ dϕΦir μave Φfr Y *
L,M μaveYL', M'

 and YL,M YL',M'

⟨ | | ⟩ =ϕir μave ϕfr

2L+1

8π2

− −−−−−
√

2 +1L′

8π2

− −−−−−−
√

∫ ( (θ,ϕ,χ) (θ,ϕ,χ) sinθ dθ dϕ dχ)DL, M, K μaveD*
L', M', K'

(θ,ϕ,χ)
2L+1

8π2

− −−−−−
√ D*

L, M, K

θ,ϕ,  and χ

μave

(θ and ϕ)

(θ,ϕ).YL,M ⟨ | | ⟩ϕir μave ϕfr

⟨ | | = μ∫ (θ,ϕ) sinθ cosϕ (θ,ϕ) sinθ dθ dϕϕir μave ϕfr⟩x Y *
L, M  YL', M'

⟨ | | = μ∫ (θ,ϕ) sinθ cosϕ (θ,ϕ) sinθ dθ dϕϕir μave ϕfr⟩y Y *
L, M  YL', M'

⟨ | | = μ∫ (θ,ϕ) sinθ cosϕ (θ,ϕ) sinθ dθ dϕϕir μave ϕfr⟩z Y *
L, M  YL', M'

μ
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m′ n′ M ′ DJ, M, M'

 and integrated over sinθ dθ dϕ dχ*
J, M, M'

∫  sinθ dθ dϕ dχD*
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with m = 0 being the Z- axis integral, and the Y- and X- axis integrals being combinations of the m = 1 and m = -1 results. Doing so
yields:

The last factor of  is inserted to cancel out the integration over that, because all K-factors in the rotation matrices equal
zero, trivially yields . Now, using the result shown above expressing the integral over three rotation matrices, these E1 integrals
for the linearmolecule case reduce to:

Applied to the z-axis integral (identifying m = 0), this result therefore vanishes unless:

and

Even though angular momentum coupling considerations would allow L = L' (because coupling two angular momenta with j = 1

and j = L' should give L'+1, L', and L'-1), the 3-j symbol  vanishes for the L = L' case since 3-j symbols have the

following symmetry

with respect to the M, M', and m indices. Applied to the  3-j symbol, this means that this particular 3-j element vanishes

for L = L' since L + L' + 1 is odd and hence  is -1.

Applied to the x- and y- axis integrals, which contain m = ± 1 components, this same analysis yields:

which then requires that

and

with L = L' again being forbidden because of the second 3-j symbol.

These results provide so-called "selection rules" because the limit the L and M values of the final rotational state, given the L', M'
values of the initial rotational state. In the figure shown below, the L = L' + 1 absorption spectrum of NO at 120 °K is given. The
intensities of the various peaks are related to the populations of the lower-energy rotational states which are, in turn, proportional to
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√

L' 1 L

±1 −MM ′
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 Also included in the intensities are so-called line strength factors that are proportional to the
squares of the quantities:

which appear in the E1 integrals analyzed above (recall that the rate of photon absorption 

involves the squares of these matrix elements). The book by Zare gives an excellent treatment of line strength factors' contributions
to rotation, vibration, and electronic line intensities.

Figure 15.1.2: Insert caption here!

Non-Linear Molecules 

For molecules that are non-linear and whose rotational wavefunctions are given in terms of the spherical or symmetric top
functions , the dipole moment  can have components along any or all three of the molecule's internal coordinates (e.g.,
the three molecule-fixed coordinates that describe the orientation of the principal axes of the moment of inertia tensor). For a
spherical top molecule,  vanishes, so E1 transitions do not occur.

For symmetric top species,  lies along the symmetry axis of the molecule, so the orientation of  can again be described in
terms of , the angles used to locate the orientation of the molecule's symmetry axis relative to the lab-fixed coordinate
system. As a result, the E1 integral again can be decomposed into three pieces:

Using the fact that  and the tools of angular
momentum coupling allows these integrals to be expressed, as above, in terms of products of the following 3-j symbols:

from which the following selection rules are derived:

with m = 0 for the Z-axis integral and m = ± 1 for the X- and Y- axis integrals. In addition, if K = K' = 0, the L = L' transitions are
also forbidden by the second 3-j symbol vanishing.
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L' 1 L
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L', M', K'

 cosθ ∝ ;  sinθ cosϕ ∝ + ;  and sinθ sinϕ ∝ −D*
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15.2: Vibration-Rotation Transitions
When the initial and final electronic states are identical, but the respective vibrational and rotational states are not, one is dealing
with transitions between vibration-rotation states of the molecule. These transitions are studied in infrared (IR) spectroscopy using
light of energy in the 30 cm  range. The electric dipole matrix element analysis still begins with the
electronic dipole moment integral  but the integration over internal vibrational coordinates no longer produces
the vibrationally averaged dipole moment. Instead one forms the vibrational transition dipole integral:

between the initial  vibrational states.

The Dipole Moment Derivatives 
Expressing  in a power series expansion about the equilibrium bond length position (denoted  collectively and 
individually):

substituting into the  integral, and using the fact that  are orthogonal (because they are eigenfunctions of
vibrational motion on the same electronic surface and hence of the same vibrational Hamiltonian), one obtains:

This result can be interpreted as follows:

1. Each independent vibrational mode of the molecule contributes to the  vector an amount equal to 

2. Each such contribution contains one part  that depends on how the molecule's dipole moment function varies with

vibration along that particular mode (labeled a),
3. and a second part  that depends on the character of the initial and final vibrational wavefunctions.

If the vibration does not produce a modulation of the dipole moment (e.g., as with the symmetric stretch vibration of the 

molecule), its infrared intensity vanishes because  One says that such transitions are infrared "inactive".

Selection Rules on v in the Harmonic Approximation 
If the vibrational functions are described within the harmonic oscillator approximation, it can be shown that the 

 integrals vanish unless vf = vi +1 , vi -1 (and that these integrals are proportional to 
 in the respective cases). Even when  are rather non-harmonic, it turns out that such 

transitions have the largest  integrals and therefore the highest infrared intensities. For these reasons,
transitions that correspond to  are called "fundamental"; those with  are called "first overtone" transitions.

In summary then, vibrations for which the molecule's dipole moment is modulated as the vibration occurs (i.e., for which  is

non-zero) and for which  tend to have large infrared intensities; overtones of such vibrations tend to have smaller

intensities, and those for which  have no intensity.

Rotational Selection Rules 

The result of all of the vibrational modes' contributions to

−1  (far IR) to 5000 cm−1
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is a vector  that is termed the vibrational "transition dipole" moment. This is a vector with components along, in principle, all
three of the internal axes of the molecule. For each particular vibrational transition (i.e., each particular  ) its orientation
in space depends only on the orientation of the molecule; it is thus said to be locked to the molecule's coordinate frame. As such, its
orientation relative to the lab-fixed coordinates (which is needed to effect a derivation of rotational selection rules as was done
earlier in this Chapter) can be described much as was done above for the vibrationally averaged dipole moment that arises in purely
rotational transitions. There are, however, important differences in detail. In particular,

1. For a linear molecule  can have components either along (e.g., when stretching vibrations are excited; these cases are
denoted -cases) or perpendicular to (e.g., when bending vibrations are excited; they are denoted  cases) the molecule's axis.

2. For symmetric top species,  need not lie along the molecule's symmetry axis; it can have components either along or
perpendicular to this axis.

3. For spherical tops,  will vanish whenever the vibration does not induce a dipole moment in the molecule. Vibrations such
as the totally symmetric  C-H stretching motion in CH  do not induce a dipole moment, and are thus infrared inactive; non-
totally-symmetric vibrations can also be inactive if they induce no dipole moment.

As a result of the above considerations, the angular integrals

that determine the rotational selection rules appropriate to vibrational transitions produce similar, but not identical, results as in the
purely rotational transition case.

The derivation of these selection rules proceeds as before, with the following additional considerations. The transition dipole
moment's  components along the labfixed axes must be related to its molecule-fixed coordinates (that are determined by the
nature of the vibrational transition as discussed above). This transformation, as given in Zare's text, reads as follows:

where  with m = 1, 0, -1 refer to the components along the lab-fixed (X, Y, Z) axes and  with k = 1, 0, -1 refer to
the components along the molecule- fixed (a, b, c) axes.

This relationship, when used, for example, in the symmetric or spherical top E1 integral:

gives rise to products of 3-j symbols of the form:

The product of these 3-j symbols is nonvanishing only under certain conditions that provide the rotational selection rules applicable
to vibrational lines of symmetric and spherical top molecules.

Both 3-j symbols will vanish unless

L = L' +1, L', or L'-1.

In the special case in which L = L' =0 (and hence with M = M' =0 = K = K', which means that m = 0 = k), these 3-j symbols again
vanish. Therefore, transitions with

L = L' =0

are again forbidden. As usual, the fact that the lab-fixed quantum number m can range over m = 1, 0, -1, requires that

M = M' + 1, M', M'-1.

The selection rules for  depend on the nature of the vibrational transition, in particular, on the component of  along the
molecule-fixed axes. For the second 3-j symbol to not vanish, one must have
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K = K' + k,

where k = 0, 1, and -1 refer to these molecule-fixed components of the transition dipole. Depending on the nature of the transition,
various k values contribute.

Symmetric Tops 

In a symmetric top molecule such as , if the transition dipole lies along the molecule's symmetry axis, only k = 0 contributes.
Such vibrations preserve the molecule's symmetry relative to this symmetry axis (e.g. the totally symmetric N-H stretching mode in

). The additional selection rule  is thus obtained. Moreover, for K = K' = 0, all transitions with  vanish
because the second 3-j symbol vanishes. In summary, one has:

 (but L = L' = 0 is forbidden and all  are forbidden for K = K' = 0)

for symmetric tops with vibrations whose transition dipole lies along the symmetry axis.

If the transition dipole lies perpendicular to the symmetry axis, only k = ±1 contribute. In this case, one finds

 (neither L = L' = 0 nor K = K' = 0 can occur for such transitions, so there are no additional
constraints).

Linear Molecules 

When the above analysis is applied to a diatomic species such as HCl, only k = 0 is present since the only vibration present in such
a molecule is the bond stretching vibration, which has  symmetry. Moreover, the rotational functions are spherical harmonics
(which can be viewed as  functions with K' = 0), so the K and K' quantum numbers are identically zero. As a
result, the product of 3-j symbols

reduces to

which will vanish unless

but not L = L' (since parity then causes the second 3-j symbol to vanish), and

The L = L' +1 transitions are termed R-branch absorptions and those obeying L = L' -1 are called P-branch transitions. Hence, the
selection rules

are identical to those for purely rotational transitions.

When applied to linear polyatomic molecules, these same selection rules result if the vibration is of  symmetry (i.e., has k = 0). If,
on the other hand, the transition is of  symmetry (i.e., has k = ±1), so the transition dipole lies perpendicular to the molecule's
axis, one obtains:

These selection rules are derived by realizing that in addition to k = ±1, one has: (i) a linear-molecule rotational wavefunction that
in the v = 0 vibrational level is described in terms of a rotation matrix  with no angular momentum along the
molecular axis, K' = 0 ; (ii) a v = 1 molecule whose rotational wavefunction must be given by a rotation matrix 
with one unit of angular momentum about the molecule's axis, K = 1. In the latter case, the angular momentum is produced by the
degenerate  vibration itself. As a result, the selection rules above derive from the following product of 3-j symbols:

NH3

NH3 ΔK = 0 ΔL = 0

ΔK = 0; ΔM = ±1, 0; ΔL = ±1, 0 ΔL = 0

ΔK = ±1; ΔM = ±1, 0; ΔL = ±1, 0
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Because  transitions are allowed for  vibrations possess Q- branches in addition to their R-
and P- branches (with  respectively).

In the figure shown below, the v = 0  v = 1 (fundamental) vibrational absorption spectrum of HCl is shown. Here the peaks at
lower energy (to the right of the figure) belong to P-branch transitions and occur at energies given approximately by:

The R-branch transitions occur at higher energies given approximately by:

The absorption that is "missing" from the figure below lying slightly below 2900 cm-  is the Q-branch transition for which L =
L'; it is absent because the selection rules forbid it.

Figure 15.2.1: Infrared rotational-vibration spectrum of hydrochloric acid gas at room temperature. The P- und R- branches
correspond, respectively to v=0 and v=1. The IR absorption intensities depend on the isotopes present in the sample, e.g. H- Cl
vs. H- Cl. (CC BY-SA 2.5; mrtz)

It should be noted that the spacings between the experimentally observed peaks in HCl are not constant as would be expected based
on the above P- and R- branch formulas. This is because the moment of inertia appropriate for the v = 1 vibrational level is
different than that of the v = 0 level. These effects of vibration-rotation coupling can be modeled by allowing the v = 0 and v = 1
levels to have rotational energies written as

where v and L are the vibrational and rotational quantum numbers. The P- and R- branch transition energies that pertain to these
energy levels can then be written as:

Clearly, these formulas reduce to those shown earlier in the I1 = I0 limit.

If the vibrationally averaged bond length is longer in the v = 1 state than in the v = 0 state, which is to be expected,  will be larger

than , and therefore  will be negative. In this case, the spacing between neighboring P-branch lines

will increase as shown above for HCl. In contrast, the fact that  is negative causes the spacing between

neighboring R- branch lines to decrease, again as shown for HCl.
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15.3: Electronic-Vibration-Rotation Transitions

The Electronic Transition Dipole and Use of Point Group Symmetry 

Returning to the expression

for the rate of photon absorption, we realize that the electronic integral now involves

a transition dipole matrix element between the initial  and final  electronic wavefunctions. This element is a function of the
internal vibrational coordinates of the molecule, and again is a vector locked to the molecule's internal axis frame.

Molecular point-group symmetry can often be used to determine whether a particular transition's dipole matrix element will vanish
and, as a result, the electronic transition will be "forbidden" and thus predicted to have zero intensity. If the direct product of the
symmetries of the initial and final electronic states  do not match the symmetry of the electric dipole operator (which
has the symmetry of its x, y, and z components; these symmetries can be read off the right most column of the character tables
given in Appendix E), the matrix element will vanish.

For example, the formaldehyde molecule  has a ground electronic state (see Chapter 11) that has  symmetry in the 
 singlet excited state also has  symmetry because both the  orbitals are of  symmetry.

In contrast, the lowest n  symmetry because the highest energy oxygen centered n orbital is
of  symmetry and the  symmetry, so the Slater determinant in which both the n and  orbitals are singly
occupied has its symmetry dictated by the 

The  transition thus involves ground ( ) and excited ( ) states whose direct product (  symmetry.
This transition thus requires that the electric dipole operator possess a component of  point
group's character table shows that the molecular z-axis is of  symmetry. Thus, if the light's electric field has a non-zero
component along the  symmetry axis (the molecule's z-axis), the  transition is predicted to be allowed. Light polarized
along either of the molecule's other two axes cannot induce this transition.

In contrast, the n  transition has a ground-excited state direct product of  symmetry. The  's point group
character table clearly shows that the electric dipole operator (i.e., its x, y, and z components in the molecule-fixed frame) has no
component of  symmetry; thus, light of no electric field orientation can induce this n  transition. We thus say that the n 

 transition is E1 forbidden (although it is M1 allowed).

Beyond such electronic symmetry analysis, it is also possible to derive vibrational and rotational selection rules for electronic
transitions that are E1 allowed. As was done in the vibrational spectroscopy case, it is conventional to expand  in a power
series about the equilibrium geometry of the initial electronic state (since this geometry is more characteristic of the molecular
structure prior to photon absorption):

The Franck-Condon Factors 

The first term in this expansion, when substituted into the integral over the vibrational coordinates, gives , which
has the form of the electronic transition dipole multiplied by the "overlap integral" between the initial and final vibrational
wavefunctions. The  factor was discussed above; it is the electronic E1 transition integral evaluated at the equilibrium
geometry of the absorbing state. Symmetry can often be used to determine whether this integral vanishes, as a result of which the
E1 transition will be "forbidden".

Unlike the vibration-rotation case, the vibrational overlap integrals  do not necessarily vanish because  are no
longer eigenfunctions of the same vibrational Hamiltonian.  is an eigenfunction whose potential energy is the final electronic
state's energy surface;  has the initial electronic state's energy surface as its potential. The squares of these  integrals,
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which are what eventually enter into the transition rate expression  are called "Franck-

Condon factors". Their relative magnitudes play strong roles in determining the relative intensities of various vibrational "bands"
(i.e., peaks) within a particular electronic transition's spectrum.

Whenever an electronic transition causes a large change in the geometry (bond lengths or angles) of the molecule, the Franck-
Condon factors tend to display the characteristic "broad progression" shown below when considered for one initial-state vibrational
level vi and various final-state vibrational levels vf:

Figure 15.3.1: Insert caption here!

Notice that as one moves to higher vf values, the energy spacing between the states  decreases; this, of course,
reflects the anharmonicity in the excited state vibrational potential. For the above example, the transition to the vf = 2 state has the
largest FranckCondon factor. This means that the overlap of the initial state's vibrational wavefunction 

 function with vf = 2.

As a qualitative rule of thumb, the larger the geometry difference between the initial and final state potentials, the broader will be
the Franck-Condon profile (as shown above) and the larger the vf value for which this profile peaks. Differences in harmonic
frequencies between the two states can also broaden the Franck-Condon profile, although not as significantly as do geometry
differences.

For example, if the initial and final states have very similar geometries and frequencies along the mode that is excited when the
particular electronic excitation is realized, the following type of Franck-Condon profile may result:

Figure 15.3.2: Insert caption here!

In contrast, if the initial and final electronic states have very different geometries and/or vibrational frequencies along some mode,
a very broad Franck-Condon envelope peaked at high-vf will result as shown below:
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Figure 15.3.3: Insert caption here!

Vibronic Effects 

The second term in the above expansion of the transition dipole matrix element  can become important to

analyze when the first term  vanishes (e.g., for reasons of symmetry). This dipole derivative term, when substituted into

the integral over vibrational coordinates gives . Transitions for which  vanishes but for

which  does not for the  vibrational mode are said to derive intensity through "vibronic coupling" with that mode. The

intensities of such modes are dependent on how strongly the electronic dipole integral varies along the mode (i.e, on  ) as

well as on the magnitude of the vibrational integral 

An example of an E1 forbidden but "vibronically allowed" transition is provided by the singlet n  transition of  that
was discussed earlier in this section. As detailed there, the ground electronic state has  symmetry, and the n 

 symmetry, so the E1 transition integral  vanishes for all three (x, y, z) components of the electric
dipole operator . However, vibrations that are of  symmetry (e.g., the H-C-H asymmetric stretch vibration) can induce intensity
in the n  transition as follows: (i) For such vibrations, the  mode's vi = 0 to vf = 1 vibronic integral 
will be non-zero and probably quite substantial (because, for harmonic oscillator functions these "fundamental" transition integrals

are dominant- see earlier); (ii) Along these same  modes, the electronic transition dipole integral derivative  will be non-
zero, even though the integral itself  vanishes when evaluated at the initial state's equilibrium geometry.

To understand why the derivative  can be non-zero for distortions (denoted  symmetry, consider this quantity in
greater detail:

The third integral vanishes because the derivative of the dipole operator itself  with respect to the

coordinates of atomic centers, yields an operator that contains only a sum of scalar quantities (the elementary charge e and the
magnitudes of various atomic charges ); as a result and because the integral over the electronic wavefunctions 
vanishes, this contribution yields zero. The first and second integrals need not vanish by symmetry because the wavefunction

derivatives  do not possess the same symmetry as their respective wavefunctions  In fact, it can be
shown that the symmetry of such a derivative is given by the direct product of the symmetries of its wavefunction and the
symmetry of the vibrational mode that gives rise to the  case at hand, the  mode vibration can induce in the

excited  state a derivative component (i.e.,  ) that is of  symmetry) and this same vibration can induce in the 
ground state a derivative component of  symmetry.

As a result, the contribution  to  arising from vibronic coupling within the excited electronic state can be expected

to be non-zero for components of the dipole operator  that are of  symmetry. Light polarized
along the molecule's x-axis gives such a  component to  (see the  character table in Appendix E). The second contribution 
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 can be non-zero for components of  that are of  =  symmetry; again, light of x-axis
polarization can induce such a transition.

In summary, electronic transitions that are E1 forbidden by symmetry can derive significant (e.g., in  the singlet n 
transition is rather intense) intensity through vibronic coupling. In such coupling, one or more vibrations (either in the initial or the
final state) cause the respective electronic wavefunction to acquire (through ) a symmetry component that is different than that

of  itself. The symmetry of , which is given as the direct product of the symmetry of  and that of the vibration, can then

cause the electric dipole integral  to be non-zero even when is zero. Such vibronically allowed transitions are
said to derive their intensity through vibronic borrowing.

Rotational Selection Rules for Electronic Transitions 

Each vibrational peak within an electronic transition can also display rotational structure (depending on the spacing of the
rotational lines, the resolution of the spectrometer, and the presence or absence of substantial line broadening effects such as those
discussed later in this Chapter). The selection rules for such transitions are derived in a fashion that parallels that given above for
the vibration-rotation case. The major difference between this electronic case and the earlier situation is that the vibrational
transition dipole moment  appropriate to the former is replaced by  for conventional (i.e., nonvibronic) transitions or 

 (for vibronic transitions).

As before, when  lies along the molecular axis of a linear molecule, the transition is denoted  and k = 0
applies; when this vector lies perpendicular to the axis it is called  and k = ±1 pertains. The resultant linear-molecule rotational
selection rules are the same as in the vibration-rotation case:

In the latter case, the L = L' = 0 situation does not arise because a p transition has one unit of angular momentum along the
molecular axis which would preclude both L and L' vanishing.

which applies when  lies along the symmertry axis, and

which applies when  lies perpendicular to the symmetry axis.

This page titled 15.3: Electronic-Vibration-Rotation Transitions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.
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15.4: Time Correlation Function Expressions for Transition Rates
The first-order E1 "golden-rule" expression for the rates of photon-induced transitions can be recast into a form in which certain
specific physical models are easily introduced and insights are easily gained. Moreover, by using so-called equilibrium averaged
time correlation functions, it is possible to obtain rate expressions appropriate to a large number of molecules that exist in a
distribution of initial states (e.g., for molecules that occupy many possible rotational and perhaps several vibrational levels at room
temperature).

State-to-State Rate of Energy Absorption or Emission 
To begin, the expression obtained earlier

that is appropriate to transitions between a particular initial state  and a specific final state , is rewritten as

Here, the  function is used to specifically enforce the "resonance condition" that resulted in the time-dependent
perturbation treatment given in Chapter 14; it states that the photons' frequency  must be resonant with the transition frequency 

. It should be noted that by allowing  to run over positive and negative values, the photon absorption (with  positive and
hence w positive) and the stimulated emission case (with  negative and hence  negative) are both included in this expression
(as long as g( ) is defined as g(| |) so that the negative-  contributions are multiplied by the light source intensity at the
corresponding positive  value).

The following integral identity can be used to replace the -function:

by a form that is more amenable to further development. Then, the state-to-state rate of transition becomes:

Averaging Over Equilibrium Boltzmann Population of Initial States 
If this expression is then multiplied by the equilibrium probability  that the molecule is found in the state  and summed over
all such initial states and summed over all final states  that can be reached from  with photons of energy , the equilibrium
averaged rate of photon absorption by the molecular sample is obtained:

This expression is appropriate for an ensemble of molecules that can be in various initial states  with probabilities . The
corresponding result for transitions that originate in a particular state ( ) but end up in any of the "allowed" (by energy and
selection rules) final states reads:
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For a canonical ensemble, in which the number of molecules, the temperature, and the system volume are specified,  takes the
form:

where Q is the canonical partition function of the molecules and  is the degeneracy of the state  whose energy is 

In the above expression for , a double sum occurs. Writing out the elements that appear in this sum in detail, one finds:

In situations in which one is interested in developing an expression for the intensity arising from transitions to all allowed final
states, the sum over these final states can be carried out explicitly by first writing

and then using the fact that the set of states { } are complete and hence obey

The result of using these identities as well as the Heisenberg definition of the time dependence of the dipole operator

is:

In this form, one says that the time dependence has been reduce to that of an equilibrium averaged (n.b., the ) time

correlation function involving the component of the dipole operator along the external electric field at t = 0 ( ) and this
component at a different time .

Photon Emission and Absorption 
If  is positive (i.e., in the photon absorption case), the above expression will yield a non-zero contribution when multiplied by 

 and integrated over positive  values. If  is negative (as for stimulated photon emission), this expression will contribute,
again when multiplied by , for negative -values. In the latter situation,  is the equilibrium probability of finding the
molecule in the (excited) state from which emission will occur; this probability can be related to that of the lower state  by

In this form, it is important to realize that the excited and lower states are treated as individual states, not as levels that might
contain a degenerate set of states.

The absorption and emission cases can be combined into a single net expression for the rate of photon absorption by recognizing
that the latter process leads to photon production, and thus must be entered with a negative sign. The resultant expression for the
net rate of decrease of photons is:
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The Line Shape and Time Correlation Functions 
Now, it is convention to introduce the so-called "line shape" function :

in terms of which the net photon absorption rate is

As stated above, the function

is called the equilibrium averaged time correlation function of the component of the electric dipole operator along the direction of
the external electric field . Its Fourier transform is , the spectral line shape function. The convolution of  with the

light source's (\g(\omega\)) function, multiplied by , the correction for stimulated photon emission, gives the net rate

of photon absorption.

This page titled 15.4: Time Correlation Function Expressions for Transition Rates is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.
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CHAPTER OVERVIEW

16: Collisions and Scattering
Collisions among molecules can also be viewed as a problem in time-dependent quantum mechanics. The perturbation is the
"interaction potential" and the time dependence arises from the movement of the nuclear positions.

16.1: One Dimensional Scattering
16.2: Multichannel Problems
16.3: Classical Treatment of Nuclear Motion
16.4: Wavepackets
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16.1: One Dimensional Scattering
Atom-atom scattering on a single Born-Oppenheimer energy surface can be reduced to a one-dimensional Schrödinger equation by
separating the radial and angular parts of the three-dimensional Schrödinger equation in the same fashion as used for the Hydrogen
atom in Chapter 1. The resultant equation for the radial part (R) of the wavefunction can be written as:

where L is the quantum number that labels the angular momentum of the colliding particles whose reduced mass is . 
 
Defining 

The combination of the "centrifugal potential"  and the electronic potential V(R) thus produce a total "effective

potential" for describing the radial motion of the system.

The simplest reasonable model for such an effective potential is provided by the "square well" potential illustrated below. This
model V(R) could, for example, be applied to the L = 0 scattering of two atoms whose bond dissociation energy is  and whose
equilibrium bond length for this electronic surface lies somewhere between R = 0 and R = .

Figure 16.1.1: Insert caption here!

The piecewise constant nature of this particular V(R) allows exact solutions to be written both for bound and scattering states
because the Schrödinger equation 

admits simple sinusoidal solutions.

Bound States 

The bound states are characterized by having E < D . For the inner region, the two solutions to the above equation are

and
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where

is termed the "local wave number" because it is related to the momentum values for the  components of such a function:

The cos(kR) solution must be excluded (i.e., its amplitude B in the general solution of the Schrödinger equation must be chosen
equal to 0.0) because this function does not vanish at R = 0, where the potential moves to infinity and thus the wavefunction must
vanish. This means that only the

term remains for this inner region.

Within the asymptotic region (R > R ) there are also two solutions to the Schrödinger equation:

and

where

Clearly, one of these functions is a decaying function of R for large R and the other  grows exponentially for large R. The latter's
amplitude D must be set to zero because this function generates a probability density that grows larger and larger as R penetrates
deeper and deeper into the classically forbidden region (where E < V(R)).

To connect  in the inner region to  in the outer region, we use the fact that  and  must be continuous except at points R
where V(R) undergoes an infinite discontinuity (see Chapter 1). Continuity of  gives:

and continuity of  yields

These two equations allow the ratio C/A as well as the energy E (which appears in  and in k) to be determined:

The condition that determines E is based on the well known requirement that the determinant of coefficients must vanish for
homogeneous linear equations to have no-trivial solutions (i.e., not A = C = 0):

The vanishing of this determinant can be rewritten as

or
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When employed in the expression for A/C, this result gives

For very large D  compared to E, the above equation for E reduces to the familiar "particle in a box" energy level result since 

vanishes in this limit, and thus tan(kR ) = 0, which is equivalent to sin(kR ) = 0, which yields the familiar  and 

= 0, so ).

When D  is not large compared to E, the full transcendental equation  must be solved numerically or
graphically for the eigenvalues , n = 1, 2, 3, ... . These energy levels, when substituted into the definitions for k and  give the
wavefunctions:

The one remaining unknown A can be determined by requiring that the modulus squared of the wavefunction describe a probability
density that is normalized to unity when integrated over all space:

Note that this condition is equivalent to

which would pertain to the original radial wavefunction. In the case of an infinitely deep potential well, this normalization
condition reduces to

which produces

Scattering States 
The scattering states are treated in much the same manner. The functions 

 must vanish at R = 0 where
the potential moves to infinity. However, in the exterior region (R> R ), the two solutions are now written as:

where the large-R local wavenumber

arises because E >  for scattering states.

The conditions that  still apply:
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and

However, these two equations (in three unknowns A, C, and D) can no longer be solved to generate eigenvalues E and amplitude
ratios. There are now three amplitudes as well as the E value but only these two equations plus a normalization condition to be
used. The result is that the energy no longer is specified by a boundary condition; it can take on any value. We thus speak of
scattering states as being "in the continuum" because the allowed values of E form a continuum beginning at E =  (since the zero
of energy is defined in this example as at the bottom of the potential well).

The R > R  components of  are commonly referred to as "incoming"

and "outgoing"

because their radial momentum eigenvalues are -  k', respectively. It is a common convention to define the amplitude D
so that the flux of incoming particles is unity.

Choosing

produces an incoming wavefunction whose current density is:

This means that there is one unit of current density moving inward (this produces the minus sign) for all values of R at which  is
an appropriate wavefunction (i.e., R > ). This condition takes the place of the probability normalization condition specified in
the boundstate case when the modulus squared of the total wavefunction is required to be normalized to unity over all space.
Scattering wavefunctions can not be so normalized because they do not decay at large R; for this reason, the flux normalization
condition is usually employed. The magnitudes of the outgoing (C) and short range (A) wavefunctions relative to that of the
incoming function (D) then provide information about the scattering and "trapping" of incident flux by the interaction potential.

Once D is so specified, the above two boundary matching equations are written as a set of two inhomogeneous linear equations in
two unknowns (A and C):

and

or

Non-trivial solutions for A and C will exist except when the determinant of the matrix on the left side vanishes:
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which can be true only if

This equation is not obeyed for any (real) value of the energy E, so solutions for A and C in terms of the specified D can always be
found.

In summary, specification of unit incident flux is made by choosing D as indicated above. For any collision energy E > D , the 2x1
array on the right hand side of the set of linear equations written above can be formed, as can the 2x2 matrix on the left side. These
linear equations can then be solved for A and C. The overall wavefunction for this E is then given by:

Shape Resonance States 

If the angular momentum quantum number L in the effective potential introduced earlier is non-zero, this potential has a repulsive
component at large R. This repulsion can combine with short-range attractive interactions due, for example, to chemical bond
forces, to produce an effective potential that one can model in terms of simple piecewise functions shown below.

Figure 16.1.1: Insert caption here!

Again, the piecewise nature of the potential allows the one-dimensional Schrödinger equation to be solved analytically. For
energies below D , one again finds bound states in much the same way as illustrated above (but with the exponentially decaying
function 

For energies lying above D  + V, scattering states occur and the four amplitudes of the functions (sin(kR), e
 appropriate to each R-region are determined in terms of the

amplitude of the incoming asymptotic function 
.

For energies lying in the range D  < E < D , a qualitatively different class of scattering function exists. These so-called
shape resonance states occur at energies that are determined by the condition that the amplitude of the wavefunction within the
barrier (i.e., for 0  ) be large so that incident flux successfully tunnels through the barrier and builds up, through
constructive interference, large probability amplitude there. Let us now turn our attention to this specific energy regime.

The piecewise solutions to the Schrödinger equation appropriate to the shaperesonance case are easily written down:

Note that both exponentially growing and decaying functions are acceptable in the  region because this
region does not extend to . There are four amplitudes (A, B+, B- , and C) that must be expressed in terms of the specified

) = .tan(kRmax

ik'

k

e

Ψ = Asin(kR)

Ψ = C +Deik'R e-ik'R

(for 0  ≤  R  ≤ ) Rmax

≤ R < ∞).(for Rmax

e

 used in the region  ≤ R ≤ +δ, with  = ).e-k'R Rmax Rmax κ′ 2μ(− −δV −E)/De ℏ2− −−−−−−−−−−−−−−−−−√

e δ

 with k''' =  ), )(±i k'''R) 2μ( +δV +E)/De ℏ2− −−−−−−−−−−−−−−−−√  and e (ik'R)

 from the four equations obtained by matching Ψ and   and at  +δDe(-ik'R) dΨ
dR

 at Rmax Rmax

e  + δVe

≤  R  ≤ Rmax

Ψ = Asin(kR)

Ψ = +B+e Rκ′
B−e− Rκ′

Ψ = C +Deik'R e-ikR

(for 0  ≤  R  ≤ )Rmax

≤  R  ≤ +δ)(for Rmax Rmax

+δ ≤  R  ≤ ∞)(for Rmax

≤  R  ≤ +δRmax Rmax

R = ∞

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/60582?pdf


16.1.6 https://chem.libretexts.org/@go/page/60582

amplitude D of the incoming flux. Four equations that can be used to achieve this goal result when 
:

It is especially instructive to consider the value of A/D that results from solving this set of four equations in four unknowns because
the modulus of this ratio provides information about the relative amount of amplitude that exists inside the centrifugal barrier in the
attractive region of the potential compared to that existing in the asymptotic region as incoming flux.

The result of solving for A/D is:

Further, it is instructive to consider this result under conditions of a high (large V - E) and thick (large ) barrier. In such a
case, the "tunnelling factor"  will be very small compared to its counterpart , and so

The  factor in A/D causes the magnitude of the wavefunction inside the barrier to be small in most circumstances; we say that
incident flux must tunnel through the barrier to reach the inner region and that  gives the probability of this tunnelling. The
magnitude of the A/D factor could become large if the collision energy E is such that

is small. In fact, if

this denominator factor in A/D will vanish and A/D will become infinite. Note that the above condition is similar to the energy
quantization condition

that arose when bound states of a finite potential well were examined earlier in this Chapter. There is, however, an important
difference. In the bound-state situation

and

in this shape-resonance case, k is the same, but

rather than  occurs, so the two tan(k ) equations are not identical.

Ψ and  +δdΨ
dR

 are matched at R max  and at Rmax

Asin(k ) = + ,Rmax B+eκ′Rmax B−e−κ′Rmax

Akcos(k ) = − ,Rmax κ′B+eκ′Rmax κ′B−e−κ′Rmax
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√

κ = ;
2μ( −E)De

ℏ2

− −−−−−−−−−
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However, in the case of a very high barrier (so thats  is much larger than k), the denominator

in A/D can become small if

This condition is nothing but the energy quantization condition that would occur for the particle-in-a-box potential shown below.

Figure 16.1.4: Insert caption here!

This potential is identical to the true effective potential for , but extends to infinity beyond  ; the barrier and
the dissociation asymptote displayed by the true potential are absent.

In summary, when a barrier is present on a potential energy surface, at energies above the dissociation asymptote  but below the
top of the barrier  here), one can expect shape-resonance states to occur at "special" scattering energies E. These socalled
resonance energies can often be approximated by the bound-state energies of a potential that is identical to the potential of interest
in the inner region  here) but that extends to infinity beyond the top of the barrier (i.e., beyond the barrier, it does
not fall back to values below E).

The chemical significance of shape resonances is great. Highly rotationally excited molecules may have more than enough total
energy to dissociate , but this energy may be "stored" in the rotational motion, and the vibrational energy may be less than .
In terms of the above model, high angular momentum may produce a significant barrier in the effective potential, but the system's
vibrational energy may lie significantly below . In such a case, and when viewed in terms of motion on an angular momentum
modified effective potential, the lifetime of the molecule with respect to dissociation is determined by the rate of tunnelling through
the barrier.

For the case at hand, one speaks of "rotational predissociation" of the molecule. The lifetime  can be estimated by computing the
frequency  at which flux existing inside  strikes the barrier at 

and then multiplying by the probability P that flux tunnels through the barrier from R  to R :

The result s that

with the energy E entering into k and  being determined by the resonance condition: ( )+kcos(kR )) = minimum.

κ′

sin(k ) +kcos(k ) ≈ sin(k )κ′ Rmax Rmax κ′ Rmax

sin(k ) ≈ 0.Rmax

0 ≤ R ≤ Rmax Rmax

De

( +δVDe

(0 ≤ R ≤ Rmax

( )De De

De

τ

ν Rmax Rmax

ν = )
ℏk

2μRmax

 (sec−1

max +δmax

P =  .e−2 δκ′

=
1

τ

ℏk

2μRmax

e−2 δκ′

κ′ sin(kκ′ Rmax max
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Although the examples treated above involved piecewise constant potentials (so the Schrödinger equation and the boundary
matching conditions could be solved exactly), many of the characteristics observed carry over to more chemically realistic
situations. As discussed, for example, in Energetic Principles of Chemical Reactions , J. Simons, Jones and Bartlett, Portola
Valley, Calif. (1983), one can often model chemical reaction processes in terms of:

1. motion along a "reaction coordinate" (s) from a region characteristic of reactant materials where the potential surface is
positively curved in all direction and all forces (i.e., gradients of the potential along all internal coordinates) vanish,

2. to a transition state at which the potential surface's curvature along s is negative while all other curvatures are positive and all
forces vanish,

3. onward to product materials where again all curvatures are positive and all forces vanish.

Within such a "reaction path" point of view, motion transverse to the reaction coordinate s is often modelled in terms of local
harmonic motion although more sophisticated treatments of the dynamics is possible. In any event, this picture leads one to
consider motion along a single degree of freedom (s), with respect to which much of the above treatment can be carried over,
coupled to transverse motion along all other internal degrees of freedom taking place under an entirely positively curved potential
(which therefore produces restoring forces to movement away from the "streambed" traced out by the reaction path s).

This page titled 16.1: One Dimensional Scattering is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack
Simons via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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16.2: Multichannel Problems
When excited electronic states are involved, couplings between two or more electronic surfaces may arise. Dynamics occuring on
an excited-state surface may evolve in a way that produces flux on another surface. For example, collisions between an
electronically excited 1s2s( S) He atom and a ground-state 1s S) He atom occur on a potential energy surface that is repulsive at
large R (due to the repulsive interaction between the closed-shell 1s  He and the large 2s orbital) but attractive at smaller R (due to
the  orbital occupancy arising from the three 1s-derived electrons). The ground-state potential energy surface for this system
(pertaining to two 1s S) He atoms is repulsive at small R values (because of the  nature of the electronic state). In this
case, there are two Born-Oppenheimer electronic-nuclear motion states that are degenerate and thus need to be combined to
achieve a proper description of the dynamics:

pertaining to the ground electronic state and the scattering state  on this energy surface, and

pertaining to the excited electronic state and the nuclear-motion state  on this energy surface. Both of these wavefunctions can
have the same energy E; the former has high nuclear-motion energy and low electronic energy, while the latter has higher electronic
energy and lower nuclear-motion energy.

A simple model that can be used to illustrate the two-state couplings that arise in such cases is introduced through the two one-
dimensional piecewise potential surfaces shown below.

Figure 16.2.1: Insert Caption here!

The dashed energy surface

provides a simple representation of a repulsive lower-energy surface, and the solid-line plot represents the excited-state surface that
has a well of depth  and whose well lies  above the ground-state surface.

In this case, and for energies lying above zero (for E < 0, only nuclear motion on the lower energy dashed surface is "open" (i.e.,
accessible)) yet below , the nuclear motion wavefunction can have amplitudes belonging to both surfaces. That is, the total
(electronic and nuclear) wavefunction consists of two portions that can be written as:

and

3 2(1

2

σ2σ*1

2(1 σ2σ*2

= (R, θ, ϕ)Ψ1 ∣∣σ2σ*2∣∣Ψground.

Ψground.

= 2 (R. θ, ϕ)Ψ2 ∣∣σ
2σ*1 σ1∣∣Ψex.

Ψex.

V (R) = −Δ for 0  ≤ R < ∞)

De Δ

De

Ψ = Aϕsin(kR) + sin( R) ( for 0 ≤ R ≤ )ϕ′′A′′ k′′ Rmax

Ψ = Aϕsin(k ) + sin( R) ≤ R < ∞),Rmax eκRmax e−κR ϕ′′A′′ k′′  (for Rmax
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where  and  denote the electronic functions belonging to the upper and lower energy surfaces, respectively. The wavenumbers
k and k'' are defined as:

and  is as before

For the lower-energy surface, only the sin(k''R) function is allowed because the cos(k''R) function does not vanish at R=0.

The Coupled Channel Equations 
In such cases, the relative amplitudes (A and A'') of the nuclear motion wavefunctions on each surface must be determined by
substituting the above "two-channel" wavefunction ( the word channel is used to denote separate asymptotic states of the system; in
this case, the  electronic states) into the full Schrödinger equation. In Chapter 3, the couplings among Born-Oppenheimer
states were so treated and resulted in the following equation:

where  denote the electronic energy surfaces and nuclear-motion wavefunctions,  denote the corresponding
electronic wavefunctions, and the  represent derivatives with respect to the various coordinates of the nuclei. Changing to the
notation used in the one-dimensional model problem introduced above, these so-called coupled-channel equations read:

when the index j refers to the ground-state surfaces (V(R) = - , for ( 0 < R < ), and

when the index j refers to the excited-state surface (where V(R)) = 0, for 0 < R  and V(R) = D  for R  ).

Clearly, if the right-hand sides of the above equations are ignored, one simply recaptures the Schrödinger equations describing
motion on the seperate potential energy surfaces:
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that describe motion on the lower-energy surface, and

describing motion on the upper surface on which the bonding interaction occurs. The terms on the right-hand sides provide the
couplings that cause the true solutions to the Schrödinger equation to be combinations of solutions for the two separate surfaces.

In applications of the coupled-channel approach illustrated above, coupled sets of second order differential equations (two in the
above example) are solved by starting with a specified flux in one of the channels and a chosen energy E. For example, one might
specify the amplitude A to be unity to represent preparation of the system in a bound vibrational level (with E < D ) of the excited
electronic-state potential. One would then choose E to be one of the eigenenergies of that potential. Propagation methods could be
used to solve the coupled differential equations subject to these choices of E and A. The result would be the determination of the
amplitude A' of the wavefunction on the groundstate surface. The ratio A'/A provides a measure of the strength of coupling
between the two Born-Oppenheimer states

Perturbative Treatment 
Alternatively, one can treat the coupling between the two states via time dependent perturbation theory. For example, by taking A =
1.0 and choosing E to be one of the eigenenergies of the excited-state potential, one is specifying that the system is initially (just
prior to t = 0) prepared in a state whose wavefunction is:

From t = 0 on, the coupling to the other state

is induced by the "perturbation" embodied in the terms on the right-hand side of the coupled-channel equations

Within this time dependent perturbation theory framework, the rate of transition of probability amplitude from the initially prepared
state (on the excited state surface) to the ground-state surface is proportional to the square of the perturbation matrix elements
between these two states:

The matrix elements occurring here contain two distinct parts:
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has to do with the electronic state couplings that are induced by radial movement of the nuclei; and both

relate to couplings between the two nuclear-motion wavefunctions induced by these same radial motions. For a transition to occur,
both the electronic and nuclear-motion states must undergo changes. The initially prepared state (the bound state on the upper
electronic surface) has high electronic and low nuclear-motion energy, while the state to which transitions may occur (the scattering
state on the lower electronic surface) has low electronic energy and higher nuclear-motion energy.

Of course, in the above example, the integrals over R can be carried out if the electronic matrix elements  can be

handled. In practical chemical applications (for an introductory treatment see Energetic Principles of Chemical Reactions , J.
Simons, Jones and Bartlett, Portola Valley, Calif. (1983)), the evaluation of these electronic matrix elements is a formidable task
that often requires computation intensive techniques such as those discussed in Section 6.

Even when the electronic coupling elements are available (or are modelled or parameterized in some reasonable manner), the
solution of the coupled-channel equations that govern the nuclear motion is a demanding task. For the purposes of this text, it
suffices to note that:

1. couplings between motion on two or more electronic states can and do occur;
2. these couplings are essential to treat whenever the electronic energy difference (i.e., the spacing between pairs of Born-

Oppenheimer potential surfaces) is small (i.e., comparable to vibrational or rotational energy level spacings);
3. there exists a rigorous theoretical framework in terms of which one can evaluate the rates of so-called radiationless transitions

between pairs of such electronic, vibrational, rotational states. Expressions for such transitions involve (a) electronic matrix
elements that depend on how strongly the electronic states are modulated by movement  of the nuclei, and (b)

nuclear-motion integrals connecting the initial and final nuclear-motion wavefunctions, which also contain  because they

describe the "recoil" of the nuclei induced by the electronic transition.

Chemical Relevance 
As presented above, the most obvious situation of multichannel dynamics arises when electronically excited molecules undergo
radiationless relaxation (e.g., internal conversion when the spin symmetry of the two states is the same or intersystem crossing
when the two states differ in spin symmetry). These subjects are treated in some detail in the text Energetic Principles of
Chemical Reactions , J. Simons, Jones and Bartlett, Portola Valley, Calif. (1983)) where radiationless transitions arising in
photochemistry and polyatomic molecule reactivity are discussed.

Let us consider an example involving the chemical reactivity of electronically excited alkaline earth or  transition metal
atoms with H  molecules. The particular case for  has been studied experimentally and theoretically. In
such systems, the potential energy surface connecting to ground-state Cd S) + H  becomes highly repulsive as the collision
partners approach (see the depiction provided in the Figure shown below). The three surfaces that correlate with the Cd ( P) + H
species prepared by photo-excitation of Cd( S) behave quite differently as functions of the Cd-to-H  distance because in each the
singly occupied 6p orbital assumes a different orientation relative to the H  molecule's bond axis. For (near) C  orientations, these
states are labeled , , and ; they have the 6p orbital directed as shown in the second Figure, respectively. The
corresponding triplet surfaces that derive from Cd (  behave, as functions of the Cd-to-H  distance (R) in similar manner,
except they are shifted to lower energy because Cd ( ) lies below Cd ( P) by ca. 37 kcal/mol.

Collisions between Cd (  can occur on any of the three surfaces mentioned above. Flus on the  surface is primarily
reflected (at low collision energies characteristic of the thermal experiments) because this surface is quite repulsive at large R. Flux
on the  surface can proceed in to quite small R (ca. 2.4 Å ) before repulsive forces on this surface reflect it. At geometries near
R = 2.0Å and  = 0.88 Å, the highly repulsive  surface intersects this  surface from below. At and near this intersection,
a combination of spin-orbit coupling (which is large for Cd) and non-adiabatic coupling may induce flux to evolve onto the 
surface, after which fragmentation to Cd (  could occur.
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In contrast, flux on the  surface propogates inward under attractive forces to R = 2.25 Å and  = 0.79 Å where it may evolve
onto the  surface which intersects from below. At and near this intersection, a combination of spin-orbit coupling (which is
large for Cd) and non-adiabatic coupling may induce flux to evolve onto the  surface, after which fragmentation to Cd (

 could occur. Flux that continues to propogate inward to smaller R values experiences even stronger attractive forces that
lead, near R = 1.69 Å and  = 1.54 Å, to an intersection with the  surface that connects to Cd ( . Here, non-adiabatic
couplings may cause flux to evolve onto the  surface which may then lead to formation of ground state Cd (

 both of which are energetically possible. Processes in which electronically excited atoms
produce groundstate atoms through such collisions and surface hopping are termed "electronic quenching".

The nature of the non-adiabatic couplings that arise in the two examples given above are quite different. In the former case, when
the  surfaces are in close proximity to one another, the first-order coupling element:

is non-zero only for nuclear motions (i.e.,  ) of  symmetry. For the  collision complex being considered in (or
near)  symmetry, such a motion corresponds to rotational motion of the nuclei about an axis lying parallel to the H-H bond
axis. In contrast, to couple the  electronic states through an element of the form

the motion must be of  symmetry. This movement corresponds to asymmetric vibrational motion of the two Cd-H
interatomic coordinates.

The implications of these observations are clear. For example, in so-called halfcollision experiments in which a van der Waals 
 complex is probed, internal rotational motion would be expected to enhance  quenching, whereas asymmetric

vibrational motion should enhance the  process.

Moreover, the production of ground-state Cd (  surface hopping (near R = 1.69 Å and  = 1.54 Å)
should also be enhanced by asymmetric vibrational excitation. The  surfaces also provide, through their non-adiabatic
couplings, a "gateway" to formation of the asymmetric bond cleavage products  It can be shown that the curvature
(i.e., second energy derivative) of a potential energy surface consists of two parts: (i) one part that in always positive, and (ii) a
second that can be represented in terms of the non-adiabatic coupling elements between the two surfaces and the energy gap E
between the two surfaces. Applied to the two states at hand, this second contributor to the curvature of the  surface is:

Clearly, when the  state is higher in energy but strongly non-adiabatically coupled to the  state, negative curvature along the
asymmetric  vibrational mode is expected for the  state. When the  state is lower in energy, negative curvature along the 

 vibrational mode is expected for the  state (because the above expression also expresses the curvature of the  state).

Therefore, in the region of close-approach of these two states, state-to-state surface hopping can be facile. Moreover, one of the two
states (the lower lying at each geometry) will likely possess negative curvature along the  vibrational mode. It is this negative
curvature that causes movement away from  symmetry to occur spontaneously, thus leading to the  reaction
products.
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Coupled-state dynamics can also be used to describe situations in which vibrational rather than electronic-state transitions occur.
For example, when van der Waals complexes such as HCl...Ar undergo so-called vibrational predissociation, one thinks in terms of
movement of the Ar atom relative to the center of mass of the HCl molecule playing the role of the R coordinate above, and the
vibrational state of HCl as playing the role of the quantized (electronic) state in the above example.

In such cases, a vibrationally excited HCl molecule (e.g., in v = 1) to which an Ar atom is attached via weak van der Waals
attraction transfers its vibrational energy to the Ar atom, subsequently dropping to a lower (e.g., v = 0) vibrational level. Within the
twocoupled-state model introduced above, the upper energy surface pertains to Ar in a bound vibrational level (having dissociation
energy ) with HCl in an excited vibrational state (  being the v = 0 to v = 1 vibrational energy gap), and the lower surface
describes an Ar atom that is free from the HCl molecule that is itself in its v = 0 vibrational state. In this case, the coordinate R is
the Ar-to-HCl distance.

In analogy with the electronic-nuclear coupling example discussed earlier, the rate of transition from HCl (v=1) bound to Ar to
HCl(v=0) plus a free Ar atom depends on the strength of coupling between the Ar...HCl relative motion coordinate (R) and the HCl
internal vibrational coordinate. The  coupling elements in this case are integrals over the HCl vibrational coordinate x
involving the v = 0 ( ) and v = 1 ( ) vibrational functions. The integrals over the R coordinate in the earlier expression for the
rate of radiationless transitions now involve integration over the distance R between the Ar atom and the center of mass of the HCl
molecule.

This completes our discussion of dynamical processes in which more than one Born-Oppenheimer state is involved. There are many
situations in molecular spectroscopy and chemical dynamics where consideration of such coupled-state dynamics is essential.
These cases are characterized by

1. total energies E which may be partitioned in two or more ways among the internal degrees of freedom (e.g., electronic and
nuclear motion or vibrational and ad-atom in the above examples),

2. Born-Oppenheimer potentials that differ in energy by a small amount (so that energy transfer from the other degree(s) of
freedom is facile).

This page titled 16.2: Multichannel Problems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack
Simons via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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16.3: Classical Treatment of Nuclear Motion
For all but very elementary chemical reactions (e.g., D + HH  HD + H or F + HH  FH + H) or scattering processes (e.g., CO
(v,J) + He  CO (v',J') + He), the above fully quantal coupled equations simply can not be solved even when modern
supercomputers are employed.Fortunately, the Schrödinger equation can be replaced by a simple classical mechanics treatment of
nuclear motions under certain circumstances.

For motion of a particle of mass  along a direction R, the primary condition under which a classical treatment of nuclear motion is
valid

relates to the fractional change in the local momentum defined as:

along R within the 3N - 5 or 3N - 6 dimensional internal coordinate space of the molecule, as well as to the local de Broglie
wavelength

The inverse of the quantity  can be thought of as the length over which the momentum changes by 100%. The above

condition then states that the local de Broglie wavelength must be short with respect to the distance over which the potential
changes appreciably. Clearly, whenever one is dealing with heavy nuclei that are moving fast (so |p| is large), one should anticipate
that the local de Broglie wavelength of those particles may be short enough to meet the above criteria for classical treatment.

It has been determined that for potentials characteristic of typical chemical bonding (whose depths and dynamic range of
interatomic distances are well known), and for all but low-energy motions (e.g., zero-point vibrations) of light particles such as
Hydrogen and Deuterium nuclei or electrons, the local de Broglie wavelengths are often short enough for the above condition to be
met (because of the large masses  of non-Hydrogenic species) except when their velocities approach zero (e.g., near classical
turning points). It is therefore common to treat the nuclear-motion dynamics of molecules that do not contain H or D atoms in a
purely classical manner, and to apply so-called semi-classical corrections near classical turning points. The motions of H and D
atomic centers usually require quantal treatment except when their kinetic energies are quite high.

Classical Trajectories 

To apply classical mechanics to the treatment of nuclear-motion dynamics, one solves Newtonian equations

where  denotes one of the 3N cartesian coordinates of the atomic centers in the molecule, m  is the mass of the atom associated
with this coordinate, and  is the derivative of the potential, which is the electronic energy (R), along the  coordinate's
direction. Starting with coordinates { (0)} and corresponding momenta { (0)} at some initial time t = 0, and given the ability to
compute the force -  at any location of the nuclei, the Newton equations can be solved (usually on a computer) using finite-
difference methods:

In so doing, one generates a sequence of coordinates { } and momenta { }, one for each "time step" tn. The histories
of these coordinates and momenta as functions of time are called "classical trajectories". Following them from early times,
characteristic of the molecule(s) at "reactant" geometries, through to late times, perhaps characteristic of "product" geometries,
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allows one to monitor and predict the fate of the time evolution of the nuclear dynamics. Even for large molecules with many

atomic centers, propagation of such classical trajectories is feasible on modern computers if the forces -  can be computed in a
manner that does not consume inordinate amounts of computer time.

In Section 6, methods by which such force calculations are performed using firstprinciples quantum mechanical methods (i.e., so-
called ab initio methods) are discussed. Suffice it to say that these calculations are often the rate limiting step in carrying out
classical trajectory simulations of molecular dynamics. The large effort involved in the ab initio determination of electronic
energies and their gradients -  motivate one to consider using empirical "force field" functions V  (R) in place of the ab initio
electronic energy E  (R). Such model potentials V\)_j\) (R), are usually constructed in terms of easy to compute and to differentiate
functions of the interatomic distances and valence angles that appear in the molecule. The parameters that appear in the attractive
and repulsive parts of these potentials are usually chosen so the potential is consistent with certain experimental data (e.g., bond
dissociation energies, bond lengths, vibrational energies, torsion energy barriers).

For a large polyatomic molecule, the potential function V usually contains several distinct contributions:

Here  gives the dependence of V on stretching displacements of the bonds (i.e., interatomic distances between pairs of
bonded atoms) and is usually modeled as a harmonic or Morse function for each bond in the molecule:

or

where the index J labels the bonds and the  are the force constant and equilibrium bond length parameters for the
 bond.

 describes the bending potentials for each triplet of atoms (ABC) that are bonded in a A-B-C manner; it is usually modeled in
terms of a harmonic potential for each such bend:

The  are the equilibrium angles and force constants for the J  angle.

 represents the van der Waals interactions between all pairs of atoms that are not bonded to one another. It is usually
written as a sum over all pairs of such atoms (labeled J and K) of a Lennard-Jones 6-12 potential:

where  are parameters relating to the repulsive and dispersion attraction forces, respectively for the 
atoms.

 contributions describe the dependence of V on angles of rotation about single bonds. For example, rotation of a CH  group
around the single bond connecting the carbon atom to another group may have an angle dependence of the form:

where  is the torsion rotation angle, and  is the magnitude of the interaction between the C-H bonds and the group on the atom
bonded to carbon.

 contains the interactions among polar bonds or other polar groups (including any charged groups). It is usually written
as a sum over pairs of atomic centers (J and K) of Coulombic interactions between fractional charges {Q } (chosen to represent the
bond polarity) on these atoms:
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Although the total potential V as written above contains many components, each is a relatively simple function of the Cartesian
positions of the atomic centers. Therefore, it is relatively straightforward to evaluate V and its gradient along all 3N Cartesian
directions in a computationally efficient manner. For this reason, the use of such empirical force fields in so-called molecular
mechanics simulations of classical dynamics is widely used for treating large organic and biological molecules.

Initial Conditions 
No single trajectory can be used to simulate chemical reaction or collisions that relate to realistic experiments. To generate classical
trajectories that are characteristic of particular experiments, one must choose many initial conditions (coordinates and momenta)
the collection of which is representative of the experiment. For example, to use an ensemble of trajectories to simulate a molecular
beam collision between H and Cl atoms at a collision energy E, one must follow many classical trajectories that have a range of
"impact parameters" (b) from zero up to some maximum value b  beyond which the H ....Cl interaction potential vanishes. The
figure shown below describes the impact parameter as the distance of closest approach that a trajectory would have if no attractive
or repulsive forces were operative.

Figure 16.3.1: Insert caption here!

Moreover, if the energy resolution of the experiment makes it impossible to fix the collision energy closer than an amount E, one
must run collections of trajectories for values of E lying within this range.

If, in contrast, one wishes to simulate thermal reaction rates, one needs to follow trajectories with various E values and various
impact parameters b from initiation at t = 0 to their conclusion (at which time the chemical outcome is interrogated). Each of these

trajectories must have their outcome weighted by an amount proportional to a Boltzmann factor , where R is the ideal gas
constant and T is the temperature because this factor specifies the probability that a collision occurs with kinetic energy E.

As the complexity of the molecule under study increases, the number of parameters needed to specify the initial conditions also
grows. For example, classical trajectories that relate to  need to be specified by providing (i) an impact
parameter for the F to the center of mass of , (ii) the relative translational energy of the F and , (iii) the radial momentum and
coordinate of the  molecule's bond length, and (iv) the angular momentum of the  molecule as well as the angle of the H-H
bond axis relative to the line connecting the F atom to the center of mass of the  molecule. Many such sets of initial conditions
must be chosen and the resultant classical trajectories followed to generate an ensemble of trajectories pertinent to an experimental
situation.

It should be clear that even the classical mechanical simulation of chemical experiments involves considerable effort because no
single trajectory can represent the experimental situation. Many trajectories, each with different initial conditions selected so they
represent, as an ensemble, the experimental conditions, must be followed and the outcome of all such trajectories must be averaged
over the probability of realizing each specific initial condition.

Analyzing Final Conditions 

Even after classical trajectories have been followed from t = 0 until the outcomes of the collisions are clear, one needs to properly
relate the fate of each trajectory to the experimental situation. For the  example used above, one needs to
examine each trajectory to determine, for example, (i) whether HF + H products are formed or non-reactive collision to produce F
+  has occurred, (ii) the amount of rotational energy and angular momentum that is contained in the HF product molecule, (iii)
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the amount of relative translational energy that remains in the H + FH products, and (iv) the amount of vibrational energy that ends
up in the HF product molecule.

Because classical rather than quantum mechanical equations are used to follow the time evolution of the molecular system, there is
no guarantee that the amount of energy or angular momentum found in degrees of freedom for which these quantities should be
quantized will be so. For example,  trajectories may produce HF molecules with internal vibrational energy
that is not a half integral multiple of the fundamental vibrational frequency w of the HF bond. Also, the rotational angular
momentum of the HF molecule may not fit the formula , where I is HF's moment of inertia.

To connect such purely classical mechanical results more closely to the world of quantized energy levels, a method know as
"binning" is often used. In this technique, one assigns the outcome of a classical trajectory to the particular quantum state (e.g., to a
vibrational state v or a rotational state J of the HF molecule in the above example) whose quantum energy is closest to the
classically determined energy. For the HF example at hand, the classical vibrational energy  is simply used to define, as the
closest integer, a vibrational quantum number v according to:

Likewise, a rotational quantum number J can be assigned as the closest integer to that determined by using the classical rotational
energy  in the formula:

which is the solution of the quadratic equation  By following many trajectories and assigning vibrational
and rotational quantum numbers to the product molecules formed in each trajectory, one can generate histograms giving the
frequency with which each product molecule quantum state is observed for the ensemble of trajectories used to simulate the
experiment of interest. In this way, one can approximately extract product-channel quantum state distributions from classical
trajectory simulations.

This page titled 16.3: Classical Treatment of Nuclear Motion is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
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16.4: Wavepackets
In an attempt to combine the attributes and stregths of classical trajectories, which allow us to "watch" the motions that molecules
undergo, and quantum mechanical wavefunctions, which are needed if interference phenomena are to be treated, a hybrid approach
is sometimes used. A popular and rather successful such point of view is provided by so called coherent state wavepackets.

A quantum mechanical wavefunction ) that is a function of all pertinent degrees of freedom (denoted collectively by x)
and that depends on two sets of parameters (denoted X and P, respectively) is defined as follows:

Here,  is the uncertainty

along the  degree of freedom for this wavefunction, defined as the mean squared displacement away from the average
coordinate

So, the parameter  specifies the average value of the coordinate . In like fashion, it can be shown that the parameter  is
equal to the average value of the momentum along the  coordinate:

The uncertainty in the momentum along each coordinate:

is given, for functions of the coherent state form, in terms of the coordinate uncertainty as

Of course, the general Heisenberg uncertainty condition

limits the coordinate and momentum uncertainty products for arbitrary wavefunctions. The coherent state wave packet functions
are those for which this uncertainty product is minimum . In this sense, coherent state wave packets are seen to be as close to
classical as possible since in classical mechanics there are no limits placed on the resolution with which one can observe
coordinates and momenta

These wavepacket functions are employed as follows in the most straightforward treatements of combined quantal/classical
mechanics:

1. Classical trajectories are used, as discribed in greater detail above, to generate a series of coordinates 
 { }.

2. These classical coordinates and momenta are used to define a wavepacket function as written above, whose 
parameters are taken to be the coordinates and momenta of the classical trajectory. In effect, the wavepacket moves around
"riding" the classical trajectory's coordiates and momenta as time evolves

3. At any time , the quantum mechanical properties of the system are computed by forming the expectation values of the
corresponding quantum operators for a wavepacket wavefunction of the form given above with  given by the
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classical coordinates and momenta at that time .

Such wavepackets are, of course, simple approximations to the true quantum mechanical functions of the system because they do
not obey the Schrödinger equation appropriate to the system. The should be expected to provide accurate representations to the true
wavefunctions for systems that are more classical in nature (i.e., when the local de Broglie wave lengths are short compared to the
range over which the potentials vary appreciably). For species containing light particles (e.g., electrons or H atoms) or for low
kinetic energies, the local de Broglie wave lengths will not satisfy such criteria, and these approaches can be expected to be less
reliable. For further information about the use of coherent state wavepackets in molecular dynamics and molecular spectroscopy,
see E. J. Heller, Acc. Chem. Res. 14 , 368 (1981).

This completes our treatment of the subjects of molecular dynamics and molecular collisions. Neither its depth not its level was at
the research level; rather, we intended to provide the reader with an introduction to many of the theoretical concepts and methods
that arise when applying either the quantum Schrödinger equation or classical Newtonian mechanics to chemical reaction
dynamics. Essentially none of the experimental aspects of this subject (e.g., molecular beam methods for preparing "cold"
molecules, laser pump/probe methods for preparing reagents in specified quantum states and observing products in such states)
have been discussed. An excellent introduction to both the experimental and theoretical foundations of modern chemical and
collision dynamics is provided by the text Molecular Reaction Dynamics and Chemical Reactivity by R. D. Levine and R. B.
Bernstein, Oxford Univ. Press (1987).
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CHAPTER OVERVIEW

17: Higher Order Corrections to Electronic Structure
Electrons interact via pairwise Coulomb forces; within the "orbital picture" these interactions are modelled by less difficult to treat
"averaged" potentials. The difference between the true Coulombic interactions and the averaged potential is not small, so to achieve
reasonable (ca. 1 kcal/mol) chemical accuracy, high-order corrections to the orbital picture are needed.

17.1: Orbitals, Configurations, and the Mean-Field Potential
17.2: Electron Correlation Requires Moving Beyond a Mean-Field Model
17.3: Moving from Qualitative to Quantitative Models
17.4: Atomic Units
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17.1: Orbitals, Configurations, and the Mean-Field Potential
The discipline of computational ab initio quantum chemistry is aimed at determining the electronic energies and wavefunctions of
atoms, molecules, radicals, ions, solids, and all other chemical species. The phrase ab initio implies that one attempts to solve the
Schrödinger equation from first principles, treating the molecule as a collection of positive nuclei and negative electrons moving
under the influence of coulombic potentials, and not using any prior knowledge about this species' chemical behavior.

To make practical use of such a point of view requires that approximations be introduced; the full Schrödinger equation is too
difficult to solve exactly for any but simple model problems. These approximations take the form of physical concepts (e.g.,
orbitals, configurations, quantum numbers, term symbols, energy surfaces, selection rules, etc.) that provide useful means of
organizing and interpreting experimental data and computational methods that allow quantitative predictions to be made.

Essentially all ab initio quantum chemistry methods use, as a starting point from which improvements are made, a picture in which
the electrons interact via a one-electron additive potential. These so-called mean-field potentials

provide descriptions of atomic and molecular structure that are approximate. Their predictions must be improved to achieve
reasonably accurate solutions to the true electronic Schrödinger equation. In so doing, three constructs that characterize essentially
all ab initio quantum chemical methods are employed: orbitals, configurations, and electron correlation.

Since the electronic kinetic energy operator is one-electron additive

the mean-field Hamiltonian

is also of this form. The additivity of  implies that the mean-field wavefunctions { } can be formed in terms of products of
functions { } of the coordinates of the individual electrons, and that the corresponding energies { } are additive. Thus, it is the
ansatz that  is separable that leads to the concept of orbitals, which are the one-electron functions { }. These orbitals are
found by solving the one-electron Schrödinger equations:

the eigenvalues { } are called orbital energies.

Because each of the electrons also possesses intrinsic spin, the one-electron functions { } used in this construction are taken to be
eigenfunctions of ( )) multiplied by either . This set of functions is called the set of mean-field spin-orbitals.

Given the complete set of solutions to this one-electron equation, a complete set of N-electron mean-field wavefunctions can be
written down. Each  is constructed by forming an antisymmetrized product of N spin-orbitals chosen from the set of { },
allowing each spin-orbital in the list to be a function of the coordinates of one of the N electrons (e.g,

as above). The corresponding mean field energy is evaluated as the sum over those spin-orbitals that appear in :

By choosing to place N electrons into specific spin-orbitals, one has specified a configuration. By making other choices of which
N  to occupy, one describes other configurations. Just as the one-electron mean-field Schrödinger equation has a complete set of
spin-orbital solutions { }, the N-electron mean-field Schrödinger equation has a complete set of N-electron configuration
state functions (CSFs)  and energies .
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17.2: Electron Correlation Requires Moving Beyond a Mean-Field Model
To improve upon the mean-field picture of electronic structure, one must move beyond the single-configuration approximation. It is
essential to do so to achieve higher accuracy, but it is also important to do so to achieve a conceptually correct view of chemical
electronic structure. However, it is very disconcerting to be told that the familiar  configuration description of the carbon
atom is inadequate and that instead one must think of the  ground state of this atom as a 'mixture' of multiple (often considered
"excited-state") configurations:

and any other configurations whose angular momenta can be coupled to produce  and .

Although the picture of configurations in which  electrons occupy  spin-orbitals may be very familiar and useful for
systematizing electronic states of atoms and molecules, these constructs are approximations to the true states of the system. They
were introduced when the mean-field approximation was made, and neither orbitals nor configurations describe the proper
eigenstates { }.

The picture of configurations in which  electrons occupy  spin-orbitals is very
familiar and useful for systematizing electronic states of atoms and molecules, but these
constructs are approximations to the true states of the system.

The inclusion of instantaneous spatial correlations among electrons is necessary to achieve a more accurate description of atomic
and molecular electronic structure. No single spin-orbital product wavefunction is capable of treating electron correlation to any
extent; its product nature renders it incapable of doing so.
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17.3: Moving from Qualitative to Quantitative Models
The preceding Chapters introduced, in a qualitative manner, many of the concepts which are used in applying quantum mechanics
to electronic structures of atoms and molecules. Atomic, bonding, non-bonding, antibonding, Rydberg, hybrid, and delocalized
orbitals and the configurations formed by occupying these orbitals were discussed. Spin and spatial symmetry as well as
permutational symmetry were treated, and properly symmetry-adapted configuration state functions were formed. The Slater-
Condon rules were shown to provide expressions for Hamiltonian matrix elements (and those involving any one- or two-electron
operator) over such CSFs in terms of integrals over the orbitals occupied in the CSFs. Orbital, configuration, and state correlation
diagrams were introduced to allow one to follow the evolution of electronic structures throughout a 'reaction path'.

Section 6 addresses the quantitative and computational implementation of many of the above ideas. It is not designed to address
all of the state-of-the-art methods which have been, and are still being, developed to calculate orbitals and state wavefunctions. The
rapid growth in computer hardware and software power and the evolution of new computer architectures makes it difficult, if not
impossible, to present an up-to-date overview of the techniques that are presently at the cutting edge in computational chemistry.
Nevertheless, this Section attempts to describe the essential elements of several of the more powerful and commonly used methods;
it is likely that many of these elements will persist in the next generation of computational chemistry techniques although the
details of their implementation will evolve considerably. The text by Szabo and Ostlund provides excellent insights into many of
the theoretical methods treated in this Section.
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17.4: Atomic Units
The electronic Hamiltonian is expressed, in this Section, in so-called atomic units (aus)

These units are introduced to remove all  factors from the equations.

To effect this unit transformation, one notes that the kinetic energy operator scales as  whereas the coulombic potentials scale as
 and as . So, if each of the distances appearing in the cartesian coordinates of the electrons and nuclei were expressed as a

unit of length  multiplied by a dimensionless length factor, the kinetic energy operator would involve terms of the form 

, and the coulombic potentials would appear as . A factor of  (which has units of energy

since  has units of length) can then be removed from the coulombic and kinetic energies, after which the kinetic energy terms
appear as  and the potential energies appear as . Then, choosing  changes the kinetic energy

terms into ; as a result, the entire electronic Hamiltonian takes the form given above in which no  factors

appear. The value of the so-called Bohr radius  is 0.529 Å, and the so-called Hartree energy unit , which factors out of
, is 27.21 eV or 627.51 kcal/mol.
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CHAPTER OVERVIEW

18: Multiconfiguration Wavefunctions
The single Slater determinant wavefunction (properly spin and symmetry adapted) is the starting point of the most common mean
field potential. It is also the origin of the molecular orbital concept.

18.1: Optimization of the Energy for a Multiconfiguration Wavefunction
18.2: The Single-Determinant Wavefunction
18.3: The Unrestricted Hartree-Fock Spin Impurity Problem
18.4: Atomic Orbital Basis Sets
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18.7: Observations on Orbitals and Orbital Energies
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18.1: Optimization of the Energy for a Multiconfiguration Wavefunction

The Energy Expression 

The most straightforward way to introduce the concept of optimal molecular orbitals is to consider a trial wavefunction of the form
which was introduced earlier in Chapter 9.2. Consider a multi-electron wavefunction of the multiconfigurational form

where  is a space- and spin-adapted configuration state function (CSF) consisting of determinental wavefunctions of spin-
orbitals ( ):

The expectation value of the Hamiltonian with this wavefunction

can be expanded as:

The spin- and space-symmetry of the  SCFs determine the symmetry of the state  whose energy is to be optimized. In this
form, it is clear that  is a quadratic function of the  amplitudes ; it is a quartic functional of the spin-orbitals because the
Slater-Condon rules express each  CI matrix element in terms of one- and two-electron integrals 

 over these spin-orbitals.

The Fock and Secular Equations 
The variational method can be used to optimize the above expectation value expression for the electronic energy (i.e., to make the
functional stationary) as a function of the CI coefficients  and the LCAO-MO coefficients { } that characterize the spin-
orbitals. However, in doing so the set of { } can not be treated as entirely independent variables. The fact that the spin-orbitals {

} are assumed to be orthonormal imposes a set of constraints on the { }:

These constraints can be enforced within the variational optimization of the energy function mentioned above by introducing a set
of Lagrange multipliers { } , one for each constraint condition, and subsequently differentiating

with respect to each of the  variables.

Upon doing so, the following set of equations is obtained (early references to the derivation of such equations include A. C. Wahl,
J. Chem. Phys. 41,2600 (1964) and F. Grein and T. C. Chang, Chem. Phys. Lett. 12 , 44 (1971) and R. Shepard, p 63, in Adv. in
Chem. Phys. LXIX, K. P. Lawley, Ed., WileyInterscience, New York (1987); the subject is also treated in the textbook Second
Quantization Based Methods in Quantum Chemistry, P. Jørgensen and J. Simons, Academic Press, New York (1981))) :

with  and
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where the  are Lagrange multipliers.

The set of equations in Equation  that govern the { } amplitudes are called the CI-secular equations. The set of equations
in Equation  that determine the LCAO-MO coefficients of the spin-orbitals { } are called the Fock equations. The Fock
operator F is given in terms of the one- and two-electron operators in H itself as well as the so-called one- and two-electron density
matrices  which are defined below. These density matrices reflect the averaged occupancies of the various spin
orbitals in the CSFs of . The resultant expression for  is:

where h is the one-electron component of the Hamiltonian (i.e., the kinetic energy operator and the sum of coulombic attractions to
the nuclei). The operator  is defined by:

where the integration denoted d ' is over the spatial and spin coordinates. The so-called spin integration simply means that the 
 spin function associated with  must be the same as the  spin function associated with  or the integral will vanish.

This is a consequence of the orthonormality conditions 

One- and Two- Electron Density Matrices 

The density matrices introduced above can most straightforwardly be expressed in terms of the CI amplitudes and the nature of the
orbital occupancies in the CSFs of  as follows:

1.  is the sum over all CSFs, in which  is occupied, of the square of the CI coefficient of that CSF: 

2.  is the sum over pairs of CSFs which differ by a single spin-orbital occupancy (i.e., one having  occupied where the other
has  occupied after the two are placed into maximal coincidence-the sign factor (sign) arising from bringing the two to
maximal coincidence is attached to the final density matrix element): 

 
The two-electron density matrix elements are given in similar fashion:

3. 

4.  (it can be shown, in general that  is odd under

exchange of i and j, odd under exchange of k and l and even under (i,j) (k,l) exchange; this implies that  vanishes if i = j
or k = l.);

5.  

6.  

These density matrices are themselves quadratic functions of the CI coefficients and they reflect all of the permutational symmetry
of the determinental functions used in constructing ; they are a compact representation of all of the Slater-Condon rules as
applied to the particular CSFs which appear in . They contain all information about the spin-orbital occupancy of the CSFs in .
The one- and two- electron integrals  contain all of the information about the magnitudes of the
kinetic and Coulombic interaction energies.
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18.2: The Single-Determinant Wavefunction
The simplest trial function of the form given above is the single Slater determinant function:

For such a function, the CI part of the energy minimization is absent (the classic papers in which the SCF equations for closed- and
open-shell systems are treated are C. C. J. Roothaan, Rev. Mod. Phys. 23 , 69 (1951); 32 , 179 (1960)) and the density matrices
simplify greatly because only one spin-orbital occupancy is operative. In this case, the orbital optimization conditions reduce to:

where the so-called Fock operator  is given by

The coulomb ( ) and exchange ( ) operators are defined by the relations:

and

Again, the integration implies integration over the spin variables associated with the  (and, for the exchange operator,  ), as a
result of which the exchange integral vanishes unless the spin function of  is the same as that of  ; the coulomb integral is non-
vanishing no matter what the spin functions of .

The sum over coulomb and exchange interactions in the Fock operator runs only over those spin-orbitals that are occupied in the
trial . Because a unitary transformation among the orbitals that appear in  leaves the determinant unchanged (this is a property
of determinants- det (UA) = det (U) det (A) = 1 det (A), if U is a unitary matrix), it is possible to choose such a unitary
transformation to make the  matrix diagonal. Upon so doing, one is left with the so-called canonical Hartree-Fock equations:

where  is the diagonal value of the  matrix after the unitary transformation has been applied; that is,  is an eigenvalue of the 
 matrix. These equations are of the eigenvalue-eigenfunction form with the Fock operator playing the role of an effective one-

electron Hamiltonian and the  playing the role of the one-electron eigenfunctions.

It should be noted that the Hartree-Fock equations  possess solutions for the spin-orbitals which appear in  (the so-
called occupied spin-orbitals) as well as for orbitals which are not occupied in  ( the so-called virtual spin-orbitals). In fact, the F
operator is hermitian, so it possesses a complete set of orthonormal eigenfunctions; only those which appear in  appear in the
coulomb and exchange potentials of the Fock operator. The physical meaning of the occupied and virtual orbitals will be clarified
later in this Chapter (Section VII.A).
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18.3: The Unrestricted Hartree-Fock Spin Impurity Problem
As formulated above in terms of spin-orbitals, the Hartree-Fock (HF) equations yield orbitals that do not guarantee that 
possesses proper spin symmetry. To illustrate the point, consider the form of the equations for an open-shell system such as the
Lithium atom Li. If ,  spin-orbitals are chosen to appear in the trial function , then the Fock operator will
contain the following terms:

Acting on an  spin-orbital  with  and carrying out the spin interfrations, one obtains

In contrast, when acting on a  spin-orbital, one obtains

Spin-orbitals of  type do not experience the same exchange potential in this model, which is clearly due to the fact that 
contains two a spin-orbitals and only one  spin-orbital.

One consequence of the spin-polarized nature of the effective potential in F is that the optimal  spin-orbitals, which
are themselves solutions of , do not have identical orbital energies (i.e.,  ) and are not spatially identical to
one another ( i.e.,  do not have identical LCAO-MO expansion coefficients). This resultant spin polarization of the
orbitals in . That is, the determinant  is not a pure doublet spin eigenfunction
although it is an  eigenfunction with ; it contains both  components. If the  spin-
orbitals were spatially identical, then  would be a pure spin eigenfunction with .

The above single-determinant wavefunction is commonly referred to as being of the unrestricted Hartree-Fock (UHF) type
because no restrictions are placed on the spatial nature of the orbitals which appear in . In general, UHF wavefunctions are not of
pure spin symmetry for any open-shell system. Such a UHF treatment forms the starting point of early versions of the widely used
and highly successful Gaussian 70 through Gaussian- 8X series of electronic structure computer codes which derive from J. A.
Pople and coworkers (see, for example, M. J. Frisch, J. S. Binkley, H. B. Schlegel, K Raghavachari, C. F. Melius, R. L. Martin, J. J.
P. Stewart, F. W. Bobrowicz, C. M. Rohling, L. R. Kahn, D. J. Defrees, R. Seeger, R. A. Whitehead, D. J. Fox, E. M. Fleuder, and J.
A. Pople, Gaussian 86 , Carnegie-Mellon Quantum Chemistry Publishing Unit, Pittsburgh, PA (1984)).

The inherent spin-impurity problem is sometimes 'fixed' by using the orbitals which are obtained in the UHF calculation to
subsequently form a properly spin-adapted wavefunction. For the above Li atom example, this amounts to forming a new
wavefunction (after the orbitals are obtained via the UHF process) using the techniques detailed in Section 3 and Appendix G:

This wavefunction is a pure  state. This prescription for avoiding spin contamination (i.e., carrying out the UHF calculation
and then forming a new spin-pure ) is referred to as spin-projection.

It is, of course, possible to first form the above spin-pure  as a trial wavefunction and to then determine the orbitals 1s 1s' and 2s
which minimize its energy; in so doing, one is dealing with a spin-pure function from the start. The problem with carrying out this
process, which is referred to as a spin-adapted Hartree-Fock calculation, is that the resultant 1s and 1s' orbitals still do not have
identical spatial attributes. Having a set of orbitals (1s, 1s', 2s, and the virtual orbitals) that form a non-orthogonal set (1s and 1s' are
neither identical nor orthogonal) makes it difficult to progress beyond the singleconfiguration wavefunction as one often wishes to
do. That is, it is difficult to use a spinadapted wavefunction as a starting point for a correlated-level treatment of electronic motions.

Before addressing head-on the problem of how to best treat orbital optimization for open-shell species, it is useful to examine how
the HF equations are solved in practice in terms of the LCAO-MO process.

This page titled 18.3: The Unrestricted Hartree-Fock Spin Impurity Problem is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.
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18.4: Atomic Orbital Basis Sets
The basis orbitals commonly used in the LCAO-MO-SCF process fall into two classes Slater-type orbitals and Cartesian Gaussian-type orbitals.

Slater-type orbitals (STO) are characterized by quantum numbers , , and  and exponents (which characterize the 'size' of the basis function) :

and  denotes the normalization constant.

Cartesian Gaussian-type orbitals (GTO) are characterized by quantum numbers , , and  which detail the angular shape and direction of the orbital and exponents  which govern the radial 'size'
of the basis function akin to  in STOs.

For example, orbitals with , , and  values of 1,0,0 or 0,1,0 or 0,0,1 are , , and  orbitals; those with , , and  values of 2, 0, 0 or 0, 2, 0 or 0, 0, 2 and 1, 1, 0 or 0, 1, 1 or 1, 0, 1 span the
space of five d orbitals and one s orbital (the sum of the 2, 0, 0 and 0, 2, 0 and 0, 0, 2 orbitals is an s orbital because  is independent of ).

For both types of orbitals, the coordinates  refer to the position of the electron relative to a set of axes attached to the center on which the basis orbital is located.

Although STOs are preferred on fundamental grounds (e.g., as demonstrated in Appendices A and B, the hydrogen atom orbitals are of this form and the exact solution of the many-electron
Schrödinger equation can be shown to be of this form (in each of its coordinates) near the nuclear centers), STOs are used primarily for atomic and linear-molecule calculations because the multi-
center integrals  (each basis orbital can be on a separate atomic center) which arise in polyatomic-molecule calculations can not efficiently be performed when STOs are employed.
In contrast, such integrals can routinely be done when GTOs are used. This fundamental advantage of GTOs has lead to the dominance of these functions in molecular quantum chemistry.

To understand why integrals over GTOs can be carried out when analogous STO based integrals are much more difficult, one must only consider the orbital products (  )
which arise in such integrals. For orbitals of the GTO form, such products involve . By completing the square in the exponent, this product can be rewritten as follows:

where

and

Thus, the product of two GTOs on different centers is equal to a single other GTO at a center  between the two original centers. As a result, even a four-center two-electron integral over GTOs
can be written as, at most, a two-center two-electron integral; it turns out that this reduction in centers is enough to allow all such integrals to be carried out. A similar reduction does not arise for
STOs because the product of two STOs can not be rewritten as a new STO at a new center.

To overcome the primary weakness of GTO functions, that they have incorrect behavior near the nuclear centers (i.e., their radial derivatives vanish at the nucleus whereas the derivatives of STOs are
non-zero), it is common to combine two, three, or more GTOs, with combination coefficients which are fixed and not treated as LCAO-MO parameters, into new functions called contracted GTOs or
CGTOs. Typically, a series of tight, medium, and loose GTOs (i.e., GTOs with large, medium, and small  values, respectively) are multiplied by so-called contraction coefficients and summed to
produce a CGTO which appears to possess the proper 'cusp' (i.e., non-zero slope) at the nuclear center (although even such a combination can not because each GTO has zero slope at the nucleus).

Basis Set Libraries 

Much effort has been devoted to developing sets of STO or GTO basis orbitals for main-group elements and the lighter transition metals. This ongoing effort is aimed at providing standard basis set
libraries which:

1. Yield reasonable chemical accuracy in the resultant wavefunctions and energies.
2. Are cost effective in that their use in practical calculations is feasible.
3. Are relatively transferrable in the sense that the basis for a given atom is flexible enough to be used for that atom in a variety of bonding environments (where the atom's hybridization and local

polarity may vary).

The Fundamental Core and Valence Basis 

In constructing an atomic orbital basis to use in a particular calculation, one must choose from among several classes of functions. First, the size and nature of the primary core and valence basis must
be specified. Within this category, the following choices are common:

1. A minimal basis in which the number of STO or CGTO orbitals is equal to the number of core and valence atomic orbitals in the atom.
2. A double-zeta (DZ) basis in which twice as many STOs or CGTOs are used as there are core and valence atomic orbitals. The use of more basis functions is motivated by a desire to provide

additional variational flexibility to the LCAO-MO process. This flexibility allows the LCAO-MO process to generate molecular orbitals of variable diffuseness as the local electronegativity of the
atom varies. Typically, double-zeta bases include pairs of functions with one member of each pair having a smaller exponent (  value) than in the minimal basis and the other member having
a larger exponent.

3. A triple-zeta (TZ) basis in which three times as many STOs or CGTOs are used as the number of core and valence atomic orbitals.
4. Dunning has developed CGTO bases which range from approximately DZ to substantially beyond TZ quality (T. H. Dunning, J. Chem. Phys. 53 , 2823 (1970); T. H. Dunning and P. J. Hay in

Methods of Electronic Structure Theory, H. F. Schaefer, III Ed., Plenum Press, New York (1977))). These bases involve contractions of primitive GTO bases which Huzinaga had earlier
optimized (S. Huzinaga, J. Chem. Phys. 42 , 1293 (1965)) for use as uncontracted functions (i.e., for which Huzinaga varied the  values to minimize the energies of several electronic states of the
corresponding atom). These Dunning bases are commonly denoted, for example, as follows for first-row atoms: (10s,6p/5s,4p), which means that 10 s-type primitive GTOs have been contracted to
produce 5 separate s-type CGTOs and that 6 primitive p-type GTOs were contracted to generate 4 separate p-type CGTOs. More recent basis sets from the Dunning group are given in T. Dunning,
J. Chem. Phys. 90 , 1007 (1990).

5. Even-tempered basis sets (M. W. Schmidt and K. Ruedenberg, J. Chem. Phys. 71 , 3961 (1979)) consist of GTOs in which the orbital exponents ak belonging to series of orbitals consist of
geometrical progressions: , where  and  characterize the particular set of GTOs.

6. STO-3G bases were employed some years ago (W. J. Hehre, R. F. Stewart, and J. A. Pople, J. Chem. Phys. 51 , 2657 (1969)) but are less popular recently. These bases are constructed by least
squares fitting GTOs to STOs which have been optimized for various electronic states of the atom. When three GTOs are employed to fit each STO, a STO-3G basis is formed.

7. 4-31G, 5-31G, and 6-31G bases (R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys. 54 , 724 (1971); W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 56 , 2257 (1972); P. C.
Hariharan and J. A. Pople, Theoret. Chim. Acta. (Berl.) 28 , 213 (1973); R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72 , 650 (1980)) employ a single CGTO of
contraction length 4, 5, or 6 to describe the core orbital. The valence space is described at the DZ level with the first CGTO constructed from 3 primitive GTOs and the second CGTO built from a
single primitive GTO.

The values of the orbital exponents ( ) and the GTO-to-CGTO contraction coefficients needed to implement a particular basis of the kind described above have been tabulated in several
journal articles and in computer data bases (in particular, in the data base contained in the book Handbook of Gaussian Basis Sets: A. Compendium for Ab initio Molecular Orbital Calculations ,
R. Poirer, R. Kari, and I. G. Csizmadia, Elsevier Science Publishing Co., Inc., New York, New York (1985)).
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Several other sources of basis sets for particular atoms are listed in the Table shown below (here JCP and JACS are abbreviations for the Journal of Chemical Physics and the Journal of The American
Chemical Society, respectively).

Literature Reference Basis Type Atoms

Hehre, W.J.; Stewart, R.F.; Pople, J.A. JCP 51 , 2657 (1969). 
Hehre, W.J.; Ditchfield, R.; Stewart, R.F.; Pople, J.A. JCP 52 , 2769 (1970).

STO - 3G H-Ar

Binkley, J.S.; Pople, J.A.; Hehre, W.J. JACS 102 , 939 (1980). 3-21G H-Ne

Gordon, M.S.; Binkley, J.S.; Pople, J.A.; Pietro, W.J.; Hehre, W.J. JACS 104 , 2797 (1982). 3-21G Na-Ar

Dobbs, K.D.; Hehre, W.J., J. Comput. Chem. 7 , 359 (1986). 3-21G K, Ca, G

Dobbs, K.D.; Hehre, W.J., J. Comput. Chem. 8, 880 (1987). 3-21G Sc-Zn

Ditchfield, R.; Hehre, W.J.; Pople, J.A., JCP 54 , 724 (1971). 6-31G H

Dill, J.D.; Pople, J.A., JCP 62 , 2921 (1975). 6-31G Li, B

Binkley, J.S.; Pople, J.A., JCP 66 , 879 (1977) 6-31G Be

Hehre, W.J.; Ditchfield, R.; Pople, J.A., JCP 56 , 2257 (1972). 6-31G C-F

Francl, M.M.; Pietro, W.J.; Hehre, W.J.; Binkley, J.S.; Gordon, M.S.; DeFrees, D.J.; 
Pople, J.A. JCP 77 , 3654 (1982).

6-31G Na-Ar

Dunning, T. JCP 53 , 2823 (1970).

(4s/2s) 
(4s/3s) 

(9s5p/3s2p) 
(9s5p/4s2p) 
(9s5p/5s3p)

H 
H 

B-F 
B-F 
B-F

Dunning, T. JCP 55 , 716 (1971).

(5s/3s) 
(10s/4s) 
(10s/5s) 

(10s6p/5s3p) 
(10s6p/5s4p)

H 
Li 
Be 

B-Ne 
B-Ne

Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. JCP 72 , 650 (1980). 6-311G H-Ne

Dunning, unpublished VDZ.
(4s/2s) 

(9s5p/3s2) 
(12s8p/4s3p)

H 
Li, Be, C-

Na-Ar

Dunning, unpublished VTZ.

 
(5s/3s) 
(6s/3s) 

(12s6p/4s3p) 
(17s10p/5s4p)

H 
H 

Li, Be, C-
Mg-Ar

Dunning, unpublished VQZ.
(7s/4s) 
(8s/4s) 

(16s7p/5s4p)

H 
H 

B-Ne

Dunning, T. JCP 90 , 1007 (1989). (pVDZ,pVTZ,pVQZ correlation-consistent)

(4s1p/2s1p) 
(5s2p1d/3s2p1d) 

(6s3p1d1f/4s3p2d1f) 
(9s4p1d/3s2p1d) 

(10s5p2d1f/4s3p2d1f) 
(12s6p3d2f1g/5s4p3d2f1g)

H 
H 
H 

B-Ne 
B-Ne 
B-Ne

Huzinaga, S.; Klobukowski, M.; Tatewaki, H. Can. J. Chem. 63 , 1812 (1985).

(14s/2s) 
(14s9p/2s1p) 
(16s9p/3s1p) 
(16s11p/3s2p)

Li, Be 
B-Ne 

Na-Mg
Al-Ar

Huzinaga, S.; Klobukowski, M. THEOCHEM. 44 , 1 (1988).

(14s10p/2s1p) 
(17s10p/3s1p) 
(17s13p/3s2p) 
(20s13p/4s2p) 

(20s13p10d/4s2p1d) 
(20s14p9d/4s3d1d)

 
B-Ne 

Na-Mg
Al-Ar 
K-Ca 
Sc-Zn 

Ga

McLean, A.D.; Chandler, G.S. JCP 72 , 5639 (1980).

(12s8p/4s2p) 
(12s8p/5s2p) 
(12s8p/6s4p) 
(12s9p/6s4p) 
(12s9p/6s5p)

Na-Ar, P , S
Na-Ar, P , S
Na-Ar, P , S
Na-Ar, P , S
Na-Ar, P , S

Dunning, T.H.Jr.; Hay, P.J. Chapter 1 in 'Methods of Electronic Structure Theory', 
Schaefer, H.F.III, Ed., Plenum Press, N.Y., 1977.

(11s7p/6s4p) Al-Cl

Hood, D.M.; Pitzer, R.M.; Schaefer, H.F.III, JCP 71 , 705 (1979). (14s11p6d/10s8p3d) Sc-Zn

Schmidt, M.W.; Ruedenberg, K. JCP 71 , 3951 (1979). 
(regular even-tempered)

([N]s), N=3-10 
([2N]s), N=3-10 
([2N]s), N=3-14 

([2N]s[N]p), N=3-11 
([2N]s[N]p), N=3-13 
([2N]s[N]p), N=4-12 

([2N-6]s[N]p), N=7-15

H 
He 

Li, Be 
B, N-Ne

C 
Na, Mg
Al-Ar

Polarization Functions 
In addition to the fundamental core and valence basis described above, one usually adds a set of so-called polarization functions to the basis. Polarization functions are functions of one higher
angular momentum than appears in the atom's valence orbital space (e.g, d-functions for C, N , and O and p-functions for H). These polarization functions have exponents ( ) which cause their
radial sizes to be similar to the sizes of the primary valence orbitals ( i.e., the polarization p orbitals of the H atom are similar in size to the 1s orbital). Thus, they are not orbitals which provide a
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description of the atom's valence orbital with one higher l-value; such higher-l valence orbitals would be radially more diffuse and would therefore require the use of STOs or GTOs with smaller
exponents.

The primary purpose of polarization functions is to give additional angular flexibility to the LCAO-MO process in forming the valence molecular orbitals. This is illustrated below where polarization
d  orbitals are seen to contribute to formation of the bonding  orbital of a carbonyl group by allowing polarization of the Carbon atom's p  orbital toward the right and of the Oxygen atom's p
orbital toward the left.

Figure 18.4.1: Insert caption here!

Polarization functions are essential in strained ring compounds because they provide the angular flexibility needed to direct the electron density into regions between bonded atoms.

Functions with higher l-values and with 'sizes' more in line with those of the lower-l orbitals are also used to introduce additional angular correlation into the calculation by permitting polarized orbital
pairs (see Chapter 10) involving higher angular correlations to be formed. Optimal polarization functions for first and second row atoms have been tabulated (B. Roos and P. Siegbahn, Theoret. Chim.
Acta (Berl.) 17 , 199 (1970); M. J. Frisch, J. A. Pople, and J. S. Binkley, J. Chem. Phys. 80, 3265 (1984)).

Diffuse Functions 

When dealing with anions or Rydberg states, one must augment the above basis sets by adding so-called diffuse basis orbitals. The conventional valence and polarization functions described above do
not provide enough radial flexibility to adequately describe either of these cases. Energy-optimized diffuse functions appropriate to anions of most lighter main group elements have been tabulated in
the literature (an excellent source of Gaussian basis set information is provided in Handbook of Gaussian Basis Sets , R. Poirier, R. Kari, and I. G. Csizmadia, Elsevier, Amsterdam (1985)) and in
data bases. Rydberg diffuse basis sets are usually created by adding to conventional valence-pluspolarization bases sequences of primitive GTOs whose exponents are smaller than that (call it ) of
the most diffuse GTO which contributes strongly to the valence CGTOs. As a 'rule of thumb', one can generate a series of such diffuse orbitals which are liniarly independent yet span considerably
different regions of radial space by introducing primitive GTOs whose exponents are  etc.

Once one has specified an atomic orbital basis for each atom in the molecule, the LCAO-MO procedure can be used to determine the  coefficients that describe the occupied and virtual orbitals in
terms of the chosen basis set. It is important to keep in mind that the basis orbitals are not themselves the true orbitals of the isolated atoms; even the proper atomic orbitals are combinations (with
atomic values for the  coefficients) of the basis functions. For example, in a minimal-basis-level treatment of the Carbon atom, the 2s atomic orbital is formed by combining, with opposite sign to
achieve the radial node, the two CGTOs (or STOs); the more diffuse s-type basis function will have a larger  coefficient in the 2s atomic orbital. The 1s atomic orbital is formed by combining the
same two CGTOs but with the same sign and with the less diffuse basis function having a larger  coefficient. The LCAO-MO-SCF process itself determines the magnitudes and signs of the .

This page titled 18.4: Atomic Orbital Basis Sets is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons via source content that was edited to the style and standards of the
LibreTexts platform; a detailed edit history is available upon request.
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18.5: The LCAO-MO Expansion
The HF equations  comprise a set of integro-differential equations; their differential nature arises from the kinetic
energy operator in h, and the coulomb and exchange operators provide their integral nature. The solutions of these equations must
be achieved iteratively because the  operators in F depend on the orbitals  which are to be solved for. Typical iterative
schemes begin with a 'guess' for those , which then allows F to be formed. Solutions to  are then
found, and those  which possess the space and spin symmetry of the occupied orbitals of  and which have the proper energies
and nodal character are used to generate a new F operator (i.e., new  operators). The new  operator then gives new 

 via solution of the new equations:

This iterative process is continued until the  do not vary significantly from one iteration to the next, at which time one
says that the process has converged. This iterative procedure is referred to as the Hartree-Fock self-consistent field (SCF)
procedure because iteration eventually leads to coulomb and exchange potential fields that are consistent from iteration to iteration.

In practice, solution of Equation  as an integro-differential equation can be carried out only for atoms (C. Froese-Fischer,
Comp. Phys. Commun. 1, 152 (1970)) and linear molecules (P. A. Christiansen and E. A. McCullough, J. Chem. Phys. 67 , 1877
(1977)) for which the angular parts of the  can be exactly separated from the radial because of the axial- or full- rotation group
symmetry (e.g.,  for a linear molecule). In such special cases, 

 gives rise to a set of coupled equations for the (r,q) which can and have been solved. However, for
non-linear molecules, the HF equations have not yet been solved in such a manner because of the three-dimensional nature of the 

 and of the potential terms in F.

In the most commonly employed procedures used to solve the HF equations for non-linear molecules, the  are expanded in a
basis of functions  according to the LCAO-MO procedure:

Doing so then reduces F  to a matrix eigenvalue-type equation of the form:

where  is the overlap matrix among the atomic orbitals (aos) and

is the matrix representation of the Fock operator in the ao basis. The coulomb and exchange-density matrix elements in the ao basis
are:

where the sum in  runs over those occupied spin-orbitals whose  value is equal to that for which the Fock matrix is being
formed (for a closed-shell species, ).

It should be noted that by moving to a matrix problem, one does not remove the need for an iterative solution; the  matrix
elements depend on the  LCAO-MO coefficients which are, in turn, solutions of the so-called Roothaan matrix Hartree-Fock
equations:
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= .F̂ ϕi ϵiϕi (18.5.1)
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One should also note that, just as  possesses a complete set of eigenfunctions, the matrix , whose dimension M is
equal to the number of atomic basis orbitals used in the LCAO-MO expansion, has M eigenvalues  and M eigenvectors whose
elements are the  Thus, there are occupied and virtual molecular orbitals (mos) each of which is described in the LCAO-MO
form with  coefficients obtained via solution of Equations .

This page titled 18.5: The LCAO-MO Expansion is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack
Simons via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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18.6: The Roothaan Matrix SCF Process
The matrix SCF equations introduced earlier

must be solved both for the occupied and virtual orbitals' energies  values. Only the occupied orbitals'  coefficients
enter into the Fock operator

but both the occupied and virtual orbitals are solutions of the SCF equations. Once atomic basis sets have been chosen for each
atom, the one- and two-electron integrals appearing in  must be evaluated. Doing so is a time consuming process, but there
are presently several highly efficient computer codes which allow such integrals to be computed for s, p, d, f, and even g, h, and i
basis functions. After executing one of these 'integral packages' for a basis with a total of N functions, one has available (usually
on the computer's hard disk) of the order of  two-electron integrals over these atomic basis orbitals (the
factors of  arise from permutational symmetries of the integrals). When treating extremely large atomic orbital basis sets
(e.g., 200 or more basis functions), modern computer programs calculate the requisite integrals but never store them on the disk.
Instead, their contributions to  are accumulated 'on the fly' after which the integrals are discarded.

To begin the SCF process, one must input to the computer routine which computes  initial 'guesses' for the  values
corresponding to the occupied orbitals. These initial guesses are typically made in one of the following ways:

1. If one has available C  values for the system from an SCF calculation performed earlier at a nearby molecular geometry, one
can use these Cn,i values to begin the SCF process.

2. If one has  values appropriate to fragments of the system (e.g., for C and O atoms if the CO molecule is under study or for
CH  and O if H CO is being studied), one can use these.

3. If one has no other information available, one can carry out one iteration of the SCF process in which the two-electron
contributions to  are ignored ( i.e., take ) and use the resultant solutions to 

as initial guesses for the . Using only the one-electron part of the Hamiltonian to determine initial values for the LCAO-MO
coefficients may seem like a rather severe step; it is, and the resultant  values are usually far from the converged values
which the SCF process eventually produces. However, the initial  obtained in this manner have proper symmetries and
nodal patterns because the one-electron part of the Hamiltonian has the same symmetry as the full Hamiltonian.

Once initial guesses are made for the  of the occupied orbitals, the full  matrix is formed and new  values are
obtained by solving . These new orbitals are then used to form a new 

 are obtained. This iterative process is carried on until the  do not vary
(within specified tolerances) from iteration to iteration, at which time one says that the SCF process has converged and reached
self-consistency.

As presented, the Roothaan SCF process is carried out in a fully ab initio manner in that all one- and two-electron integrals are
computed in terms of the specified basis set; no experimental data or other input is employed. As described in Appendix F, it is
possible to introduce approximations to the coulomb and exchange integrals entering into the Fock matrix elements that permit
many of the requisite  elements to be evaluated in terms of experimental data or in terms of a small set of 'fundamental' orbital-
level coulomb interaction integrals that can be computed in an ab initio manner. This approach forms the basis of so-called 'semi-
empirical' methods. Appendix F provides the reader with a brief introduction to such approaches to the electronic structure problem
and deals in some detail with the well known Hückel and CNDO- level approximations.
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18.7: Observations on Orbitals and Orbital Energies

The Meaning of Orbital Energies 

The physical content of the Hartree-Fock orbital energies can be seen by observing that  implies that  can be written
as:

In this form, it is clear that  is equal to the average value of the kinetic energy plus Coulombic attraction to the nuclei for an
electron in  plus the sum over all of the spin-orbitals occupied in  of coulomb minus exchange interactions between  and
these occupied spin-orbitals.

If  itself is an occupied spin-orbital, the term [ ] disappears and the latter sum represents the coulomb minus
exchange interaction of  with all of the N-1 other occupied spin-orbitals.
If  is a virtual spin-orbital, this cancellation does not occur, and one obtains the coulomb minus exchange interaction of 
with all N of the occupied spin-orbitals.

In this sense, the orbital energies for occupied orbitals pertain to interactions which are appropriate to a total of N electrons, while
the orbital energies of virtual orbitals pertain to a system with N+1 electrons. It is this fact that makes SCF virtual orbitals not
optimal (in fact, not usually very good) for use in subsequent correlation calculations where, for instance, they are used, in
combination with the occupied orbitals, to form polarized orbital pairs as discussed in Chapter 12. To correlate a pair of electrons
that occupy a valence orbital requires double excitations into a virtual orbital that is not too dislike in size. Although the virtual
SCF orbitals themselves suffer these drawbacks, the space they span can indeed be used for treating electron correlation. To do so,
it is useful to recombine (in a unitary manner to preserve orthonormality) the virtual orbitals to 'focus' the correlating power into as
few orbitals as possible so that the multiconfigurational wavefunction can be formed with as few CSFs as possible. Techniques for
effecting such reoptimization or improvement of the virtual orbitals are treated later in this text.

Koopmans' Theorem 
Further insight into the meaning of the energies of occupied and virtual orbitals can be gained by considering the following model
of the vertical (i.e., at fixed molecular geometry) detachment or attachment of an electron to the original N-electron molecule:

1. In this model, both the parent molecule and the species generated by adding or removing an electron are treated at the single-
determinant level.

2. In this model, the Hartree-Fock orbitals of the parent molecule are used to describe both the parent and the species generated by
electron addition or removal. It is said that such a model neglects 'orbital relaxation' which would accompany the electron
addition or removal (i.e., the reoptimization of the spin-orbitals to allow them to become appropriate to the daughter species).

Within this simplified model, the energy difference between the daughter and the parent species can be written as follows (
represents the particular spin-orbital that is added or removed):

1. For electron detachment: 
 

2. For electron attachment: 

So, within the limitations of the single-determinant, frozen-orbital model set forth, the ionization potentials (IPs) and electron
affinities (EAs) are given as the negative of the occupied and virtual spin-orbital energies, respectively. This statement is referred to

ϕ =F̂ ϵiϕi ϵi
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as Koopmans' theorem (T. Koopmans, Physica 1, 104 (1933)); it is used extensively in quantum chemical calculations as a means
for estimating IPs and EAs and often yields results that are at least qualitatively correct (i.e., ± 0.5 eV).

Koopmans' theorem argues that the ionization potentials and electron affinities are given
as the negative of the occupied and virtual spin-orbital energies, respectively.

Orbital Energies and the Total Energy 
For the N-electron species whose Hartree-Fock orbitals and orbital energies have been determined, the total SCF electronic energy
can be written, by using the Slater-Condon rules, as:

For this same system, the sum of the orbital energies of the occupied spin-orbitals is given by:

These two seemingly very similar expressions differ in a very important way; the sum of occupied orbital energies, when compared
to the total energy, double counts the coulomb minus exchange interaction energies. Thus, within the Hartree-Fock approximation,
the sum of the occupied orbital energies is not equal to the total energy. The total SCF energy can be computed in terms of the sum
of occupied orbital energies by taking one-half of  and then adding to this one-half of 

The fact that the sum of orbital energies is not the total SCF energy also means that as one attempts to develop a qualitative picture
of the energies of CSFs along a reaction path, as when orbital and configuration correlation diagrams are constructed, one must be
careful not to equate the sum of orbital energies with the total configurational energy; the former is higher than the latter by an
amount equal to the sum of the coulomb minus exchange interactions.

The sum of orbital energies is not the total SCF energy.

The Brillouin Theorem 

The condition that the SCF energy be stationary with respect to variations  in the occupied spin-orbitals (that preserve
orthonormality) can be written

The infinitesimal variation of  can be expressed in terms of its (small) components along the other occupied  and along the
virtual  as follows:

When substituted into , the terms  already appears in the original

Slater determinant  contains  twice. Only the sum over virtual orbitals remains, and the
stationary property written above becomes

The Slater-Condon rules allow one to express the Hamiltonian martix elements appearing here as
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which (because the term with j=i can be included since it vanishes) is equal to the following element of the Fock operator: 
. This result proves that Hamiltonian matrix elements between the SCF determinant and those that are

singly excited relative to the SCF determinant vanish because they reduce to Fock-operator integrals connecting the pair of orbitals
involved in the 'excitation'. This stability property of the SCF energy is known as the Brillouin theorem (i.e., that 

 have zero Hamiltonian matrix elements if the s are SCF orbitals). It is exploited in quantum
chemical calculations in two manners:

1. When multiconfiguration wavefunctions are formed from SCF spin-orbitals, it allows one to neglect Hamiltonian matrix
elements between the SCF configuration and those that are 'singly excited' in constructing the secular matrix.

2. A so-called generalized Brillouin theorem (GBT) arises when one deals with energy optimization for a multiconfigurational
variational trial wavefunction for which the orbitals and CI mixing coefficients are simultaneously optimized. This GBT causes
certain Hamiltonian matrix elements to vanish, which, in turn, simplifies the treatment of electron correlation for such
wavefunctions. This matter is treated in more detail later in this text.
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CHAPTER OVERVIEW

19: Multi-Determinant Wavefunctions
Corrections to the mean-field model are needed to describe the instantaneous Coulombic interactions among the electrons. This is
achieved by including more than one Slater determinant in the wavefunction.

19.1: Introduction to Multi-Determinant Wavefunctions
19.2: Different Methods
19.3: Strengths and Weaknesses of Various Methods
19.4: Further Details on Implementing Multiconfigurational Methods
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19.1: Introduction to Multi-Determinant Wavefunctions
Much of the development of the previous chapter pertains to the use of a single Slater determinant trial wavefunction. As presented,
it relates to what has been called the unrestricted Hartree-Fock (UHF) theory in which each spin-orbital  has its own orbital
energy  and LCAO-MO coefficients ; there may be different  for  spin-orbitals than for  spin-orbitals. Such a
wavefunction suffers from the spin contamination difficulty detailed earlier.

To allow for a properly spin- and space- symmetry adapted trial wavefunction and to permit  to contain more than a single CSF,
methods which are more flexible than the single-determinant HF procedure are needed. In particular, it may be necessary to use a
combination of determinants to describe such a proper symmetry function. Moreover, as emphasized earlier, whenever two or more
CSFs have similar energies (i.e., Hamiltonian expectation values) and can couple strongly through the Hamiltonian (e.g., at avoided
crossings in configuration correlation diagrams), the wavefunction must be described in a multiconfigurational manner to permit
the wavefunction to evolve smoothly from reactants to products. Also, whenever dynamical electron correlation effects are to be
treated, a multiconfigurational  must be used; in this case, CSFs that are doubly excited relative to one or more of the essential
CSFs (i.e., the dominant CSFs that are included in the socalled reference wavefunction ) are included to permit polarized-orbital-
pair formation.

Multiconfigurational functions are needed not only to account for electron correlation but also to permit orbital readjustments to
occur. For example, if a set of SCF orbitals is employed in forming a multi-CSF wavefunction, the variational condition that the
energy is stationary with respect to variations in the LCAO-MO coefficients is no longer obeyed (i.e., the SCF energy functional is
stationary when SCF orbitals are employed, but the MC-energy functional is generally not stationary if SCF orbitals are employed).
For such reasons, it is important to include CSFs that are singly excited relative to the dominant CSFs in the reference
wavefunction.

That singly excited CSFs allow for orbital relaxation can be seen as follows. Consider a wavefunction consisting of one CSF 
 to which singly excited CSFs of the form  have been added with coefficients :

All of these determinants have all of their columns equal except the i  column; therefore, they can be combined into a single new
determinant:

where the relaxed orbital 

The sum of CSFs that are singly excited in the  spin-orbital with respect to  is therefore seen to allow the spin-
orbital  to relax into the new spin-orbital . It is in this sense that singly excited CSFs allow for orbital reoptimization.

In summary, doubly excited CSFs are often employed to permit polarized orbital pair formation and hence to allow for electron
correlations. Singly excited CSFs are included to permit orbital relaxation (i.e., orbital reoptimization) to occur.
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19.2: Different Methods
There are numerous procedures currently in use for determining the 'best' wavefunction of the form:

where I is a spin-and space- symmetry adapted CSF consisting of determinants of the form . Excellent
overviews of many of these methods are included in Modern Theoretical Chemistry Vols. 3 and 4, H. F. Schaefer, III Ed., Plenum
Press, New York (1977) and in Advances in Chemical Physics , Vols. LXVII and LXIX, K. P. Lawley, Ed., Wiley-Interscience,
New York (1987). Within the present Chapter, these two key references will be denoted MTC, Vols. 3 and 4, and ACP, Vols. 67 and
69, respectively.

In all such trial wavefunctions, there are two fundamentally different kinds of parameters that need to be determined- the CI
coefficients CI and the LCAO-MO coefficients describing the . The most commonly employed methods used to determine these
parameters include:

1. The multiconfigurational self-consistent field ( MCSCF) method in which the expectation value  is treated

variationally and simultaneously made stationary with respect to variations in the  coefficients subject to the
constraints that the spin-orbitals and the full N-electron wavefunction remain normalized:

The articles by H.-J. Werner and by R. Shepard in ACP Vol. 69 provide up to date reviews of the status of this approach. The
article by A. C. Wahl and G. Das in MTC Vol. 3 covers the 'earlier' history on this topic. F. W. Bobrowicz and W. A. Goddard,
III provide, in MTC Vol. 3, an overview of the GVB approach, which, as discussed in Chapter 12, can be viewed as a specific
kind of MCSCF calculation.

2. The configuration interaction (CI) method in which the LCAO-MO coefficients are determined first (and independently) via
either a singleconfiguration SCF calculation or an MCSCF calculation using a small number of CSFs. The CI coefficients are

subsequently determined by making the expectation value  stationary with respect to variations in the  only. In this

process, the optimizations of the orbitals and of the CSF amplitudes are done in separate steps. The articles by I. Shavitt and by
B. O. Ross and P. E. M. Siegbahn in MTC, Vol. 3 give excellent early overviews of the CI method.

3. The Møller-Plesset perturbation method (MPPT) uses the single-configuration SCF process (usually the UHF
implementation) to first determine a set of LCAO-MO coefficients and, hence, a set of orbitals that obey . Then,
using an unperturbed Hamiltonian equal to the sum of these Fock operators for each of the N electrons ,

perturbation theory (see Appendix D for an introduction to time-independent perturbation theory) is used to determine the CI
amplitudes for the CSFs. The MPPT procedure is also referred to as the many-body perturbation theory (MBPT) method. The
two names arose because two different schools of physics and chemistry developed them for somewhat different applications.
Later, workers realized that they were identical in their working equations when the UHF  is employed as the unperturbed
Hamiltonian. In this text, we will therefore refer to this approach as MPPT/MBPT. 
 
The amplitude for the so-called reference CSF used in the SCF process is taken as unity and the other CSFs' amplitudes are
determined, relative to this one, by RayleighSchrödinger perturbation theory using the full N-electron Hamiltonian minus the
sum of Fock operators H-H0 as the perturbation. The Slater-Condon rules are used for evaluating matrix elements of (H-H )
among these CSFs. The essential features of the MPPT/MBPT approach are described in the following articles: J. A. Pople, R.
Krishnan, H. B. Schlegel, and J. S. Binkley, Int. J. Quantum Chem. 14 , 545 (1978); R. J. Bartlett and D. M. Silver, J. Chem.
Phys. 62 , 3258 (1975); R. Krishnan and J. A. Pople, Int. J. Quantum Chem. 14 , 91 (1978).

4. The Coupled-Cluster method expresses the CI part of the wavefunction in a somewhat different manner (the early work in
chemistry on this method is described in J. Cizek, J. Chem. Phys. 45 , 4256 (1966); J. Paldus, J. Cizek, and I. Shavitt, Phys.
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Rev. A5 , 50 (1972); R. J. Bartlett and G. D. Purvis, Int. J. Quantum Chem. 14 , 561 (1978); G. D. Purvis and R. J. Bartlett, J.
Chem. Phys. 76 , 1910 (1982)):

where  is a single CSF (usually the UHF single determinant) which has been used to independently determine a set of spin-
orbitals and LCAO-MO coefficients via the SCF process. The operator T generates, when acting on , single, double, etc.
'excitations' (i.e., CSFs in which one, two, etc. of the occupied spin-orbitals in  have been replaced by virtual spin-orbitals). T
is commonly expressed in terms of operators that effect such spin-orbital removals and additions as follows:

where the operator  is used to denote creation of an electron in virtual spin-orbital  and the operator j is used to denote
removal of an electron from occupied spin-orbital . 
 
The , etc. amplitudes, which play the role of the CI coefficients in CC theory, are determined through the set of
equations generated by projecting the Schrödinger equation in the form

against CSFs which are single, double, etc. excitations relative to . For example, for double excitations  the equations
read:

zero is obtained on the right hand side because the excited CSFs  are orthogonal to the reference function . The
elements on the left hand side of the CC equations can be expressed, as described below, in terms of one- and two-electron
integrals over the spin-orbitals used in forming the reference and excited CSFs.

Integral Transformations 

All of the above methods require the evaluation of one- and two-electron integrals over the N atomic orbital basis: 
 Eventually, all of these methods provide their working equations and energy expressions in terms

of one- and two electron integrals over the N final molecular orbitals:  and . The mo-based integrals can
only be evaluated by transforming the AO-based integrals as follows:

and

It would seem that the process of evaluating all , each of which requires  additions and
multiplications, would require computer time proportional to . However, it is possible to perform the full transformation of the
two-electron integral list in a time that scales as . This is done by first performing a transformation of the  to an
intermediate array  labeled as follows:

This partial transformation requires  multiplications and additions. The list  is then transformed to a second-level
transformed array :

which requires another  operations. This sequential, one-index-at-a-time transformation is repeated four times until the final 
 array is in hand. The entire transformation done this way requires 4N  multiplications and additions.
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Once the requisite one- and two-electron integrals are available in the molecular orbital basis, the multiconfigurational
wavefunction and energy calculation can begin. These transformations consume a large fraction of the computer time used in most
such calculations, and represent a severe bottleneck to progress in applying ab initio electronic structure methods to larger systems.

Configuration List Choices 

Once the requisite one- and two-electron integrals are available in the molecular orbital basis, the multiconfigurational
wavefunction and energy calculation can begin. Each of these methods has its own approach to describing the configurations { }
included in the calculation and how the { } amplitudes and the total energy E is to be determined.

The number of configurations ( ) varies greatly among the methods and is an important factor to keep in mind when planning
to carry out an ab initio calculation. Under certain circumstances (e.g., when studying Woodward-Hoffmann forbidden reactions
where an avoided crossing of two configurations produces an activation barrier), it may be essential to use more than one electronic
configuration. Sometimes, one configuration (e.g., the SCF model) is adequate to capture the qualitative essence of the electronic
structure. In all cases, many configurations will be needed if highly accurate treatment of electron-electron correlations are desired.

The value of  determines how much computer time and memory is needed to solve the 

secular problem in the CI and MCSCF methods. Solution of these matrix eigenvalue equations requires computer time that scales
as  (if most eigenvalues are obtained).

So-called complete-active-space (CAS) methods form all CSFs that can be created by distributing N valence electrons among P
valence orbitals. For example, the eight noncore electrons of  might be distributed, in a manner that gives , among six
valence orbitals (e.g., two lone-pair orbitals, two OH  bonding orbitals, and two OH  antibonding orbitals). The number of
configurations thereby created is 225 . If the same eight electrons were distributed among ten valence orbitals 44,100
configurations results; for twenty and thirty valence orbitals, 23,474,025 and 751,034,025 configurations arise, respectively.
Clearly, practical considerations dictate that CAS-based approaches be limited to situations in which a few electrons are to be
correlated using a few valence orbitals. The primary advantage of CAS configurations is discussed below in Sec. II. C.

This page titled 19.2: Different Methods is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons
via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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19.3: Strengths and Weaknesses of Various Methods

Variational Methods Such as MCSCF, SCF, and CI Produce Energies that are Upper Bounds, but
These Energies are not Size-Extensive 

Methods that are based on making the energy functional  stationary (i.e., variational methods) yield upper bounds to the

lowest energy of the symmetry which characterizes the CSFs which comprise . These methods also can provide approximate
excited-state energies and wavefunctions (e. g., in the form of other solutions of the secular equation  that arises

in the CI and MCSCF methods). Excited-state energies obtained in this manner can be shown to 'bracket' the true energies of the
given symmetry in that between any two approximate energies obtained in the variational calculation, there exists at least one true
eigenvalue. This characteristic is commonly referred to as the 'bracketing theorem' (E. A. Hylleraas and B. Undheim, Z. Phys. 65 ,
759 (1930); J. K. L. MacDonald, Phys. Rev. 43 , 830 (1933)). These are strong attributes of the variational methods, as is the long
and rich history of developments of analytical and computational tools for efficiently implementing such methods (see the
discussions of the CI and MCSCF methods in MTC and ACP).

However, all variational techniques suffer from at least one serious drawback; they are not size-extensive (J. A. Pople, pg. 51 in
Energy, Structure, and Reactivity , D. W. Smith and W. B. McRae, Eds., Wiley, New York (1973)). This means that the energy
computed using these tools can not be trusted to scale with the size of the system. For example, a calculation performed on two 

 species at large separation may not yield an energy equal to twice the energy obtained by performing the same kind of
calculation on a single  species. Lack of size-extensivity precludes these methods from use in extended systems (e.g., solids)
where errors due to improper scaling of the energy with the number of molecules produce nonsensical results.

By carefully adjusting the kind of variational wavefunction used, it is possible to circumvent size-extensivity problems for selected
species. For example, a CI calculation on  using all  CSFs that can be formed by placing the four valence electrons into the

orbitals  can yield an energy equal to twice that of the Be atom described by CSFs in which the
two valence electrons of the Be atom are placed into the 2s and 2p orbitals in all ways consistent with a S symmetry. Such special
choices of configurations give rise to what are called complete-active-space (CAS) MCSCF or CI calculations (see the article by
B. O. Roos in ACP for an overview of this approach).

Let us consider an example to understand why the CAS choice of configurations works. The S ground state of the Be atom is
known to form a wavefunction that is a strong mixture of CSFs that arise from the  configurations:

where the latter CSF is a short-hand representation for the proper spin- and spacesymmetry adapted CSF

The reason the CAS process works is that the Be  CAS wavefunction has the flexibility to dissociate into the product of two CAS
Be wavefunctions:

where the subscripts a and b label the two Be atoms, because the four electron CAS function distributes the four electrons in all
ways among the  orbitals. In contrast, if the Be  calculation had been carried out using only the following
CSFs :  and all single and double excitations relative to this (dominant) CSF, which is a very common type of
CI procedure to follow, the Be  wavefunction would not have contained the particular CSFs  because these
CSFs are four-fold excited relative to the  'reference' CSF.

In general, one finds that if the 'monomer' uses CSFs that are K-fold excited relative to its dominant CSF to achieve an accurate
description of its electron correlation, a size-extensive variational calculation on the 'dimer' will require the inclusion of CSFs that
are 2K-fold excited relative to the dimer's dominant CSF. To perform a size-extensive variational calculation on a species
containing M monomers therefore requires the inclusion of CSFs that are MxK-fold excited relative to the M-mer's dominant CSF.
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Non-Variational Methods Such as MPPT/MBPT and CC do not Produce Upper Bounds, but Yield
Size-Extensive Energies 

In contrast to variational methods, perturbation theory and coupled-cluster methods achieve their energies from a 'transition
formula'  rather than from an expectation value . It can be shown (H. P. Kelly, Phys. Rev. 131 , 684 (1963))
that this difference allows non-variational techniques to yield size-extensive energies. This can be seen in the MPPT/MBPT case by
considering the energy of two non-interacting Be atoms. The reference CSF is ; the Slater-Condon rules limit
the CSFs in Y which can contribute to

to be  itself and those CSFs that are singly or doubly excited relative to . These 'excitations' can involve atom a, atom b, or both
atoms. However, any CSFs that involve excitations on both atoms ( e.g.,  ) give rise, via the SC rules, to
one- and two- electron integrals over orbitals on both atoms; these integrals ( e.g.,  ) vanish if the atoms are far
apart, as a result of which the contributions due to such CSFs vanish in our consideration of size-extensivity. Thus, only CSFs that
are excited on one or the other atom contribute to the energy:

where  are used to denote the a and b parts of the reference and excited CSFs, respectively.

This expression, once the SC rules are used to reduce it to one- and two- electron integrals, is of the additive form required of any
size-extensive method:

and will yield a size-extensive energy if the equations used to determine the CJa and CJb amplitudes are themselves separable. In
MPPT/MBPT, these amplitudes are expressed, in first order, as:

(and analogously for C ). Again using the SC rules, this expression reduces to one that involves only atom a:

The additivity of E and the separability of the equations determining the C  coefficients make the MPPT/MBPT energy size-
extensive. This property can also be demonstrated for the Coupled-Cluster energy (see the references given above in Chapter 19.
I.4). However, size-extensive methods have at least one serious weakness; their energies do not provide upper bounds to the true
energies of the system (because their energy functional is not of the expectation-value form for which the upper bound property has
been proven).

Which Method is Best? 

At this time, it may not possible to say which method is preferred for applications where all are practical. Nor is it possible to
assess, in a way that is applicable to most chemical species, the accuracies with which various methods predict bond lengths and
energies or other properties. However, there are reasons to recommend some methods over others in specific cases. For example,
certain applications require a size-extensive energy (e.g., extended systems that consist of a large or macroscopic number of units
or studies of weak intermolecular interactions), so MBPT/MPPT or CC or CAS-based MCSCF are preferred. Moreover, certain
chemical reactions (e.g., Woodward-Hoffmann forbidden reactions) and certain bond-breaking events require two or more
'essential' electronic configurations. For them, single-configuration-based methods such as conventional CC and MBTP/MPPT
should not be used; MCSCF or CI calculations would be better. Very large molecules, in which thousands of atomic orbital basis
functions are required, may be impossible to treat by methods whose effort scales as  or higher; density functional methods
would be better to use then.
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For all calculations, the choice of atomic orbital basis set must be made carefully, keeping in mind the N  scaling of the one- and
two-electron integral evaluation step and the  scaling of the two-electron integral transformation step. Of course, basis functions
that describe the essence of the states to be studied are essential (e.g., Rydberg or anion states require diffuse functions, and
strained rings require polarization functions).

As larger atomic basis sets are employed, the size of the CSF list used to treat dynamic correlation increases rapidly. For example,
most of the above methods use singly and doubly excited CSFs for this purpose. For large basis sets, the number of such CSFs, 

, scales as the number of electrons squared, , times the number of basis functions squared, N . Since the effort needed to
solve the CI secular problem varies as , a dependence as strong as N  to N  can result. To handle such large CSF spaces,
all of the multiconfigurational techniques mentioned in this paper have been developed to the extent that calculations involving of
the order of 100 to 5,000 CSFs are routinely performed and calculations using 10,000, 100,000, and even several million CSFs are
practical

Other methods, most of which can be viewed as derivatives of the techniques introduced above, have been and are still being
developed. This ongoing process has been, in large part, stimulated by the explosive growth in computer power and change in
computer architecture that has been realized in recent years. All indications are that this growth pattern will continue, so ab initio
quantum chemistry will likely have an even larger impact on future chemistry research and education (through new insights and
concepts).

This page titled 19.3: Strengths and Weaknesses of Various Methods is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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19.4: Further Details on Implementing Multiconfigurational Methods

The MCSCF Method 

The simultaneous optimization of the LCAO-MO and CI coefficients performed within an MCSCF calculation is a quite
formidable task. The variational energy functional is a quadratic function of the CI coefficients, and so one can express the
stationary conditions for these variables in the secular form:

However, E is a quartic function of the C  coefficients because each matrix element  involves one- and two-electron
integrals over the mos , and the two-electron integrals depend quartically on the  coefficients. The stationary conditions with
respect to these  parameters must be solved iteratively because of this quartic dependence.

It is well known that minimization of a function (E) of several non-linear parameters (the ) is a difficult task that can suffer
from poor convergence and may locate local rather than global minima. In an MCSCF wavefunction containing many CSFs, the
energy is only weakly dependent on the orbitals that are weakly occupied (i.e., those that appear in CSFs with small  values); in
contrast, E is strongly dependent on the  coefficients of those orbitals that appear in the CSFs with larger  values. One is
therefore faced with minimizing a function of many variables (there may be as many  as the square of the number of orbital
basis functions) that depends strongly on several of the variables and weakly on many others. This is a very difficult job.

For these reasons, in the MCSCF method, the number of CSFs is usually kept to a small to moderate number (e.g., a few to several
hundred) chosen to describe essential correlations (i.e., configuration crossings, proper dissociation) and important dynamical
correlations (those electron-pair correlations of angular, radial, left-right, etc. nature that arise when low-lying 'virtual' orbitals are
present). In such a compact wavefunction, only spin-orbitals with reasonably large occupations (e.g., as characterized by the
diagonal elements of the one-particle density matrix j) appear. As a result, the energy functional is expressed in terms of
variables on which it is strongly dependent, in which case the nonlinear optimization process is less likely to be pathological.

Such a compact MCSCF wavefunction is designed to provide a good description of the set of strongly occupied spin-orbitals and of
the CI amplitudes for CSFs in which only these spin-orbitals appear. It, of course, provides no information about the spin-orbitals
that are not used to form the CSFs on which the MCSCF calculation is based. As a result, the MCSCF energy is invariant to a
unitary transformation among these 'virtual' orbitals.

In addition to the references mentioned earlier in ACP and MTC, the following papers describe several of the advances that have
been made in the MCSCF method, especially with respect to enhancing its rate and range of convergence: E. Dalgaard and P.
Jørgensen, J. Chem. Phys. 69 , 3833 (1978); H. J. Aa. Jensen, P. Jørgensen, and H. åÅgren, J. Chem. Phys. 87 , 457 (1987); B. H.
Lengsfield, III and B. Liu, J. Chem. Phys. 75 , 478 (1981).

The Configuration Interaction Method 

In the Configuration Interaction (CI) method, one usually attempts to realize a high-level treatment of electron correlation. A set of
orthonormal molecular orbitals are first obtained from an SCF or MCSCF calculation (usually involving a small to moderate list of
CSFs). The LCAO-MO coefficients of these orbitals are no longer considered as variational parameters in the subsequent CI
calculation; only the  coefficients are to be further optimized.

The CI wavefunction

is most commonly constructed from CSFs  that include:

1. All of the CSFs in the SCF (in which case only a single CSF is included) or MCSCF wavefunction that was used to generate the
molecular orbitals . This set of CSFs are referred to as spanning the 'reference space' of the subsequent CI calculation, and
the particular combination of these CSFs used in this orbital optimization (i.e., the SCF or MCSCF wavefunction) is called the
reference function.

2. CSFs that are generated by carrying out single, double, triple, etc. level 'excitations' (i.e., orbital replacements ) relative to
reference CSFs. CI wavefunctions limited to include contributions through various levels of excitation (e.g., single, double, etc.
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) are denoted S (singly excited), D (doubly), SD ( singly and doubly), SDT (singly, doubly, and triply), and so on.

The orbitals from which electrons are removed and those into which electrons are excited can be restricted to focus attention on
correlations among certain orbitals. For example, if excitations out of core electrons are excluded, one computes a total energy that
contains no correlation corrections for these core orbitals. Often it is possible to so limit the nature of the orbital excitations to
focus on the energetic quantities of interest (e.g., the CC bond breaking in ethane requires correlation of the  orbital but the 1s
Carbon core orbitals and the CH bond orbitals may be treated in a non-correlated manner).

Clearly, the number of CSFs included in the CI calculation can be far in excess of the number considered in typical MCSCF
calculations; CI wavefunctions including 5,000 to 50,000 CSFs are routinely used, and functions with one to several million CSFs
are within the realm of practicality (see, for example, J. Olsen, B. Roos, Poul Jørgensen, and H. J. Aa. Jensen, J. Chem. Phys. 89 ,
2185 (1988) and J. Olsen, P. Jørgensen, and J. Simons, Chem. Phys. Letters 169 , 463 (1990)).

The need for such large CSF expansions should not come as a surprise once one considers that (i) each electron pair requires at
least two CSFs (let us say it requires P of them, on average, a dominant one and P-1 others which are doubly excited) to form
polarized orbital pairs, (ii) there are of the order of N(N-1)/2 = X electron pairs in an atom or molecule containing N electrons, and
(iii) that the number of terms in the CI wavefunction scales as . So, for an H O molecule containing ten electrons, there would
be P  terms in the CI expansion. This is 3.6 x10  terms if P=2 and 1.7 x10  terms if P=3. Undoubtedly, this is an over estimate
of the number of CSFs needed to describe electron correlation in H O, but it demonstrates how rapidly the number of CSFs can
grow with the number of electrons in the system.

The  matrices that arise in CI calculations are evaluated in terms of one- and two- electron integrals over the molecular orbitals
using the equivalent of the Slater-Condon rules. For large CI calculations, the full  matrix is not actually evaluated and stored
in the computer's memory (or on its disk); rather, so-called 'direct CI' methods (see the article by Roos and Siegbahn in MTC) are
used to compute and immediately sum contributions to the sum  in terms of integrals, density matrix elements, and

approximate values of the  amplitudes. Iterative methods (see, for example, E. R. Davidson, J. Comput. Phys. 17 , 87 (1975)), in
which approximate values for the  coefficients and energy E are refined through sequential application of  to the

preceding estimate of the  vector, are employed to solve these large CI matrix eigenvalue problems.

The MPPT/MBPT Method 
In the MPPT/MBPT method, once the reference CSF is chosen and the SCF orbitals belonging to this CSF are determined, the
wavefunction  and energy E are determined in an order-by-order manner. This is one of the primary strengths of the
MPPT/MBPT technique; it does not require one to make further (potentially arbitrary) choices once the basis set and dominant
(SCF) configuration are specified. In contrast to the MCSCF and CI treatments, one need not make choices of CSFs to include in or
exclude from . The MPPT/MBPT perturbation equations determine what CSFs must be included through any particular order.

For example, the first-order wavefunction correction  through first order) is given by:

where the SCF orbital energies are denoted  represents a CSF that is doubly excited relative to \Phi. Thus, only
doubly excited CSFs contribute to the first-order wavefunction ; as a result, the energy E is given through second order as:
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These contributions have been expressed, using the SC rules, in terms of the two-electron integrals  coupling the excited
spin-orbitals to the spin-orbitals from which electrons were excited as well as the orbital energy differences 
accompanying such excitations. In this form, it becomes clear that major contributions to the correlation energy of the pair of
occupied orbitals  are made by double excitations into virtual orbitals  that have large coupling (i..e., large 

 integrals) and small orbital energy gaps, .

In higher order corrections to the wavefunction and to the energy, contributions from CSFs that are singly, triply, etc. excited
relative to  appear, and additional contributions from the doubly excited CSFs also enter. It is relatively common to carry
MPPT/MBPT calculations (see the references given above in Chapter 19.I.3 where the contributions of the Pople and Bartlett
groups to the development of MPPT/MBPT are documented) through to third order in the energy (whose evaluation can be shown
to require only ). The entire GAUSSIAN-8X series of programs, which have been used in thousands of important
chemical studies, calculate E through third order in this manner.

In addition to being size-extensive and not requiring one to specify input beyond the basis set and the dominant CSF, the
MPPT/MBPT approach is able to include the effect of all CSFs (that contribute to any given order) without having to find any
eigenvalues of a matrix. This is an important advantage because matrix eigenvalue determination, which is necessary in MCSCF
and CI calculations, requires computer time in proportion to the third power of the dimension of the  matrix. Despite all of
these advantages, it is important to remember the primary disadvantages of the MPPT/MBPT approach; its energy is not an upper
bound to the true energy and it may not be able to treat cases for which two or more CSFs have equal or nearly equal amplitudes
because it obtains the amplitudes of all but the dominant CSF from perturbation theory formulas that assume the perturbation is
'small'.

The Coupled-Cluster Method 
The implementation of the Coupled-Cluster method begins much as in the MPPT/MBPT case; one selects a reference CSF that is
used in the SCF process to generate a set of spin-orbitals to be used in the subsequent correlated calculation. The set of working
equations of the Coupled-Cluster technique can be written explicitly by introducing the form of the so-called cluster operator T,

where the combination of operators  denotes creation of an electron in virtual spin orbital  and removal of an electron from
occupied spin-orbital  to generate a single excitation. The operation  j i therefore represents a double excitation from 
to . Expressing the cluster operator T in terms of the amplitudes  etc. for singly, doubly, etc. excited CSFs, and
expanding the exponential operators in

one obtains:

and so on for higher order excited CSFs. It can be shown, because of the one- and twoelectron operator nature of H, that the
expansion of the exponential operators truncates exactly at the fourth power; that is terms such as [[[[[H,T],T],T],T],T] and higher
commutators vanish identically (this is demonstrated in Chapter 4 of Second Quantization Based Methods in Quantum
Chemistry , P. Jørgensen and J. Simons, Academic Press, New York (1981).
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Figure 19.3.1: Schematic representation of the cluster-expansion-based classification. The full correlation is composed of singlets,
doublets, triplets, and higher-order correlations, all uniquely defined by the cluster-expansion approach. Each blue sphere
corresponds to one particle operator and yellow circles/ellipses to correlations. The number of spheres within a correlation
identifies the cluster number. (CC SA-BY-3.0; Christoph N. Böttge, "Phonon-assistierte Lasertätigkeit in Mikroresonatoren").

As a result, the exact Coupled-Cluster equations are quartic equations for the  etc. amplitudes. Although it is a rather
formidable task to evaluate all of the commutator matrix elements appearing in the above Coupled-Cluster equations, it can be and
has been done (the references given above to Purvis and Bartlett are especially relevant in this context). The result is to express
each such matrix element, via the Slater-Condon rules, in terms of one- and twoelectron integrals over the spin-orbitals used in
determining , including those in  itself and the 'virtual' orbitals not in .

In general, these quartic equations must then be solved in an iterative manner and are susceptible to convergence difficulties that
are similar to those that arise in MCSCF-type calculations. In any such iterative process, it is important to start with an
approximation (to the t amplitudes, in this case) which is reasonably close to the final converged result. Such an approximation is
often achieved, for example, by neglecting all of the terms that are nonlinear in the t amplitudes (because these amplitudes are
assumed to be less than unity in magnitude). This leads, for the Coupled-Cluster working equations obtained by projecting onto the
doubly excited CSFs, to:

where the notation  is used to denote the two-electron integral difference . If, in
addition, the factors that couple different doubly excited CSFs are ignored (i.e., the sum over i',j',m',n') , the equations for the t
amplitudes reduce to the equations for the CSF amplitudes of the first-order MPPT/MBPT wavefunction:

As Bartlett and Pople have both demonstrated, there is, in fact, close relationship between the MPPT/MBPT and Coupled-Cluster
methods when the Coupled-Cluster equations are solved iteratively starting with such an MPPT/MBPT-like initial 'guess' for these
double-excitation amplitudes.

The Coupled-Cluster method, as presented here, suffers from the same drawbacks as the MPPT/MBPT approach; its energy is not
an upper bound and it may not be able to accurately describe wavefunctions which have two or more CSFs with approximately
equal amplitude. Moreover, solution of the non-linear Coupled-Cluster equations may be difficult and slowly (if at all) convergent.
It has the same advantages as the MPPT/MBPT method; its energy is size-extensive, it requires no large matrix eigenvalue solution,
and its energy and wavefunction are determined once one specifies the basis and the dominant CSF.

Density Functional Methods 
These approaches provide alternatives to the conventional tools of quantum chemistry. The CI, MCSCF, MPPT/MBPT, and CC
methods move beyond the singleconfiguration picture by adding to the wave function more configurations whose amplitudes they
each determine in their own way. This can lead to a very large number of CSFs in the correlated wave function, and, as a result, a
need for extraordinary computer resources.

The density functional approaches are different. Here one solves a set of orbitallevel equations
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in which the orbitals { } 'feel' potentials due to the nuclear centers (having charges Z ), Coulombic interaction with the total
electron density (r'), and a so-called exchange correlation potential denoted U(r'). The particular electronic state for which the
calculation is being performed is specified by forming a corresponding density (r'). Before going further in describing how DFT
calculations are carried out, let us examine the origins underlying this theory.

The so-called Hohenberg-Kohn theorem states that the ground-state electron density (r) describing an N-electron system
uniquely determines the potential V(r) in the Hamiltonian

and, because H determines the ground-state energy and wave function of the system, the ground-state density  determines the
ground-state properties of the system. The proof of this theorem proceeds as follows:

Assume that there are two distinct potentials (aside from an additive constant that simply shifts the zero of total energy) V(r)
and V'(r) which, when used in H and H’, respectively, to solve for a ground state produce

that have the same one-electron density:

If we think of  as trial variational wave function for the Hamiltonian H, we know that

Similarly, taking  as a trial function for the H' Hamiltonian, one finds that

Adding the Equations  and  gives

and a clear contradiction.

Hence, there cannot be two distinct potentials V and V’ that give the same groundstate ). So, the ground-state density )
uniquely determines N and V, and thus H, and therefore  determines all properties of the
ground state, then , in principle, determines all such properties. This means that even the kinetic energy and the electron-
electron interaction energy of the ground-state are determined by ). It is easy to see that  gives the
average value of the electron nuclear (plus any additional one-electron additive potential) interaction in terms of the ground-state
density , but how are the kinetic energy T[ ] and the electron-electron interaction V ] energy expressed in terms of ?

The main difficulty with DFT is that the Hohenberg-Kohn theorem shows that the ground-state values of T, V , V, etc. are all
unique functionals of the ground-state  (i.e., that they can, in principle, be determined once  is given), but it does not tell us
what these functional relations are.

To see how it might make sense that a property such as the kinetic energy, whose operator  involves derivatives, can be
related to the electron density, consider a simple system of N non-interacting electrons moving in a three-dimensional cubic “box”
potential. The energy states of such electrons are known to be

where L is the length of the box along the three axes, and  are the quantum numbers describing the state. We can
view  as defining the squared radius of a sphere in three dimensions, and we realize that the density of
quantum states in this space is one state per unit volume in the  space. Because  must be positive

ϕi A

ρ

ρ

ρ

H  = +V( ) + ,∑
J

ℏ2

2me

∇2
j rj

e2

2
∑
k≠j

1

rj,k

ρ(r)

ρ(r) determines N because ∫ ρ(r) r = N.d3

, ψ(r , ψ’(r) E0 ) and E
′
0

∫ ψ = ρ(r) = ∫∣∣ ∣∣
2
dr2  dr3  ... drN ∣∣ψ

′∣∣dr2  dr3  ... drN

ψ

< ⟨ H ⟩ = ⟨ H' ⟩+∫ ρ(r) [V (r) − (r)] r = +∫ ρ(r) [V (r) − (r)] rE0 ψ′∣∣ ∣∣ψ
′ ψ′∣∣ ∣∣ψ

′ V ′ d3 E′
o V ′ d3 (19.4.7)

ψ

⟨ +∫ ρ(r) [ (r) −V (r)] r.E ′
0
E0 V ′ d3 (19.4.8)

19.4.7 19.4.8

 +   +  ,E0 E0 E′
0

ρ(r ρ(r

ψ .  Furthermore, because ψ and E0

ρ(r)

ρ(r ∫ ρ(r)V(r r = V[ρ])d3

ρ(r) ρ [ρee ρ

ee

ρ ρ

− ℏ2

2me
∇2

E =( ) ( + + ) ,
h2

2meL2
n2
x n2

y n2
z

,  , and nx ny nz

 +   +  =n2
x n2

y n2
z R2

,  , nx ny nz ,  , and nx ny nz

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/70437?pdf


19.4.6 https://chem.libretexts.org/@go/page/70437

integers, the volume covering all states with energy less than or equal to a specified energy E =  the volume of the

sphere of radius R:

Since there is one state per unit of such volume, (E) is also the number of states with energy less than or equal to E, and is called
the integrated density of states. The number of states g(E) dE with energy between E and E+dE, the density of states , is the
derivative of :

If we calculate the total energy for N electrons, with the states having energies up to the so-called Fermi energy (i.e., the energy of
the highest occupied molecular orbital HOMO) doubly occupied, we obtain the ground-state energy:

The total number of electrons N can be expressed as

which can be solved for  in terms of N to then express  in terms of N instead of :

This gives the total energy, which is also the kinetic energy in this case because the potential energy is zero within the “box”, in
terms of the electron density (x,y,z) = (  ). It therefore may be plausible to express kinetic energies in terms of electron densities

), but it is by no means clear how to do so for “real” atoms and molecules with electron-nuclear and electron-electron
interactions operative.

In one of the earliest DFT models, the Thomas-Fermi theory, the kinetic energy of an atom or molecule is approximated using the
above kind of treatment on a “local” level. That is, for each volume element in r space, one assumes the expression given above to
be valid, and then one integrates over all r to compute the total kinetic energy:

where the last equality simply defines the C  constant (which is 2.8712 in atomic units). Ignoring the correlation and exchange
contributions to the total energy, this T is combined with the electron-nuclear V and Coulombic electron-electron potential energies
to give the Thomas-Fermi total energy:

This expression is an example of how E  is given as a local density functional approximation (LDA). The term local means that
the energy is given as a functional (i.e., a function of ) which depends only on  at points in space but not on  at more than
one point in space.

Unfortunately, the Thomas-Fermi energy functional does not produce results that are of sufficiently high accuracy to be of great use
in chemistry. What is missing in this theory are a. the exchange energy and b. the correlation energy; moreover, the kinetic energy
is treated only in the approximate manner described.
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In the book by Parr and Yang, it is shown how Dirac was able to address the exchange energy for the 'uniform electron gas' (N
Coulomb interacting electrons moving in a uniform positive background charge whose magnitude balances the charge of the N
electrons). If the exact expression for the exchange energy of the uniform electron gas is applied on a local level, one obtains the
commonly used Dirac local density approximation to the exchange energy:

with  in atomic units. Adding this exchange energy to the Thomas-Fermi total energy E  gives
the so-called Thomas-Fermi-Dirac (TFD) energy functional.

Because electron densities vary rather strongly spatially near the nuclei, corrections to the above approximations to T[
 are needed. One of the more commonly used so-called gradient-corrected approximations is that invented by

Becke, and referred to as the Becke88 exchange functional:

where x =  is a parameter chosen so that the above exchange energy can best reproduce the known exchange

energies of specific electronic states of the inert gas atoms (Becke finds  to equal 0.0042). A common gradient correction to the
earlier T[ ] is called the Weizsacker correction and is given by

Although the above discussion suggests how one might compute the ground-state energy once the ground-state density  is
given, one still needs to know how to obtain . Kohn and Sham (KS) introduced a set of so-called KS orbitals obeying the
following equation:

where the so-called exchange-correlation potential  could be obtained by functional differentiation if the

exchange-correlation energy functional  were known. KS also showed that the KS orbitals { } could be used to compute
the density  by simply adding up the orbital densities multiplied by orbital occupancies n  :

(here  =0,1, or 2 is the occupation number of the orbital  in the state being studied) and that the kinetic energy should be
calculated as

The same investigations of the idealized 'uniform electron gas' that identified the Dirac exchange functional, found that the
correlation energy (per electron) could also be written exactly as a function of the electron density  of the system, but only in two
limiting cases- the high-density limit (large ) and the low-density limit. There still exists no exact expression for the correlation
energy even for the uniform electron gas that is valid at arbitrary values of . Therefore, much work has been devoted to creating
efficient and accurate interpolation formulas connecting the low- and high- density uniform electron gas expressions. One such
expression is

where
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is the correlation energy per electron. Here x = 
 = -0.409286, b = 13.0720, and c =

42.7198. The parameter  is equal to  is the radius of a sphere whose
volume is the effective volume occupied by one electron. A reasonable approximation to the full  would contain the Dirac
(and perhaps gradient corrected) exchange functional plus the above , but there are many alternative approximations to the
exchange-correlation energy functional. Currently, many workers are doing their best to “cook up” functionals for the correlation
and exchange energies, but no one has yet invented functionals that are so reliable that most workers agree to use them.

To summarize, in implementing any DFT, one usually proceeds as follows:

1. An atomic orbital basis is chosen in terms of which the KS orbitals are to be expanded.
2. Some initial guess is made for the LCAO-KS expansion coefficients .

3. The density is computed as . Often,  is expanded in an atomic orbital basis, which need not be the

same as the basis used for the , and the expansion coefficients of  are computed in terms of those of the . It is also
common to use an atomic orbital basis to expand , is needed to evaluate the exchange-
correlation functional’s contribution to E .

4. The current iteration’s density is used in the KS equations to determine the Hamiltonian 

whose “new” eigenfunctions {  } and eigenvalues {  } are found by solving

the KS equations.
5. These new  are used to compute a new density, which, in turn, is used to solve a new set of KS equations. This process is

continued until convergence is reached (i.e., until the  used to determine the current iteration’s  are the same  that arise as
solutions on the next iteration.

6. Once the converged  is determined, the energy can be computed using the earlier expression 
 

In closing this section, it should once again be emphasized that this area is currently undergoing explosive growth and much
scrutiny. As a result, it is nearly certain that many of the specific functionals discussed above will be replaced in the near future by
improved and more rigorously justified versions. It is also likely that extensions of DFT to excited states (many workers are
actively pursuing this) will be placed on more solid ground and made applicable to molecular systems. Because the computational
effort involved in these approaches scales much less strongly with basis set size than for conventional (SCF, MCSCF, CI, etc.)
methods, density functional methods offer great promise and are likely to contribute much to quantum chemistry in the next
decade.

This page titled 19.4: Further Details on Implementing Multiconfigurational Methods is shared under a CC BY-NC-SA 4.0 license and was
authored, remixed, and/or curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform; a
detailed edit history is available upon request.
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CHAPTER OVERVIEW

20: Response Theory
Many physical properties of a molecule can be calculated as expectation values of a corresponding quantum mechanical operator.
The evaluation of other properties can be formulated in terms of the "response" (i.e., derivative) of the electronic energy with
respect to the application of an external field perturbation.

20.1: Calculations of Properties Other Than the Energy
20.2: Ab Initio, Semi-Empirical, and Empirical Force Field Methods
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source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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20.1: Calculations of Properties Other Than the Energy
There are, of course, properties other than the energy that are of interest to the practicing chemist. Dipole moments, polarizabilities,
transition probabilities among states, and vibrational frequencies all come to mind. Other properties that are of importance involve
operators whose quantum numbers or symmetry indices label the state of interest. Angular momentum and point group symmetries
are examples of the latter properties; for these quantities the properties are precisely specified once the quantum number or
symmetry label is given (e.g., for a  state, the average value of .

Although it may be straightforward to specify what property is to be evaluated, often computational difficulties arise in carrying out
the calculation. For some ab initio methods, these difficulties are less severe than for others. For example, to compute the electric
dipole transition matrix element  between two states , one must evaluate the integral involving the one-
electron dipole operator ; here the first sum runs over the N electrons and the second sum runs over the

nuclei whose charges are denoted . To evaluate such transition matrix elements in terms of the Slater-Condon rules is relatively
straightforward as long as  are expressed in terms of Slater determinants involving a single set of orthonormal spin-
orbitals. If , have been obtained, for example, by carrying out separate MCSCF calculations on the two states in
question, the energy optimized spin-orbitals for one state will not be the same as the optimal spin-orbitals for the second state. As a
result, the determinants in  will involve spin-orbitals that are not orthonormal to one another. Thus, the SC
rules can not immediately be applied. Instead, a transformation of the spin-orbitals of  to a single set of orthonormal
functions must be carried out. This then expresses  in terms of new Slater determinants over this new set of
orthonormal spinorbitals, after which the SC rules can be exploited.

In contrast, if  are obtained by carrying out a CI calculation using a single set of orthonormal spin-orbitals (e.g., with 
 formed from two different eigenvectors of the resulting secular matrix), the SC rules can immediately be used to

evaluate the transition dipole integral.

Formulation of Property Calculations as Responses 
Essentially all experimentally measured properties can be thought of as arising through the response of the system to some
externally applied perturbation or disturbance. In turn, the calculation of such properties can be formulated in terms of the response
of the energy E or wavefunction  to a perturbation. For example, molecular dipole moments  are measured, via electric-field
deflection, in terms of the change in energy

caused by the application of an external electric field E which is spatially inhomogeneous, and thus exerts a force

on the molecule proportional to the dipole moment (good treatments of response properties for a wide variety of wavefunction
types (i.e., SCF, MCSCF, MPPT/MBPT, etc.) are given in Second Quantization Based Methods in Quantum Chemistry , P.
Jørgensen and J. Simons, Academic Press, New York (1981) and in Geometrical Derivatives of Energy Surfaces and Molecular
Properties , P. Jørgensen and J. Simons, Eds., NATO ASI Series, Vol. 166, D. Reidel, Dordrecht (1985)).

To obtain expressions that permit properties other than the energy to be evaluated in terms of the state wavefunction , the
following strategy is used:

1. The perturbation V = H-H  appropriate to the particular property is identified. For dipole moments ( ), polarizabilities ( ), and
hyperpolarizabilities ( ), V is the interaction of the nuclei and electrons with the external electric field

For vibrational frequencies, one needs the derivatives of the energy E with respect to deformation of the bond lengths and
angles of the molecule, so V is the sum of all changes in the electronic Hamiltonian that arise from displacements  of the
atomic centers
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2. A power series expansion of the state energy E, computed in a manner consistent with how  is determined (i.e., as an
expectation value for SCF, MCSCF, and CI wavefunctions or as for MPPT/MBPT or as  for CC
wavefunctions), is carried out in powers of the perturbation V:

In evaluating the terms in this expansion, the dependence of H = H +V and of  (which is expressed as a solution of the SCF,
MCSCF, ..., or CC equations for H not for H ) must be included.

3. The desired physical property must be extracted from the power series expansion of  E in powers of V.

The MCSCF Response Case 

The Dipole Moment 

To illustrate how the above developments are carried out and to demonstrate how the results express the desired quantities in terms
of the original wavefunction, let us consider, for an MCSCF wavefunction, the response to an external electric field. In this case,
the Hamiltonian is given as the conventional one- and two-electron operators H  to which the above one-electron electric dipole
perturbation V is added. The MCSCF wavefunction  and energy E are assumed to have been obtained via the MCSCF procedure
with H=H  can be thought of as a measure of the strength of the applied electric field. The terms in the expansion
of E( ) in powers of :

are obtained by writing the total derivatives of the MCSCF energy functional with respect to  and evaluating these derivatives at 
 (which is indicated by the subscript (..)0 on the above derivatives):

and so on for higher order terms. The factors of 2 in the last three terms come through using the hermiticity of H  to combine terms
in which derivatives of  occur.

The first-order correction can be thought of as arising from the response of the wavefunction (as contained in its LCAO-MO and CI
amplitudes and basis functions ) plus the response of the Hamiltonian to the external field. Because the MCSCF energy
functional has been made stationary with respect to variations in the C  and C  amplitudes, the second and third terms above
vanish:

If, as is common, the atomic orbital bases used to carry out the MCSCF energy optimization are not explicitly dependent on the

external field, the third term also vanishes because  Thus for the MCSCF case, the first-order response is given as the

average value of the perturbation over the wavefunction with :\
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For the external electric field case at hand, this result says that the field-dependence of the state energy will have a linear term equal
to

where e is a unit vector in the direction of the applied electric field (the magnitude of the field  having already been removed in
the power series expansion). Since the dipole moment is determined experimentally as the energy's slope with respect to field
strength, this means that the dipole moment is given as:

The Geometrical Force 

These same techniques can be used to determine the response of the energy to displacements  of the atomic centers. In such a
case, the perturbation is

Here, the one-electron operator  is referred to as 'the HellmannFeynman' force operator; it is the derivative of the

Hamiltonian with respect to displacement of center-a in the x, y, or z direction. The expressions given above for E( =0) and 
can once again be used, but with the Hellmann-Feynman form for V. Once again, for the MCSCF wavefunction, the variational
optimization of the energy gives

However, because the atomic basis orbitals are attached to the centers, and because these centers are displaced in forming V, it is no

longer true that  the variation in the wavefunction caused by movement of the basis functions now contributes to the

firstorder energy response. As a result, one obtains

The first contribution to the force

along the x, y, and z directions for center-a involves the expectation value, with respect to the MCSCF wavefunction with  = 0, of
the Hellmann-Feynman force operator. The second contribution gives the forces due to infinitesimal displacements of the basis
functions on center-a. The evaluation of the latter contributions can be carried out by first realizing that

with

involves the basis orbitals through the LCAO-MO expansion of the s. So the derivatives of the basis orbitals contribute as
follows:
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Each of these factors can be viewed as combinations of CSFs with the same  coefficients as in 
spin-orbital involving basis functions that have been differentiated with respect to displacement of center-a. It turns out that such
derivatives of Gaussian basis orbitals can be carried out analytically (giving rise to new Gaussians with one higher and one lower l-

quantum number). When substituted into , these basis derivative terms yield

whose evaluation via the Slater-Condon rules is straightforward. It is simply the expectation value of H  with respect to  (with
the same density matrix elements that arise in the evaluation of 's energy) but with the one- and two-electron integrals over the
atomic basis orbitals involving one of these differentiated functions:

In summary, the force F  felt by the nuclear framework due to a displacement of center-a along the x, y, or z axis is given as

where the second term is the energy of  but with all atomic integrals replaced by integral derivatives: 

Responses for Other Types of Wavefunctions 
It should be stressed that the MCSCF wavefunction yields especially compact expressions for responses of E with respect to an
external perturbation because of the variational conditions

that apply. The SCF case, which can be viewed as a special case of the MCSCF situation, also admits these simplifications.
However, the CI, CC, and MPPT/MBPT cases involve additional factors that arise because the above variational conditions do not

apply (in the CI case,  still applies, but the orbital condition  does not

because the orbitals are not varied to make the CI energy functional stationary).

Within the CC, CI, and MPPT/MBPT methods, one must evaluate the so-called responses of the C  and C  coefficients 

and  that appear in the full energy response as (see above)

. To do so requires solving a set of response equations

that are obtained by differentiating whatever equations govern the  coefficients in the particular method (e.g., CI, CC,
or MPPT/MBPT) with respect to the external perturbation. In the geometrical derivative case, this amounts to differentiating with
respect to x, y, and z displacements of the atomic centers. These response equations are discussed in Geometrical Derivatives of
Energy Surfaces and Molecular Properties , P. Jørgensen and J. Simons, Eds., NATO ASI Series, Vol. 166, D. Reidel, Dordrecht
(1985). Their treatment is somewhat beyond the scope of this text, so they will not be dealt with further here.

The Use of Geometrical Energy Derivatives 
1. Gradients as Newtonian Forces The first energy derivative is called the gradient g and is the negative of the force F (with

components along the  center denoted ) experienced by the atomic centers F = -g . These forces, as discussed in Chapter
16, can be used to carry out classical trajectory simulations of molecular collisions or other motions of large organic and
biological molecules for which a quantum treatment of the nuclear motion is prohibitive. The second energy derivatives with
respect to the x, y, and z directions of centers a and b (for example, the x, y component for centers a and b is 
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3N cartesian directions. The gradient and Hessian can be used to systematically locate local minima (i.e., stable geometries) and
transition states that connect one local minimum to another. At each of these stationary points, all forces and thus all elements
of the gradient g vanish. At a local minimum, the H matrix has 5 or 6 zero eigenvalues corresponding to translational and
rotational displacements of the molecule (5 for linear molecules; 6 for non-linear species) and 3N-5 or 3N-6 positive
eigenvalues. At a transition state, H has one negative eigenvalue, 5 or 6 zero eigenvalues, and 3N-6 or 3N-7 positive
eigenvalues.

2. Transition State Rate Coefficients The transition state theory of Eyring or its extensions due to Truhlar and coworkers (see, for
example, D. G. Truhlar and B. C. Garrett, Ann. Rev. Phys. Chem. 35 , 159 (1984)) allow knowledge of the Hessian matrix at a
transition state to be used to compute a rate coefficient k  appropriate to the chemical reaction for which the transition state
applies. More specifically, the geometry of the molecule at the transition state is used to compute a rotational partition function
Q  in which the principal moments of inertia  (see Chapter 13) are those of the transition state (the  symbol is,
by convention, used to label the transition state):

where k is the Boltzmann constant and T is the temperature in . The eigenvalues { } of the mass weighted Hessian matrix
(see below) are used to compute, for each of the 3N-7 vibrations with real and positive  values, a vibrational partition
function that is combined to produce a transition-state vibrational partition function:

The electronic partition function of the transition state is expressed in terms of the activation energy (the energy of the transition
state relative to the electronic energy of the reactants) E  as:

where  is the degeneracy of the electronic state at the transition state geometry. In the original Eyring version of transition
state theory (TST), the rate coefficient k  is then given by:

where  is the converntional partition function for the reactant materials. For example, in a biomolecular reaction such
as:

the reactant partition function

is written in terms of the translational and electronic (the degeneracy of the P state produces the 2 (3) overall degeneracy
factor) partition functions of the F atom

and the translational, electronic, rotational, and vibrational partition functions of the H  molecule
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The factor of 2 in the denominator of the H2 molecule's rotational partition function is the "symmetry number" that must be
inserted because of the identity of the two H nuclei. The overall rate coefficient k  because this is a rate
per collision pair) can thus be expressed entirely in terms of energetic, geometrical, and vibrational information about the
reactants and the transition state. Even within the extensions to Eyring's original model, such is the case. The primary difference
in the more modern theories is that the transition state is identified not as the point on the potential energy surface at which the
gradient vanishes and there is one negative Hessian eigenvalue. Instead, a so-called variational transition state (see the above
reference by Truhlar and Garrett) is identified. The geometry, energy, and local vibrational frequencies of this transition state
are then used to compute, must like outlined above, k .

3. Harmonic Vibrational Frequencies It is possible (see, for example, J. Nichols, H. L. Taylor, P. Schmidt, and J. Simons, J. Chem.
Phys. 92 , 340 (1990) and references therein) to remove from H the zero eigenvalues that correspond to rotation and translation
and to thereby produce a Hessian matrix whose eigenvalues correspond only to internal motions of the system. After doing so,
the number of negative eigenvalues of H can be used to characterize the nature of the stationary point (local minimum or
transition state), and H can be used to evaluate the local harmonic vibrational frequencies of the system. The relationship
between H and vibrational frequencies can be made clear by recalling the classical equations of motion in the Lagrangian
formulation:

where  denotes, in our case, the 3N cartesian coordinates of the N atoms, and  is the velocity of the corresponding
coordinate. Expressing the Lagrangian L as kinetic energy minus potential energy and writing the potential energy as a local
quadratic expansion about a point where g vanishes, gives

Here, E(0) is the energy at the stationary point, mj is the mass of the atom to which  are the elements
of H along the x, y, and z directions of the various atomic centers. Applying the Lagrangian equations to this form for L gives
the equations of motion of the  coordinates:

To find solutions that correspond to local harmonic motion, one assumes that the coordinates  oscillate in time according to

Substituting this form for q_j(t) into the equations of motion gives

Defining

and introducing this into the above equation of motion yields

where

is the so-called mass-weighted Hessian matrix. The squares of the desired harmonic vibrational frequencies  are thus given
as eigenvalues of the mass-weighted Hessian H':
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The corresponding eigenvector, {q'  gives, when multiplied by , the atomic displacements that accompany that particular

harmonic vibration. At a transition state, one of the  will be negative and 3N-6 or 3N-7 will be positive.
4. Reaction Path Following The Hessian and gradient can also be used to trace out 'streambeds' connecting local minima to

transition states. In doing so, one utilizes a local harmonic description of the potential energy surface

where x represents the (small) step away from the point x = 0 at which the gradient g and Hessian H have been evaluated. By
expressing x and g in terms of the eigenvectors v\(_{\alpha}\) of H

the energy change E(x) - E(0) can be expressed in terms of a sum of independent changes along the eigendirections:

Depending on the signs of g , various choices for the displacements xa will produce increases or decreases in
energy:

1. If  is positive, then a step x  (i.e., one with x  positive) will generate an energy increase. A step 'opposed to' g
 will generate an energy decrease if it is short enough that x  is larger in magnitude than , otherwise the energy will

increase.
2. If } is negative, a step opposed to g  will generate an energy decrease. A step along g  will give an energy increase if it is

short enough for x  to be larger in magnitude than , otherwise the energy will decrease. Thus, to proceed downhill in
all directions (such as one wants to do when searching for local minima), one chooses each x  in opposition to g  and of small
enough length to guarantee that the magnitude of x  exceeds that of  for those modes with  > 0. To proceed uphill
along a mode with ' < 0 and downhill along all other modes with  > 0, one chooses x ' along g ' with x ' short enough to
guarantee that x  g  is larger in magnitude than , and one chooses the other x  opposed to g  and short enough that x

 g  is larger in magnitude than . Such considerations have allowed the development of highly efficient potential energy
surface 'walking' algorithms (see, for example, J. Nichols, H. L. Taylor, P. Schmidt, and J. Simons, J. Chem. Phys. 92 , 340
(1990) and references therein) designed to trace out streambeds and to locate and characterize, via the local harmonic
frequencies, minima and transition states. These algorithms form essential components of most modern ab initio , semi-
empirical, and empirical computational chemistry software packages.
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20.2: Ab Initio, Semi-Empirical, and Empirical Force Field Methods

Ab Initio Methods 

Most of the techniques described in this Chapter are of the ab initio type. This means that they attempt to compute electronic state
energies and other physical properties, as functions of the positions of the nuclei, from first principles without the use or knowledge
of experimental input. Although perturbation theory or the variational method may be used to generate the working equations of a
particular method, and although finite atomic orbital basis sets are nearly always utilized, these approximations do not involve
'fitting' to known experimental data. They represent approximations that can be systematically improved as the level of treatment is
enhanced.

Semi-Empirical and Fully Empirical Methods 
Semi-empirical methods, such as those outlined in Appendix F, use experimental data or the results of ab initio calculations to
determine some of the matrix elements or integrals needed to carry out their procedures. Totally empirical methods attempt to
describe the internal electronic energy of a system as a function of geometrical degrees of freedom (e.g., bond lengths and angles)
in terms of analytical 'force fields' whose parameters have been determined to 'fit' known experimental data on some class of
compounds. Examples of such parameterized force fields were presented in Section III. A of Chapter 16.

Strengths and Weaknesses 
Each of these tools has advantages and limitations. Ab initio methods involve intensive computation and therefore tend to be
limited, for practical reasons of computer time, to smaller atoms, molecules, radicals, and ions. Their CPU time needs usually vary
with basis set size (M) as at least M ; correlated methods require time proportional to at least M  because they involve
transformation of the atomic-orbital-based two-electron integrals to the molecular orbital basis. As computers continue to advance
in power and memory size, and as theoretical methods and algorithms continue to improve, ab initio techniques will be applied to
larger and more complex species. When dealing with systems in which qualitatively new electronic environments and/or new
bonding types arise, or excited electronic states that are unusual, ab initio methods are essential. Semi-empirical or empirical
methods would be of little use on systems whose electronic properties have not been included in the data base used to construct the
parameters of such models.

On the other hand, to determine the stable geometries of large molecules that are made of conventional chemical units (e.g., CC,
CH, CO, etc. bonds and steric and torsional interactions among same), fully empirical force-field methods are usually quite reliable
and computationally very fast. Stable geometries and the relative energetic stabilities of various conformers of large
macromolecules and biopolymers can routinely be predicted using such tools if the system contains only conventional bonding and
common chemical building blocks. These empirical potentials usually do not contain sufficient flexibility (i.e., their parameters and
input data do not include enough knowledge) to address processes that involve rearrangement of the electronic configurations. For
example, they can not treat:

1. Electronic transitions, because knowledge of the optical oscillator strengths and of the energies of excited states is absent in
most such methods;

2. Concerted chemical reactions involving simultaneous bond breaking and forming, because to do so would require the force-
field parameters to evolve from those of the reactant bonding to those for the product bonding as the reaction proceeds;

3. Molecular properties such as dipole moment and polarizability, although in certain fully empirical models, bond dipoles and
lone-pair contributions have been incorporated (although again only for conventional chemical bonding situations).

Semi-empirical techniques share some of the strengths and weaknesses of ab initio and of fully empirical methods. They treat at
least the valence electrons explicitly, so they are able to address questions that are inherently electronic such as electronic
transitions, dipole moments, polarizability, and bond breaking and forming. Some of the integrals involving the Hamiltonian
operator and the atomic basis orbitals are performed ab initio ; others are obtained by fitting to experimental data. The
computational needs of semiempirical methods lie between those of the ab initio methods and the force-field techniques. As with
the empirical methods, they should never be employed when qualitatively new electronic bonding situations are encountered
because the data base upon which their parameters were determined contain, by assumption, no similar bonding cases.
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22.1.1: i. Review Exercises

Q1 

Transform (using the coordinate system provided below) the following functions accordingly:

a. from Cartesian to spherical polar coordinates

b. from Cartesian to cylindrical coordinates

c. from spherical polar to Cartesian coordinates

Q2 

Perform a separation of variables and indicate the general solution for the following expressions:

a. 

b. 

Q3 
Find the eigenvalues and corresponding eigenvectors of the following matrices:

a. 

b. 

Q4 

For the hermitian matrix in review exercise 3a show that the eigenfunctions can be normalized and that they are orthogonal.

Q5 
For the hermitian matrix in review exercise 3b show that the pair of degenerate eigenvalues can be made to have orthonormal
eigenfunctions.

Q6 
Solve the following second order linear differential equation subject to the specified "boundary conditions":

3x+y−4z = 12

+ = 9y2 z2

r = 2 sinθcosϕ

9x+16y = 0
∂y

∂x

2y+ +6 = 0
∂y

∂x

[ ]
−1

2

2

2

⎡

⎣
⎢

−2

0

0

0

−1

2

0

2

2

⎤

⎦
⎥

+ x(t) = 0
xd2

dt2
k2
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where  and 
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22.1.2: ii. Exercises

Q1 

Replace the following classical mechanical expressions with their corresponding quantum mechanical operators.

a. K.E. =  in three-dimensional space.

b. , a three-dimensional Cartesian vector.

c. y-component of angular momentum: 

Q2 

Transform the following operators into the specified coordinates:

a.  from Cartesian to spherical polar coordinates.

b.  from spherical polar to Cartesian coordinates.

Q3 
Match the eigenfunctions in column B to their operators in column A. What is the eigenvalue for each eigenfunction?

Q4 
Show that the following operators are Hermitian.

a. 
b. 

Q5 
For the following basis of functions , construct the matrix representation of the  operator (use the
ladder operator representation of ). Verify that the matrix is Hermitian. Find the eigenvalues and corresponding eigenvectors.
Normalize the eigenfunctions and verify that they are orthogonal.

mv2

2

p = mv

= z −x .Ly px pz

= (y −z )Lx

ℏ

i

∂

∂z

∂

∂y

=Lz

ℏ

i

∂

∂ϕ

v.

Column A

i.(1 − ) −xx2 d2

dx2

d

dx

ii.
d2

dx2

iii.x
d

dx

iv. −2x
d2

dx2

d

dx

x +(1 −x)
d2

dx2

d

dx
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4 −12 +3x4 x2

5x4

+e3x e−3x

−4x+2x2

4 −3xx3

Px

Lx

( , , and  )Ψ2p−1′ Ψ2p0′ Ψ2p+1
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2a e−iϕ
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−−−
√
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Q6 

Using the set of eigenstates (with corresponding eigenvalues) from the preceding problem, determine the probability for observing
a z-component of angular momentum equal to 1  if the state is given by the 

Q7 
Use the following definitions of the angular momentum operators:

a. [ ,
b. [ ,
c. [ ,
d. [ ,
e. ,
f. .

Q8 
In exercise 7 above you determined whether or not many of the angular momentum operators commute. Now, examine the
operators below along with an appropriate given function. Determine if the given function is simultaneously an eigenfunction of
both operators. Is this what you expected?

a. 

b. 

c. 

d. 

Q9 
For a "particle in a box" constrained along two axes, the wavefunction (x,y) as given in the text was:

with n  = 1,2,3, ... Show that this wavefunction is nomalized.

Q10 
Using the same wavefunction, (x,y), given in exercise 9 show that the expectation value of  vanishes.

Q11 

Calculate the expectation value of the x  operator for the first two states of the harmonic oscillator. Use the v=0 and v=1 harmonic

oscillator wavefunctions given below which are normalized such that  Remember that 

ℏ  eigenstate with 0ℏ  eigenvalue.Lx  Lx

= (y −z ) , = (z −x ) , = (x −y )Lx

ℏ

i

∂

∂z

∂

∂y
Ly

ℏ

i

∂

∂x

∂

∂z
Lz

ℏ

i

∂

∂y

∂

∂x

 and  = + + , and the relationships:L2 L2
x L2

y L2
z

[x, ] = iℏ, [y, ] = iℏ, and [z, ] = iℏ, to demonstrate the following operator identities:px py pz

, ] = iℏLx Ly  Lz

, ] = iℏLy Lz  Lx

, ] = iℏLz Lx  Ly

, ] = 0Lx L
2

, ] = 0Ly L2

, ] = 0Lz L
2
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0
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4π
−−

√
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Q12 
For each of the one-dimensional potential energy graphs shown below, determine:

a. whether you expect symmetry to lead to a separation into odd and even solutions,
b. whether you expect the energy will be quantized, continuous, or both, and

c. the boundary conditions that apply at each boundary (merely stating that  is continuous is all that is necessary).

Q13 
Consider a particle of mass m moving in the potential:

a. Write the general solution to the Schrödinger equation for the regions I, II, III, assuming a solution with energy E < V (i.e. a
bound state).

b. Write down the wavefunction matching conditions at the interface between regions I and II and between II and III.
c. Write down the boundary conditions on .
d. Use your answers to a. - c. to obtain an algebraic equation which must be satisfied for the bound state energies, E.
e. Demonstrate that in the limit V , the equation you obtained for the bound state energies in d. gives the energies of a

particle in an infinite box;  ; n = 1,2,3,...

This page titled 22.1.2: ii. Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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22.1.3: iii. Problems 1-10

Q1 

A particle of mass m moves in a one-dimensional box of length L, with boundaries at x = 0 and x = L. Thus, V(x) = 0 for 
, and V(x) = . The normalized eigenfunctions of the Hamiltonian for this system are given by 

, where the quantum number n can take on the values n=1,2,3,....

a. Assuming that the particle is in an eigenstate, , calculate the probability that the particle is found somewhere in the region
. Show how this probability depends on n.

b. For what value of n is there the largest probability of finding the particle in ?
c. Now assume that  is a superposition of two eigenstates,  at time t? What

energy expectation value does  have at time t and how does this relate to its value at t = 0?
d. For an experimental measurement which is capable of distinguishing systems in state  from those in , what fraction of a

large number of systems each described by  will be observed to be in ? What energies will these experimental
measurements find and with what probabilities?

e. For those systems originally in  which were observed to be in  at time t, what state ( , or whatever)
will they be found in if a second experimental measurement is made at a time t' later than t?

f. Suppose by some method (which need not concern us at this time) the system has been prepared in a nonstationary state (that is,
it is not an eigenfunction of H). At the time of a measurement of the particle's energy, this state is specified by the normalized
wavefunction  elsewhere. What is the probability that a measurement of the

energy of the particle will give the value  for any given value of n?
g. What is the expectation value of H, i.e. the average energy of the system, for the wavefunction  given in part f?

Q2 

Show that for a system in a non-stationary state, , the average value of the energy does not vary with time but

the expectation values of other properties do vary with time.

Q3 
A particle is confined to a one-dimensional box of length L having infinitely high walls and is in its lowest quantum state.
Calculate:  Using the definition , to define the uncertainty, 

 Verify the Heisenberg uncertainty principle that 

It has been claimed that as the quantum number n increases, the motion of a particle in a box becomes more classical. In this
problem you will have an opportunity to convince yourself of this fact.

a. For a particle of mass m moving in a one-dimensional box of length L, with ends of the box located at x = 0 and x = L, the

classical probability density can be shown to be independent of x and given by P(x)dx =  regardless of the energy of the

particle. Using this probability density, evaluate the probability that the particle will be found within the interval from x = 0 to x

= 

b. Now consider the quantum mechanical particle-in-a-box system. Evaluate the probability of finding the particle in the interval

from x = 0 to x =  for the system in its nth quantum state.

c. Take the limit of the result you obtained in part b as . How does your result compare to the classical result you obtained
in part a?

Q5 
According to the rules of quantum mechanics as we have developed them, if  is the state function, and  are the eigenfunctions
of a linear, Hermitian operator, A, with eigenvalues a , A , then we can expand  in terms of the complete set of
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Ψ Ψ = a +b , at time t = 0. What is ΨΨn Ψm
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eigenfunctions of A according to  Furthermore, the probability of making a measurement of

the property corresponding to A and obtaining a value , provided both  are properly normalized.
Thus, P( . These rules are perfectly valid for operators which take on a discrete set of eigenvalues, but must be
generalized for operators which can have a continuum of eigenvalues. An example of this latter type of operator is the momentum

operator, p\(_x\), which has eigenfunctions given by  where p is the eigenvalue of the p  operator and A is a
normalization constant. Here p can take on any value, so we have a continuous spectrum of eigenvalues of p . The obvious
generalization to the equation for  is to convert the sum over discrete states to an integral over the continuous spectrum of states:

The interpretation of C(p) is now the desired generalization of the equation for the probability  This equation
states that the probability of measuring the momentum and finding it in the range from p to p+dp is given by 

Accordingly, the probability of measuring p and finding it in the range from  is given by .

C(p) is thus the probability amplitude for finding the particle with momentum between p and p+dp. This is the momentum

representation of the wavefunction. Clearly we must require C(p) to be normalized, so that  With this

restriction we can derive the normalization constant A = , giving a direct relationship between the wavefunction in coordinate

space, (x), and the wavefunction in momentum space, C(p):

and by the Fourier integral theorem:

Lets use these ideas to solve some problems focusing our attention on the harmonic oscillator; a particle of mass m moving in a

one-dimensional potential described by  

a. Write down the Schrödinger equation in the coordinate representation. 
b. Now lets proceed by attempting to write the Schrödinger equation in the momentum representation. Identifying the kinetic

energy operator T, in the momentum representation is quite straitforward . Writing the potential, V(x), in

the momentum representation is not quite as straightforward. The relationship between position and momentum is realized in their
commutation relation [x,p] = , or ( xp - px ) = i  This commutation relation is easily verified in the coordinate representation
leaving x untouched (x = x. ) and using the above definition for p. In the momentum representation we want to leave p untouched
(p = p. ) and define the operator x in such a manner that the commutation relation is still satisfied. Write the operator x in the
momentum representation. Write the full Hamiltonian in the momentum representation and hence the Schrödinger equation in the
momentum representation. 
c. Verify that  as given below is an eigenfunction of the Hamiltonian in the coordinate representation. What is the energy of the
system when it is in this state? Determine the normalization constant C, and write down the normalized ground state wavefunction
in coordinate space.

Ψ = ,  where  = ∫ Ψdτ .∑
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d. Now consider  in the momentum representation. Assuming that an eigenfunction of the Hamiltonian may be found of the form 

, substitute this form of  into the Schrödinger equation in the momentum representation to find the value of 
which makes this an eigenfunction of H having the same energy as  had. Show that this  is the proper fourier transform
of . The following integral may be useful:

since this Hamiltonian has no degenerate states, you may conclude that  represent the same state of the system if
they have the same energy.

Q6 
The energy states and wavefunctions for a particle in a 3-dimensional box whose lengths are  are given by

These wavefunctions and energy levels are sometimes used to model the motion of electrons in a central metal atom (or ion) which
is surrounded by six ligands.

a. Show that the lowest energy level is nondegenerate and the second energy level is triply degenerate if . What
values of  characterize the states belonging to the triply degenerate level?

b. For a box of volume V = , show that for three electrons in the box (two in the nondegenerate lowest "orbital", and one
in the next), a lower total energy will result if the box undergoes a rectangular distortion ( ). which preserves

the total volume than if the box remains undistorted (hint: if V is fixed and  is the only

"variable").
c. Show that the degree of distortion (ratio of ) which will minimize the total energy is . How does this

problem relate to Jahn-Teller distortions? Why (in terms of the property of the central atom or ion) do we do the calculation
with fixed volume?

d. By how much (in eV) will distortion lower the energy (from its value for a cube, 

. 1 eV = 1.6 x 10^  erg

Q7 

The wavefunction  is an exact eigenfunction of some one-dimensional Schrödinger equation in which x varies from 
. The value of a is: a =  For now, the potential V(x) in the Hamiltonian \(\left( \textbf{H} = -\dfrac{\hbar}

{2m}\dfrac{d^2 }{dx^2} + V(x) \right) \text{ for which } \Psi (x)\) is an eigenfunction is unknown.

a. Find a value of A which makes (x) normalized. Is this value unique? What units does (x) have?
b. Sketch the wavefunction for positive and negative values of x, being careful to show the behavior of its slope near x = 0. Recall

that |x| is defined as:

c. Show that the derivative of  undergoes a discontinuity of magnitude  as x goes through x = 0. What does this fact tell
you about the potential V(x)?

d. Calculate the expectation value of |x| for the above normalized wavefunction | (obtain a numerical value and give its units).
What does this expectation value give a measure of?

Ψ
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e. The potential V(x) appearing in the Schrödinger equation for which  is an exact solution is given by V(x) = 

 Using this potential, compute the expectation value of the Hamiltonian  for your

normalized wavefunction. Is V(x) an attractive or repulsive potential? Does your wavefunction correspond to a bound state? Is 

 erg cm  and 1eV = 1.6x10  erg.

f. Transform the wavefunction, , from coordinate space to momentum space.
g. What is the ratio of the probability of observing a momentum equal to 2a  to the probability of observing a momentum equal to

 ?

Q8 
The -orbitals of benzene, , may be modeled very crudely using the wavefunctions and energies of a particle on a ring. Lets
first treat the particle on a ring problem and then extend it to the benzene system.

a. Suppose that a particle of mass m is constrained to move on a circle (of radius r) in the xy plane. Further assume that the
particle's potential energy is constant (zero is a good choice). Write down the Schrödinger equation in the normal cartesian
coordinate representation. Transform this Schrödinger equation to cylindrical coordinates where 
and z = z (z = 0 in this case). Taking r to be held constant, write down the general solution, , to this Schrödinger equation.
The "boundary" conditions for this problem require that  Apply this boundary condition to the general
solution. This results in the quantization of the energy levels of this system. Write down the final expression for the normalized
wavefunction and quantized energies. What is the physical significance of these quantum numbers which can have both positive
and negative values? Draw an energy diagram representing the first five energy levels.

b. Treat the six -electrons of benzene as particles free to move on a ring of radius 1.40 Å, and calculate the energy of the lowest
electronic transition. Make sure the Pauli principle is satisfied! What wavelength does this transition correspond to? Suggest
some reasons why this differs from the wavelength of the lowest observed transition in benzene, which is 2600 Å.

Q9 
A diatomic molecule constrained to rotate on a flat surface can be modeled as a planar rigid rotor (with eigenfunctions, ,
analogous to those of the particle on a ring) with fixed bond length r. At t = 0, the rotational (orientational) probability distribution

is observed to be described by a wavefunction  What values, and with what probabilities, of the rotational

angular momentum,  could be observed in this system? Explain whether these probabilities would be time dependent as

Q10 

A particle of mass m moves in a potential given by 

a. Write down the time-independent Schrödinger equation for this system.
b. Make the substitution (x,y,z) = X(x)Y(y)Z(z) and separate the variables for this system.
c. What are the solutions to the resulting equations for X(x), Y(y), and Z(z)?
d. What is the general expression for the quantized energy levels of this system, in terms of the quantum numbers ,

which correspond to X(x), Y(y), and Z(z)?
e. What is the degree of degeneracy of a state of energy

f. An alternative solution may be found by making the substitution 

g. Write down the differential equation for F(r) which is obtained when the substitution  is made. Do
not solve this equation.

Ψ = Ae−a|x|

δ(x).
aℏ2
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22.1.4: iv. Problems 11-18

Q11 

Consider an  molecule, in the ground vibrational level of the ground electronic state, which is bombarded by 100 eV electrons.
This leads to the ionization of the  molecule to form . In this problem we will attempt to calculate the vibrational
distribution of the newly-formed  ions, using a somewhat simplified approach. 
a. Calculate (according to classical mechanics) the velocity (in cm/sec) of a 100 eV electron, ignoring any relativistic effects. Also
calculate the amount of time required for a 100 eV electron to pass an N  molecule, which you may estimate as having a length of
2Å. 
b. The radial Schrödinger equation for a diatomic molecule treating vibration as a harmonic oscillator can be written as:

Substituting  this equation can be rewritten as:

The vibrational Hamiltonian for the ground electronic state of the N2 molecule within this approximation is given by:

where  have been measured experimentally to be:

The vibrational Hamiltonian for the  ion , however, is given by :

where  have been measured experimentally to be:

In both systems the reduced mass is  Use the above information to write out the ground state vibrational
wavefunctions of the  + molecules, giving explicit values for any constants which appear in them. Note: For this
problem use the "normal" expression for the ground state wavefunction of a harmonic oscillator. You need not solve the differential
equation for this system. 
c. During the time scale of the ionization event (which you calculated in part a), the vibrational wavefunction of the N2 molecule
has effectively no time to change. As a result, the newly-formed N  ion finds itself in a vibrational state which is not an
eigenfunction of the new vibrational Hamiltonian, H(N ). Assuming that the N  molecule was originally in its v=0 vibrational
state, calculate the probability that the N  ion will be produced in its v=0 vibrational state.

Q12 

The force constant, k, of the C-O bond in carbon monoxide is  Assume that the vibrational motion of CO is purely

harmonic and use the reduced mass  = 6.857 amu. 
a. Calculate the spacing between vibrational energy levels in this molecule, in units of ergs and cm . 
b. Calculate the uncertainty in the internuclear distance in this molecule, assuming it is in its ground vibrational level. Use the
ground state vibrational wavefunction  
c. Under what circumstances (i.e. large or small values of k; large or small values of ) is the uncertainty in internuclear distance
large? Can you think of any relationship between this observation and the fact that helium remains a liquid down to absolute zero?
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Q13 

Suppose you are given a trial wavefunction of the form:

to represent the electronic structure of a two-electron ion of nuclear charge Z and suppose that you were also lucky enough to be
given the variational integral, W, (instead of asking you to derive it!):

 

a. Find the optimum value of the variational parameter Z  for an arbitrary nuclear charge Z by setting  Find both the

optimal value of Z  and the resulting value of W. 
b. The total energies of some two-electron atoms and ions have been experimentally determined to be:

Using your optimized expression for W, calculate the estimated total energy of each of these atoms and ions. Also calculate the
percent error in your estimate for each ion. What physical reason explains the decrease in percentage error as Z increases?
c. In 1928, when quantum mechanics was quite young, it was not known whether the isolated, gas-phase hydride ion, H , was
stable with respect to dissociation into a hydrogen atom and an electron. Compare your estimated total energy for H  to the ground
state energy of a hydrogen atom and an isolated electron (system energy = -13.60 eV), and show that this simple variational
calculation erroneously predicts H  to be unstable. (More complicated variational treatments give a ground state energy of H  of
-14.35 eV, in agreement with experiment.)

Q14 

A particle of mass m moves in a one-dimensional potential given by , where the absolute value function is

defined by |x| = x if x  0 and |x| = -x if x  0. 

a. Use the normalized trial wavefunction  to estimate the energy of the ground state of this system, using the

variational principle to evaluate W(b). 
b. Optimize b to obtain the best approximation to the ground state energy of this system, using a trial function of the form of , as
given above. The numerically calculated exact ground state energy is 0.808616 . What is the percent error in your
value?

Q15 
The harmonic oscillator is specified by the Hamiltonian:

Suppose the ground state solution to this problem were unknown, and that you wish to approximate it using the variational
theorem. Choose as your trial wavefunction,
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where a is an arbitrary parameter which specifies the range of the wavefunction. Note that  is properly normalized as given. 
a. Calculate \( \int\limits_{-\infty}^{+\infty} \phi^{\text{*}} \textbf{H} \phi dx and show it to be given by:

 

b. Calculate  for a = b  with b = 0.2, 0.4, 0.6 0.8, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, and 5.0, and plot the result. 

c. To find the best approximation to the true wavefunction and its energy, find the minimum of 

 and solving for a. Substitute this value into the experssion for  given

in part a. to obtain the best approximation for the energy of the ground state of the harmonic oscillator. 
d. What is the percent error in your calculated energy of part c. ?

Q16 
Einstein told us that the (relativistic) expression for the energy of a particle having rest mass m and momentum p is 

. 
a. Derive an expression for the relativistic kinetic energy operator which contains terms correct through one higher order than the

"ordinary"  

b. Using the first order correction as a perturbation, compute the first-order perturbation theory estimate of the energy for the 1s
level of a hydrogen-like atom (general Z). Show the Z dependence of the result.

 
c. For what value of Z does this first-order relativistic correction amount to 10% of the unperturbed (non-relativistic) 1s energy?

Q17 
Consider an electron constrained to move on the surface of a sphere of radius r. The Hamiltonian for such motion consists of a

kinetic energy term only  where L is the orbital angular momentum operator involving derivatives with respect to

the spherical polar coordinates  has the complete set of eigenfunctions  
a. Compute the zeroth order energy levels of this system. 
b. A uniform electric field is applied along the z-axis, introducing a perturbation  is the strength
of the field. Evaluate the correction to the energy of the lowest level through second order in perturbation theory, using the identity

Note that this identity enables you to utilize the orthonormality of the spherical harmonics. 
c. The electric polarizability  gives the response of a molecule to an externally applied electric field, and is defined by 

 where E is the energy in the presence of the field and  is the strength of the field. Calculate  for this system. 

d. Use this problem as a model to estimate the polarizability of a hydrogen atom, where r  = 0.529 Å, and a cesium atom,
which has a single 6s electron with r  2.60 Å. The corresponding experimental values are  = 0.6668 Å .
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Q18 

An electron moving in a conjugated bond framework can be viewed as a particle in a box. An externally applied electric field of

strength e interacts with the electron in a fashion described by the perturbation , where x is the position of the

electron in the box, e is the electron's charge, and L is the length of the box. 
a. Compute the first order correction to the energy of the n=1 state and the first order wavefunction for the n=1 state. In the
wavefunction calculation, you need only compute the contribution to . Make a rough (no calculation needed)
sketch of  as a function of x and physically interpret the graph. 
b. Using your answer to part a. compute the induced dipole moment caused by the polarization of the electron density due to the

electric field effect  You may neglect the term proportional to  ; merely obtain the term

linear in . 
c. Compute the polarizability, , of the electron in the n=1 state of the box, and explain physically why  should depend as it does

upon the length of the box L. Remember that  

 

This page titled 22.1.4: iv. Problems 11-18 is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack
Simons via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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22.1.5: v. Review Exercise Solutions

Q1 

The general relationships are as follows:

 

 

x

y

z

= rSinθ Cosϕ

= rSinθ Sinϕ

= rCosθ

= + +r2 x2 y2 z2

Sinθ
+x2 y2− −−−−−

√

+ +x2 y2 z2− −−−−−−−−−
√

Cosθ =
z

+ +x2 y2 z2− −−−−−−−−−
√

Tanϕ =
y

x

a.

3x+y−4z = 12

3(rSinθCosϕ) +SinθSinϕ−4(rCosθ) = 12

r(3SinθCosϕ+SinθSinϕ−4Cosθ) = 12

b.

x = rCosϕ

y = rSin

z = z

= +r2 x2 y2

Tanϕ =

+ = 9y2 z2

+ = 9r2Sin2 z2

y

x

c.

r = 2SinθCosϕ

r = 2( )
x

r

= 2xr2

+ + = 2xx2 y2 z2

−2x+ + = 0x2 y2 z2

−2x+1 + + = 1x2 y2 z2

+ + = 1(x−1)2 y2 z2
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Q2 

a.

 
 
 
b.

Q3 
a. First determine the eigenvalues: 

Next, determine the eigenvectors. First, the eigenvector associated with eigenvalue -2: 

 
(Note: The second row offers no new information, e.g. 2  

9x+16y = 0
∂y

∂x

16ydy = −9xdx

= − +c
16

2
y2 9

2
x2

16 = −9 +y2 x2 c′

+ = (general equation for an ellipse)
y2

9

x2

16
c′′

2y+ +6 = 0
∂y

∂x

2y+6 = −
dy

dx

−2dx = −
dy

2dx

−2dx =
dy

y+3

−2x = ln(y+3) +c

= y+3c′e−2x

y = −3c′e−2x

det[ ] = 0
−1 −λ

2

2

2 −λ

(−1 −λ)(2 −λ) − = 022

−2 +λ−2λ+ −4 = 0λ2

−λ−6 = 0λ2

(λ−3)(λ+2) = 0

λ = 3 or λ = −2.

[ ][ ] = −2 [ ]
−1

2

2

2

C11

C21

C11

C21

−C)11 +2 = −2C21 C11

= −2C11 C21

+2 = −2 )C11 C21 C21
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b. First determine the eigenvalues:

 
From 3a, the solutions then become -2, -2, and 3. Next, determine the eigenvectors. First the eigenvector associated with
eigenvalue 3 (the third root): 

Next, find the pair of eigenvectors associated with the degenerate eigenvalue of -2. First, root one eigenvector one:

+ = 1 (from normalization)C 2
11 C 2

21

(−2 + = 1C21)2 C 2
21

4 + = 1C 2
21 C 2

21

5 = 1C 2
21

= 0.2C 2
21

=C21 0.2
−−−

√

 (again the second row offers no new information)

+ = 1C 2
12 C 2

22

0.25 + = 1C 2
22 C 2

22

1.25 = 1C 2
22

= 0.8C 2
22

= = 2 , and therefore  = .C22 0.8
−−−

√ 0.2
−−−

√ C12 0.2
−−−

√

Therefore the eigenvector matrix becomes:

[ ]
−2 0.2

−−−
√

0.2
−−−

√

0.2
−−−

√

2 0.2
−−−

√

det = 0
⎡

⎣
⎢

−2 −λ

0

0

0

−1 −λ

2

0

2

2 −λ

⎤

⎦
⎥

det [−2 −λ] det[ ] = 0
−1 −λ

2

2

2 −λ

= 3
⎡

⎣
⎢

−2

0

0

0

−1

2

0

2

2

⎤

⎦
⎥
⎡

⎣
⎢

C11

C21

C31

⎤

⎦
⎥

⎡

⎣
⎢

C11

C21

C31

⎤

⎦
⎥

−2 = 3  (row one)C13 C13

= 0C13

− +2 = 3  (row two)C23 C33 C23

2 = 2C33 C23

= 2  (again the third row offers no new information)C33 C23

+ + = 1 (from normalization)C 2
13 C 2

23 C 2
33

0 + +(2 = 1C 2
23 C23)2

5 = 1C 2
23

= , and therefore  = .C23 0.2
−−−

√ C33 0.2
−−−

√
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Note: There are now two equations with three unkowns. Second, root two eigenvector two:

 
Note: Again there are now two equations with three unknows. 

 
Now there are five equations with six unknowns. 

 
Therefore the eigenvector matrix becomes: 

Q4 

Show: 

−2 = −2  (no new information from row one)C11 C11

− +2 = −2  (row two)C21 C31 C21

= −2  (again the third row offers no new information)C21 C31

+ + = 1 (from normalization)C 2
11 C 2

21 C 2
31

+(−2 + = 1C 2
11 C31)2 C 2

31

+5 = 1C 2
11 C 2

31

=C11 1 −5C 2
31

− −−−−−−
√

−2 = −2  (no new information from row one)C12 C12

− +2 = −2  (row two)C21 C31 C21

= −2  (again the third row offers no new information)C21 C31

+ + = 1 (from normalization)C 2
11 C 2

21 C 2
31

+(−2 + = 1C 2
12 C32)2 C 2

32

+5 = 1C 2
12 C 2

32

=C12 1 −5C 2
32

− −−−−−−
√

+ + = 0 (from orthogonalization)C11C12 C21C22 C31C32

Arbitrarily choose  = 0C11

= 0 =C11 1 −5C 2
31

− −−−−−−
√

5 = 1C 2
31

=C31 0.2
−−−

√

= −2C21 0.2
−−−

√

+ + = 0 (from orthogonalization)C11C12 C21C22 C31C32

0 +−2 (−2 ) + = 00.2
−−−

√ C32 0.2
−−−

√ C32

5 = 0C32

= 0, = 0, and  = 1C32 C22 C12

⎡

⎣
⎢

0

−2 0.2
−−−

√

0.2
−−−

√

1

0

0

0

0.2
−−−

√

2 0.2
−−−

√

⎤

⎦
⎥

⟨ ⟩ = 1, ⟨ ⟩ = 1, and ⟨ ⟩ = 0ϕ1∣∣ϕ1 ϕ2∣∣ϕ2 ϕ1∣∣ϕ2
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Q5 

Show (for the degenerate eigenvalue;  = -2): 

Q6 

Suppose the solution is of the form x(t) = eat , with a unknown. Inserting this trial solution into the differential equation
results in the following:

 Solutions are of the form  or a combination of both:  
Euler's formula also states that: , so the previous equation for x(t) can also be written as: 

⟨ | ⟩ 1ϕ1 ϕ1 =
?

+ 1(−2 )0.2
−−−

√
2

( )0.2
−−−

√
2

=
?

4(0.2) +0.2 1=
?

0.8 +0.2 1=
?

1 = 1

⟨ ⟩ 1ϕ2∣∣ϕ2 =
?

+ 1( )0.2
−−−

√
2

(2 )0.2
−−−

√
2

=
?

0.2 +4(0.2) 1=
?

0.2 +0.8 1=
?

1 = 1

⟨ ϕ⟩ = ⟨ ⟩ 0ϕ1∣∣2 ϕ2∣∣ϕ1 =
?

−2 2 00.2
−−−

√ 0.2
−−−

√ 0.2√ 0.2
−−−

√ =
?

−2(0.2) +2(0.2) 0=
?

−0.4 +0.4 0=
?

0 = 0

λ ⟨ ⟩ = 1, ⟨ = 1 eϕ⟩ = 0ϕ2∣∣ϕ2 ϕ2∣∣ϕ2 , and1∣∣

⟨ ⟩ 1ϕ1∣∣ϕ1 =
?

0 + + 1(−2 )0.2
−−−

√
2

( )0.2
−−−

√
2

=
?

4(0.2) +0.2 1=
?

0.8 +0.2 1=
?

1 = 1

⟨ ⟩ 1ϕ1∣∣ϕ2 =
?

+0 +0 112 =
?

1 = 1

⟨ = ⟨ ⟩ 0ϕ1∣∣ϕ2 ϕ2∣∣ϕ1 =
?

(0)(1) +(−2 )(0) +( )(0) 00.2
−−−

√ 0.2
−−−

√ =
?

+ = 0
d2

dt2
eαt k2eαt

+ = 0α2eαt k2eαt

( + )x(t) = 0α2 k2

( + ) = 0α2 k2

= −α2 k2

α = −k2− −−
√

α = ±ik

∴ , ,e−ikt eikt x(t) = + .C1e
ikt C2e

−ikt

= CosΘ± iSinΘe+iθ
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We can determin these coefficients by making use of the "boundary conditions".

 
 The solution is of the form: 

This page titled 22.1.5: v. Review Exercise Solutions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Jack Simons via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.

x(t) = [Cos(kt) + iSin(kt)] + [Cos(kt) − iSin(kt)]C1 C2

x(t) = ( + )Cos(kt) +( + ) iSin(kt), or alternativelyC1 C2 C1 C2

x(t) = Cos(kt) + Sin(kt).C3 C4

at t  = 0, x(0) = L

x(0) = Cos(0) + Sin(0) = LC3 C4

= LC3

at t  = 0, = 0
dx(0)

dt

x(t) = ( Cos(kt) + Sin(kt))
d

dt

d

dt
C3 C4

x(t) = − kSin(kt) + kCos(kt)
d

dt
C3 C4

x(0) = 0 = − kSin(0) + kCos(0)
d

dt
C3 C4

k = 0C4

= 0C4

∴ x(t) = LCos(kt)
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22.1.6: vi. Exercise Solutions

Q1 

a. 

b. 

where i, j, and k are unit vectors along the x, y, and z axes.

c. 

Q2 

First derive the general formulas for  in terms of r,  in terms of x,y, and z. The general relationships are

as follows:

First  from the chain rule:

Evaluation of the many "coefficients" gives the following:

Upon substitution of these "coefficients":

K.E.

K.E.

K.E.

K.E.

= = ( ) = =
mv2

2

m

m

dmv2

2

(mv)2

2m

p2

2m

= ( + + )
1

2m
p2
x p2

y p2
z

= [ + + ]
1

2m
(ℏ )

∂

∂x

2

( )
ℏ

i

∂

∂y

2

( )
ℏ

i

∂

∂z

2

= [ + ]
−ℏ2

2m

∂2

∂x2

∂2

∂y2

∂2

∂z2

(22.1.6.1)

(22.1.6.2)

(22.1.6.3)

(22.1.6.4)

p

p

= mv = i + j +kpx py pz

= [i( + j( )+( ))]
ℏ

i

∂

∂x

ℏ

i

∂

∂y

ℏ

i

∂

∂z

(22.1.6.5)

(22.1.6.6)

Ly

Ly

= z −xpx pz

= z( )−x( )
ℏ

i

∂

∂x

ℏ

i

∂

∂z

(22.1.6.7)

(22.1.6.8)

, ,
∂

∂x

∂

∂y

∂

∂z
θ, and ϕ, and  , , and 

∂

∂r

∂

∂θ

∂

∂ϕ

x

y

z

= r sinθcosϕ

= r sinθ sinϕ

= r cosθ

r2

sinθ

cosθ

tanϕ

= +x2y2 z2

=
+x2 y2

− −−−−−
√

+ +x2 y2 z2
− −−−−−−−−−

√

=
z

+ +x2 y2 z2− −−−−−−−−−
√

=
y

x

(22.1.6.9)

(22.1.6.10)

(22.1.6.11)

(22.1.6.12)

, , and 
∂

∂x

∂

∂y

∂

∂z

∂

∂x

∂

∂y

∂

∂z

= + + ,( )
∂r

∂x y,z

∂

∂r
( )

∂θ

∂x y,z

∂

∂θ
( )

∂ϕ

∂x y,z

∂

∂ϕ

= + + ,( )
∂r

∂y y,z

∂

∂r
( )

∂θ

∂y y,z

∂

∂θ
( )

∂ϕ

∂y y,z

∂

∂ϕ

= + + ,( )
∂r

∂z y,z

∂

∂r
( )

∂θ

∂z y,z

∂

∂θ
( )

∂ϕ

∂z y,z

∂

∂ϕ

(22.1.6.13)

(22.1.6.14)

(22.1.6.15)

( )
∂r

∂x y,z

( )
∂r

∂y x,z

( )
∂r

∂z x,z

= sinθcosϕ,

= sinθ sinϕ,

= cosθ,

( )
∂θ

∂x y,z

( )
∂θ

∂y x,z

( )
∂θ

∂z x,y

= ,
cosθcosϕ

r

= ,
cosθ sinϕ

r

= − , and 
sinθ

r

=( )
∂ϕ

∂x y,z

=( )
∂ϕ

∂y x,z

=( )
∂ϕ

∂z y,z

−
sinϕ

r sinθ

cosϕ

r sinθ

0.

(22.1.6.16)

(22.1.6.17)

(22.1.6.18)

∂

∂x
∂

∂y
∂

∂z

= sinθcosϕ + − ,
∂

∂r

cosθcosϕ

r

∂

∂θ

sinϕ

r sinθ

∂

∂ϕ

= sinθ sinϕ + + , and 
∂

∂r

cosθ sinϕ

r

∂

∂θ

Cosϕ

r sinθ

∂

∂ϕ

= cosθ − +0 ,
∂

∂r

sinθ

r

∂

∂θ

∂

∂ϕ

(22.1.6.19)

(22.1.6.20)

(22.1.6.21)
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Next  from the chain rule:

Again evaluation of the the many "coefficients" results in:

Upon substitution of these "coefficients":

Note, these many "coefficients" are the elements which make up the Jacobian matrix used whenever one wishes to transform a function from one
coordinate representation to another. One very familiar result should be in transforming the volume element  to  For
example:

a.

b.

Q3 

B(v.) is an eigenfunction of A(i.):

, , and 
∂

∂r

∂

∂θ

∂

∂ϕ

∂

∂r

∂

∂θ

∂

∂ϕ

= + + ,( )
∂x

∂r θ,ϕ

∂

∂x
( )

∂y

∂r θ,ϕ

∂

∂y
( )

∂z

∂r θ,ϕ

∂

∂z

= + + , and ( )
∂x

∂θ r,ϕ

∂

∂x
( )

∂y

∂θ r,ϕ

∂

∂y
( )

∂z

∂θ r,ϕ

∂

∂z

= + + .( )
∂x

∂ϕ r,θ

∂

∂x
( )

∂y

∂ϕ r,θ

∂

∂y
( )

∂z

∂ϕ r,θ

∂

∂z

(22.1.6.22)

(22.1.6.23)

(22.1.6.24)

( )
∂x

∂r θ,ϕ

( )
∂x

∂θ r,ϕ

( )
∂x

∂ϕ r,θ

= ,
x

+ +x2 y2 z2
− −−−−−−−−−

√

= ,
xz

+x2 y2
− −−−−−

√

= −y,

( )
∂y

∂r θ,ϕ

( )
∂y

∂θ r,ϕ

( )
∂y

∂ϕ r,θ

= ,
y

+ +x2 y2 z2
− −−−−−−−−−

√

= ,
yz

+x2 y2
− −−−−−

√

= x,

( )
∂z

∂r θ,ϕ

( )
∂z

∂θ r,ϕ

 and  = 0( )
∂z

∂ϕ r,θ

=
z

+ +x2 y2 z2
− −−−−−−−−−

√

= − +x2 y2
− −−−−−

√

(22.1.6.25)

(22.1.6.26)

(22.1.6.27)

∂

∂r

∂

∂θ

∂

∂ϕ

= + +
x

+ +x2 y2 z2
− −−−−−−−−−

√

∂

∂x

y

+ +x2 y2 z2
− −−−−−−−−−

√

∂

∂y

z

+ +x2 y2 z2
− −−−−−−−−−

√

∂

∂z

= + −
xz

+x2 y2− −−−−−√

∂

∂x

yz

+x2 y2− −−−−−√

∂

∂y
+x2 y2

− −−−−−
√

∂

∂z

= −y +x +0 .
∂

∂x

∂

∂y

∂

∂z

(22.1.6.28)

(22.1.6.29)

(22.1.6.30)

dx dy dz sinθdr dθdϕ.r2

∫ f(x, y, z)dxdydz = ∫ f(x(r, θ,ϕ), y(r, θ,ϕ), z(r, θ,ϕ)) drdθdϕ

∣

∣

∣
∣
∣
∣
∣
∣
∣

( )
∂x

∂r θϕ

( )
∂y

∂r θϕ

( )
∂z

∂r θϕ

( )
∂x

∂θ rϕ

( )
∂y

∂θ rϕ

( )
∂z

∂θ rϕ

( )
∂x

∂ϕ rθ

( )
∂y

∂ϕ rθ

( )
∂z

∂ϕ rθ

∣

∣

∣
∣
∣
∣
∣
∣
∣

Lx

Lx

Lx

= [y −z ]
ℏ

i

∂

∂z

∂

∂y

= [rsinθsinϕ(cosθ − )]− [r cosθ(sinθ sinϕ + + )]
ℏ

i

∂

∂r

sinθ

r

∂

∂θ

ℏ

i

∂

∂r

cosθ sinϕ

r

∂

∂θ

cosϕ

r sinθ

∂

∂ϕ

= − (sinϕ +cotθcosϕ )
ℏ

i

∂

∂θ

∂

∂ϕ

(22.1.6.31)

(22.1.6.32)

(22.1.6.33)

Lz

Lz

= = −iℏ
ℏ

i

∂

∂ϕ

∂

∂ϕ

= (−y +x )
ℏ

i

∂

∂x

∂

∂y

(22.1.6.34)

(22.1.6.35)

i.

ii.

iii.

iv.

v.

B

4 −12 +3x4 x2

5x4

+e3x e−3x

−4x+2x2

4 −3x3

B′

16 −24xx3

20x3

3 ( − )e3x e3x

2x−4

12 −3x2

B′′

48 −24x2

60x2

9 ( + )e3x e−3x

2

24x

(22.1.6.36)

(22.1.6.37)

(22.1.6.38)

(22.1.6.39)

(22.1.6.40)

(22.1.6.41)
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B(iii.) is an eigenfunction of A(ii.):

B(ii.) is an eigenfunction of A(iii.):

B(i.) is an eigenfunction of A(vi.):

B(iv.) is an eigenfunction of A(v.):

Q4 

Show that:

a. Suppose f and g are functions of x and evaluate the integral on the left hand side by "integration by parts":

let dv =  and 

Now, 

so:

Note that in, principle, it is impossible to prove hermiticity unless you are given knowledge of the type of function on which the operator is acting.
Hermiticity requires (as can be seen in this example) that the term -i f(x)*g(x) vanish when evaluated at the integral limits. This, in general, will occur
for the "well behaved" functions (e.g., in bound state quantum chemistry, the wavefunctions will vanish as the distances among particles approaches
infinity). So, in proving the hermiticity of an operator, one must be careful to specify the behavior of the functions on which the operator is considered
to act. This means that an operator may be hermitian for one class of functions and non-hermitian for another class of functions. If we assume that f
and g vanish at the boundaries, then we have

(1 − ) −x B(v.)x2 d2

dx2

d

dx
=

=

=

=

=

(1 − ) (24x) −x (12 −3)x2 x2

24x−24 −12 +3xx3 x3

−36 +27xx3

−9 (4 −3x)  (eigenvalue is -9)x3

(22.1.6.42)

(22.1.6.43)

(22.1.6.44)

(22.1.6.45)

(22.1.6.46)

B(iii.)
d2

dx2
=

=9 ( + )  (eigenvalue is 9)e3x e−3x

(22.1.6.47)

(22.1.6.48)

x B(ii.)
d

dx
=

=

=

=

x (20 )x3

20x4

4 (5 )  (eigenvalue is 4)x4

(22.1.6.49)

(22.1.6.50)

(22.1.6.51)

(22.1.6.52)

−2x B(i.)
d2

dx2

d

dx
=

=

=

=

=

(48 −24)−2x (16 −24x)x2 x3

48 −24 −32 +48x2 x4 x2

−32 +6 −24x4 x2

−8 (4 −12 +3)  (eigenvalue is -8)x4 x2

(22.1.6.53)

(22.1.6.54)

(22.1.6.55)

(22.1.6.56)

(22.1.6.57)

x −+(1 −x) B(iv.)
d2

dx2

d

dx
=

=

=

=

=

x(2) +(1 −x)(2x−4)

2x+2x−4 −2 +4xx2

−2 +8x−4x2

−2 ( −4x+2)  (eigenvalue is -2)x2

(22.1.6.58)

(22.1.6.59)

(22.1.6.60)

(22.1.6.61)

(22.1.6.62)

∫ Agdτ = ∫ g(Af dτf * )*

∫ f(x (−iℏ ) g(x)dx)* ∂

∂x

g(x)dx
∂

∂x
u = −iℏf(x)*

v= g(x)du = −iℏ f(x dx
∂

∂x
)*

∫ udv= uv−∫ vdu,

f(x (−iℏ ) g(x)dx = −iℏf(x g(x) + iℏ∫ g(x) f(x dx.)* ∂

∂x
)* ∂

∂x
)*

ℏ
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b. Suppose f and g are functions of y and z and evaluate the integral on the left hand side by "integration by parts" as in the previous exercise:

For the first integral, 

so:

For the second integral, 

so:

Again we have had to assume that the functions f and g vanish at the boundary.

Q5 

Using these relationships:

∫ f(x (−iℏ ) g(x)dx = ∫ g(x) dx)* ∂

∂x
(−ℏ (x))

∂

∂x

*

∫ f(y, z [−iℏ(y −z )] g(y, z)dydz = ∫ f(y, z [−iℏ(y )] g(y, z)dydz−)* ∂

∂z

∂

∂y
)* ∂

∂z

∫ (y, z [−iℏ(z )] g(y, z)dydz)* ∂

∂y

∫ f(z (−iℏy ) g(z)dz,)* ∂

∂z

let dv 

v

= g(z)dz
∂

∂z

= g(z)

u

du

= −iℏyf(z)*

= −iℏy (z dz
∂

∂z
)*

(22.1.6.63)

(22.1.6.64)

∫ f(z (−iℏy ) g(z)dz = −iℏyf(z g(z) + iℏy ∫ g(z) f(z dz = ∫ g(z) dz.)* ∂

∂z
)* ∂

∂z
)* (−iℏy f(z))

∂

∂z

*

∫ f(y (−iℏy ) g(y)dy,)* ∂

∂y

.

let dv 

v

= g(y)dy
∂

∂y

= g(y)

u

du

= −iℏyf(y)*

= −iℏz f(y dy
∂

∂y
)*

(22.1.6.65)

(22.1.6.66)

∫ f(y (−iℏz ) g(y)dy = −iℏzf(y g(y) + iℏz∫ g(y) f(y dy = ∫ g(y) dy.)* ∂

∂y
)* ∂

∂y
)* (−iℏz f(y))

∂

∂y

*

∫ f(y, z [−iℏ(y −z )] g(y, z)dydz = ∫ g(z) dz−∫ g(y) dy)* ∂

∂z

∂

∂y
(−iℏy f(z))

∂

∂z

*

(−iℏz f(y))
∂

∂y

*

= ∫ g(y, z) dydz.(−ℏ(y −z ) f(y, z))
∂

∂z

∂

∂y

*

= + iL+ Lx Ly

= − i , soL− Lx Ly

+ = 2 ,  or  = ( + )L+ L− Lx Lx

1

2
L+ L−

= ℏL+Yl,m l(l+ l) −m(m+ l)
− −−−−−−−−−−−−−−

√ Tl,m+1

= ℏL−Yl,m l(l+ l) −m(m− l)
− −−−−−−−−−−−−−−

√ Tl,m−1

= 0, = ℏ , = ℏL−Ψ2p−1
L−Ψ2p0

2
–

√ Ψ2p−1
L−Ψ2p+1

2
–

√ Ψ2p0

= ℏ , = ℏ ,L+Ψ2p−1
2
–

√ Ψ2p0
L+Ψ2p0

2
–

√ Ψ2p+1
L+Ψ2p+1

= 0  matrix elements can be evaluated:  , and the following Lx

(1, 1) = ⟨ ( + ) ⟩ = 0Lx Ψ2p−1
∣∣
1

2
L+ L− ∣∣Ψ2p−1

(1, 2) = ⟨ ( + ) ⟩ = ℏLx Ψ2p−1
∣∣
1

2
L+ L− ∣∣Ψ2p0

2
–

√

2
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This matrix:

, can now be diagonalized:

-

Expanding theses determinants yields:

with roots: 0,

Next, determine the corresponding eigenvectors:

For 

(1, 3) = ⟨ ( + ) ⟩ = 0Lx Ψ2p−1
∣∣
1

2
L+ L− ∣∣Ψ2p+1

(2, 1) = ⟨ ( + ) ⟩ = ℏLx Ψ2p0
∣∣
1

2
L+ L− ∣∣Ψ2p−1

2
–

√

2

(2, 2) = ⟨ ( + ) ⟩ = 0Lx Ψ2p0
∣∣
1

2
L+ L− ∣∣Ψ2p0

(2, 3) = ⟨ ( + ) big| ⟩ = ℏLx Ψ2p0
∣∣
1

2
L+ L− Ψ2p+1

2
–

√

2

(3, 1) = ⟨ ( + ) ⟩ = 0Lx Ψ2p+1
∣∣
1

2
L+ L− ∣∣Ψ2p−1

(3, 2) = ⟨ ( + ) ⟩ = ℏLx Ψ2p+1
∣∣
1

2
L+ L− ∣∣Ψ2p−1

2
–√

2

(3, 3) = 0Lx

⎡

⎣

⎢⎢
⎢⎢⎢
⎢⎢

0

ℏ
2
–

√

2

0

ℏ
2
–

√

2

0

ℏ
2
–

√

2

0

ℏ
2
–

√

2

0

⎤

⎦

⎥⎥
⎥⎥⎥
⎥⎥

(22.1.6.67)

=

∣

∣

∣
∣
∣
∣
∣
∣

0 −λ

ℏ
2
–

√

2

0

ℏ
2
–

√

2

0

2
–

√

2

0

ℏ
2
–

√

2

0

∣

∣

∣
∣
∣
∣
∣
∣

(22.1.6.68)

(−

∣

∣

∣
∣
∣

0 −λ

ℏ
2
–

√

2

ℏ
2
–

√

2

0 −λ

∣

∣

∣
∣
∣

(22.1.6.69)

(
∣

∣

∣
∣

ℏ
2
–

√

2
0

ℏ
2
–

√

2
0 −λ

∣

∣

∣
∣ (22.1.6.70)

( − ) (−λ) − (−λ)( ) = 0λ2 ℏ2

2

ℏ2
–

√

2

ℏ2
–

√

2

−λ ( − ) = 0λ2 ℏ2

−λ (λ−ℏ) (λ+ℏ) = 0

ℏ, and  −ℏ

λ = 0

⎡

⎣

⎢⎢
⎢⎢
⎢⎢⎢

0

ℏ
2
–

√

2

0

ℏ
2
–

√

2

0

ℏ
2
–

√

2

0

ℏ
2
–

√

2

0

⎤

⎦

⎥⎥
⎥⎥
⎥⎥⎥

(22.1.6.71)
⎡

⎣
⎢

ℏ = 0 (row one) 
2
–

√

2
C21

1 = 0C2
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For 

For 

ℏ + ℏ = 0 (row two)
2
–

√

2
C11

2
–

√

2
C31

+ = 0C11 C31

= −C11 C31

+ + = 1 (normalization)C 2
11 C 2

21 C 2
31

+(− = 1C 2
11 C11)2

2 = 1C 2
11

= , = 0, and  = −C11
1

2
–

√
C21 C31

1

2
–

√

λ = 1ℏ :

⎡

⎣

⎢⎢⎢
⎢⎢
⎢⎢

0

ℏ
2
–

√

2

0

ℏ
2
–

√

2

0

ℏ
2
–

√

2

0

ℏ
2
–

√

2

0

⎤

⎦

⎥⎥⎥
⎥⎥
⎥⎥

(22.1.6.72)
⎡

⎣
⎢

ℏ = ℏ  (row one)
2
–

√

2
C22 C12

=C12
2
–

√

2
C22

ℏ + ℏ = ℏ  (row two)
2
–

√

2
C12

2
–

√

2
C32 C22

+ =
2
–

√

2

2
–

√

2
C22

2
–

√

2
C32 C22

+ =
1

2
C22

2
–

√

2
C32 C22

=
2
–

√

2
C32

1

2
C22

=C32
2
–

√

2
C22

+ + = 1 (normalization)C 2
12 C 2

22 C 2
32

+ + = 1( )
2
–

√

2
C22

2

C 2
22 ( )

2
–

√

2
C22

2

+ + = 1
1

2
C 2

22 C 2
22

1

2
C 2

22

2 = 1C 2
22

=C22
2
–

√

2

= , = , and  =C12
1

2
C22

2
–

√

2
C32

1

2

λ = −1ℏ

⎡

⎣

⎢⎢⎢
⎢⎢
⎢⎢

0

ℏ
2
–

√

2

0

ℏ
2
–

√

2

0

ℏ
2
–

√

2

0

ℏ
2
–

√

2

0

⎤

⎦

⎥⎥⎥
⎥⎥
⎥⎥

(22.1.6.73)
⎡

⎣
⎢

ℏ = −ℏ  (row one) 
2
–

√

2
C23 C13
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Show: 

= −C13
2
–

√

2
C23

ℏ + ℏ = −ℏ  (row two)
2
–

√

2
C13

2
–

√

2
C33 C23

(− )+ = −
2
–

√

2

2
–

√

2
C23

2
–

√

2
C33 C23

− + = −
1

2
C23

2
–

√

2
C33 C23

= −
2
–

√

2
C33

1

2
C23

= −C33
2
–

√

2
C23

+ + = 1 (normalization)C 2
13 C 2

23 C 2
33

+ + = 1(− )
2
–

√

2
C23

2

C 2
23

(− )
2
–

√

2
C23

2

+ + = 1
1

2
C 2

23 C 2
23

1

2
C 2

23

2 = 1C 2
23

=C23
2
–

√

2

= − = , and  = −C13
1

,
C23

2
–

√

2
C33

1

2

⟨ | ⟩ = 1, ⟨ | ⟩ = 1, ⟨ | ⟩ = 1, ⟨ | ⟩ = 0, ⟨ | ⟩ = 0, and⟨ | ⟩ = 0.ϕ1 ϕ1 ϕ2 ϕ2 ϕ3 ϕ3 ϕ1 ϕ2 ϕ1 ϕ3 ϕ2 ϕ3

⟨ | ⟩ 1ϕ1 ϕ1 =
?

+0 + 1( )
2
–

√

2

2

(− )
2
–

√

2

2

=
?

+ 1
1

2

1

2
=
?

1 = 1

⟨ | ⟩ 1ϕ2 ϕ2 =
?

+ + 1( )
1

2

2

( )
2
–

√

2

2

( )
1

2

2

=
?

+ + 1
1

4

1

2

1

4
=
?

1 = 1

⟨ | ⟩ 1ϕ3 ϕ3 =
?

+ + 1(− )
1

2

2

( )
2
–

√

2

2

(− )
1

2

2

=
?

+ + 1
1

4

1

2

1

4
=
?

1 = 1

⟨ | ⟩ = ⟨ | ⟩ 0ϕ1 ϕ2 ϕ2 ϕ1 =
?

( )( )+(0)( )+(− )( ) 0
2
–

√

2

1

2

2
–

√

2

2
–

√

2

1

2
=
?

( )−( ) 0
2
–

√

4

2
–

√

4
=
?
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Q6 

Q7 

It is useful here to use some of the general commutator relations found in Appendix C.V.

a.

As can be easily ascertained, the only non-zero terms are:

b.

Again, as can be easily ascertained, the only non-zero terms are:

0 = 0

⟨ | ⟩ = ⟨ | ⟩ 0ϕ1 ϕ3 ϕ3 ϕ1 =
?

( )(− )+(0)( )+(− )(− ) 0
2
–

√

2

1

2

2
–

√

2

2
–

√

2

1

2
=
?

(− )+( ) 0
2
–

√

4

2
–

√

4
=
?

0 = 0

⟨ | ⟩ = ⟨ | ⟩ 0ϕ2 ϕ3 ϕ3 ϕ2 =
?

( )(− )+( )( )+( )(− ) 0
1

2

1

2

2
–

√

2

2
–

√

2

1

2

1

2
=
?

(− )+( )+(− ) 0
1

4

1

2

1

4
=
?

0 = 0

= ⟨ ⟩P2p+1
∣∣ ϕ2p+1

Φ0ℏ
Lx

∣∣
2

= −Ψ0ℏ
Lx

1

2
–

√
ϕ2p−1

1

2
–

√
ϕ2p+1

= − ⟨ ⟩ =  (or 50%)P2p+1
∣∣

1

2
–

√
ϕ20+1ϕ2p+1

∣∣
2 1

2

[ , ] = [y −z , z −x ]Lx Ly pz py px pz

= [y , z ] − [y , x ] − [z , z ] + [z , x ]pz px pz pz py px py pz

= [y, z] +z[y, ] +y[ , z] +yz[ , ]pxpz px pz pz px pz px

−[y, x] −x[y, ] −y[ , x] −yx[ , ]pzpz pz pz pz pz pz pz

−[z, z] −z[z, ] −z[ , z] −zz[ , ]pxpy px py py px py px

+[z, x] +x[z, ] +z[ . x] +zx[ , ]pzpy pz py py pz py pz

[ , ] = y [ ,Z] +x [z, ]Lx Ly pz px pz py

= y(iℏ) +x(iℏ)px py

= iℏ (−y +x )px py

= iℏLz

[ , ] = [z −x , x −y ]Ly Lz px pz py pz

= [z , x ] − [z , y ] − [x , x ] + [x , y ]px py px px pz py pz px

= [z, x] +x [z, ] +z [ , x] +zx [ , ]pypx py px px py px pz

−[z, y] −y [z, ] −z [ , y] −zy [ , ]Pxpx px px px px px px

−[x, x] −x [x, ] −x [ , x] −xx [ , ]pypz py pz pz py pz py

+[x, y] +y [x, ] +x [ , y] +xy [ , ]pxpz px pz pz px pz px
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c.

Again, as can be easily ascertained, the only non-zero terms are:

d.

e.

f.

[ , ] = z [ , x] +y [x, ]Ly Lz px py px pz

= z(−iℏ) +y(iℏ)py pz

= iℏ(−z +y )py pz

= iℏLx

[ , ] = [x −y , y −z ]Lz Lx py px pz py

= [x , y ] − [x , z ] − [y , y ] + [y , z ]py pz py py px pz px py

= [x, y] +y [x, ] +x [ , y] +xy [ , ]pzpy pz py py pz py pz

−[x, z] −z [x, ] −x [ , z] −xz [ , ]pypy py py py py py py

−[y, y] −z [y, ] −y [ , y] −yy [ , ]pzpx py px px pz px pz

+[y, z] +z [y, ] +y [ , z] +yz [ , ]pypx py px px py px pz

[ , ] = x [ , y] +z [y, ]Lz Lx py pz py px

= x(−iℏ) +z(iℏ)pz px

= iℏ(−x +z )pz px

= iℏLy

[ , ] = [ . + + ]Lx L2 Lx L2
x L2

y L2
z

= [ , ]+[ , ]+[ , ]Lx L2
x Lx L2

y Lx L2
z

= [ , ]+[ , ]Lx L2
y Lx L2

z

= [ , ] + [ . ] + [ , ] + [ , ]Lx Ly Ly Ly Lx Ly Lx Lz Lz Lz Lx Lz

= (iℏ ) + (iℏ ) +(−iℏ ) + (−iℏ )Lz Ly Ly Lz Ly Lz Lz Ly

= (iℏ) (− − + + )LzLx LxLz LxLz LzLx

= (iℏ) ([ , ] + [ , ]) = 0Lz Ly Ly Lz

[ , ] = [ , + + ]Ly L2 Ly L2
x L2

y L2
z

= [ , ]+[ , ]+[ , ]Ly L2
x Ly L2

y Ly L2
z

= [ , ]+[ , ]Lz L2
x Lz L2

y

= [ , ] + [ , ] + [ , ] + [ , ]Ly Lx Lx Lx Ly Lx Ly Lz Lz Lz Ly Lz

= (−iℏ ) + (−iℏ ) +(iℏ ) + (iℏ )Lz Lx Lx Lz Lx Lz Lz Lx

= (iℏ) (− − + + )LzLx LxLz LxLz LzLx

= (iℏ) ([ , ] + [ , ]) = 0Lx Lz Lz Lx

[ , ] = [ , + + ]Lz L2 Lz L2
x L2

y L2
z

= [ , ]+[ , ]+[ , ]Lz L2
x Lz L2

y Lz L2
z

= [ , ]+[ , ]Lz L2
x Lz L2

y

= [ , ] + [ , ] + [ , ] + [ , ]Lz Lx Lx Lx Lz Lx Lz Ly Ly Ly Lz Ly

= (iℏ ) + (iℏ ) +(−iℏ ) + (−iℏ )Ly Lx Lx Ly Lx Ly Ly Lx

(iℏ) ( + − − )LyLx LxLy LxLy LyLx

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/75033?pdf


22.1.6.10 https://chem.libretexts.org/@go/page/75033

Q8 

Use the general angular momentum relationships:

and the information used in exercise 5, namely that:

[ \textbf{L}_- Y_{l,m} = \sqrt{l(l + l) - m(m - l)}\hbar Y_{l,m-1} \nonumber \]

Given that:

a.

[ \textbf{L}^2 \big| 0,0\rangle = 0 \nonumber \]

Since  and  commute you would expect |0,0> to be simultaneous eigenfunctions of both.

b.

 and  do not commute. It is unexpected to find a simultaneous eigenfunction (|0,0>) of both ... for sure these operators do not have the
same full set of eigenfunctions.

c.

Again since  and  commute you would expect |1,0> to be simultaneous eigenfunctions of both.

d.

Again,  and  do not commute. Therefore it is expected to find differing sets of eigenfunctions for both.

Q9 

For

Let: , and  and using Euler's formula, expand the exponentials into Sin and Cos terms.

(iℏ) ([ , ] + [ , ]) = 0Ly Lx Lx Ly

j,m⟩ = (j(j+1)) j,m⟩J 2∣∣ ℏ2 ∣∣

j,m⟩ = ℏm j,m⟩,Jz∣∣ ∣∣

= ( + )Lx

1

2
L+ L−

= ℏL+Yl,m l(l+ l) −m(m+ l)
− −−−−−−−−−−−−−−

√ Yl,m+1

(θ,ϕ) = = 0, 0⟩Y0,0
1

4π
−−

√
∣∣

(θ,ϕ) = Cosθ = 1, 0⟩.Y1,0
3

4π

−−−
√ ∣∣

0, 0⟩ = 0Lz∣∣

L2 Lz

0, 0⟩ = 0Lx∣∣

0, 0⟩ = 0Lz∣∣

Lx Lz

1, 0⟩ = 0Lz∣∣

1, 0⟩ = 2 1, 0⟩L2∣∣ ℏ2∣∣

L2 Lz

1, 0⟩ = ℏ 1, −1⟩+ ℏ 1, 1⟩Lx∣∣
2
–

√

2
∣∣

2
–

√

2
∣∣

1, 0⟩ = 0Lz∣∣

Lx Lz

Ψ(x, y) = − −( )( )
1

2Lx

1

2Ly

− −−−−−−−−−−−−

√
⎡

⎣
⎢⎢e

( )
i πxnx

Lx e
( )

−i πxnx

Lx

⎤

⎦
⎥⎥

⎡

⎣

⎢⎢⎢e

⎛

⎝

i πyny

Ly

⎞

⎠
e

⎛

⎝

−i πyny

Ly

⎞

⎠
⎤

⎦

⎥⎥⎥

⟨Ψ(x, y) Ψ(x, y)⟩ 1∣∣ =
?

=ax
πnx

Lx

=ay
πny

Ly
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Using the integral:

Q10 

But the integral:

Q11 

Using the integral:

Using the previously defined integral:

Ψ(x, y) = [cos( x) + i sin( x) −cos( x) + i sin( x)] [cos( y) + i sin( y) −cos( y)( )( )
1

2Lx

1

2Ly

− −−−−−−−−−−−−

√ ax ax ax ax ay ay ay

+ i sin( y)]ay

Ψ(x, y) = 2i sin( x)2i sin( y)( )( )
1

2Lx

1

2Ly

− −−−−−−−−−−−−

√ ax ay

Ψ(x, y) = sin( x) sin( y)(− )( )
2

Lx

2

Ly

− −−−−−−−−−−−−

√ ax ay

⟨Ψ(x, y) Ψ(x, y)⟩ = ∫ dxdy∣∣ ( sin( x) sin( y))(− )( )
2

Lx

2

Ly

− −−−−−−−−−−−−

√ ax ay

2

=( )( )∫ ( x) ( y)dxdy
2

Lx

2

Ly

sin2 ax sin2 ay

dx = ,∫

0

L

sin2 nπx

L

L

2

∠Ψ(x, y) Ψ(x, y)⟩ =( )( )( )( ) = 1∣∣
2

Lx

2

Ly

Lx

2

Ly

2

⟨Ψ(x, y)| |Ψ(x, y)⟩ =( ) ( y)dy( ) sin( x)(−iℏ ) sin( x)dx =( ) sinpx
2

Ly

∫

0

Ly

sin2 ay
2

Lx

∫

0

Lx

ax
∂

∂x
ax

−iℏ2ax
Lx

∫

0

Lx

( x) cos( x)dxax ax

cos( x) sin( x)dx = 0,∫

0

Lx

ax ax

∴ ⟨Ψ(x, y) Ψ(x, y)⟩ = 0∣∣px∣∣

⟨ ⟩ = ( ) dx = 2 dxΨ0∣∣x
2∣∣Ψ0

α

π

−−
√ ∫

−∞

∞ ⎛

⎝
⎜e

− α
1

2
x2 ⎞

⎠
⎟ x2

⎛

⎝
⎜e

− α
1

2
x2 ⎞

⎠
⎟

α

π

−−
√ ∫

0

∞

x2e
− α

1

2
x2

dx =∫

0

∞

x2ne−βx2 1 ⋅ 3 ⋅ ⋅⋅(2n−1)

2n+1
( )

π

β2n+1

− −−−−−−−

√

⟨ | | ⟩ = 2 ( )Ψ0 x2 Ψ0
α

π

−−
√

1

22

π

α3

−−−
√

⟨ | | ⟩ =( )Ψ0 x
2 Ψ0

1

2α

⟨ | | ⟩ = x ( ) x dxΨ1 x2 Ψ1
4α3

π

− −−−
√ ∫

∞

−∞

⎛

⎝
⎜ e

− α
1

2
x2 ⎞

⎠
⎟ x2

⎛

⎝
⎜ e

−α
1

2
x2 ⎞

⎠
⎟

= 2 dx
4α3

π

− −−−
√ ∫

0

∞

x4e
−α

1

2
x2
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Q12 

Q13 

a.

b.

⟨ | | ⟩ = 2 ( )Ψ1 x
2 Ψ1

4α3

π

− −−−
√ 3

23

π

α5

−−−
√

⟨ | | ⟩ =( )Ψ1 x2 Ψ1
3

2α

(x) = 0ΨI

(x) = A +BΨII e

i x
⎛

⎝
⎜

2mE

ℏ2



⎷




⎞

⎠
⎟

e

−i x
⎛

⎝
⎜

2mE

ℏ2



⎷




⎞

⎠
⎟

(x) = +ΨIII A′e

i x

⎛

⎝
⎜

2m(V −E)

ℏ2



⎷




⎞

⎠
⎟

B′e

−i x

⎛

⎝
⎜

2m(V −E)

ℏ2



⎷




⎞

⎠
⎟

I ↔ II

(0) = (0)ΨI ΨII

(0) = 0 = (0) = A +BΨI ΨII e

i (0)
⎛

⎝
⎜

2mE

ℏ2



⎷




⎞

⎠
⎟

e

−i (0)
⎛

⎝
⎜

2mE

ℏ2



⎷




⎞

⎠
⎟

0 = A+B
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( this gives no useful information since  does not exist at x = 0 )

c.

d. Rewrite the equations for  using the information in 13c:

(eqn. 2)

substitution (eqn. 1) into (eqn. 2)

substituting (eqn. 1) into (eqn. 3):

B = −A

(0) = (0)Ψ′
I Ψ′

II

(x)Ψ′
I

I ↔ II

(L) = (L)ΨII ΨIII

A +B = +e

i L
⎛

⎝
⎜

2mE

ℏ2



⎷


⎞

⎠
⎟

e

−i L
⎛

⎝
⎜

2mE

ℏ2



⎷


⎞

⎠
⎟

A′e

i L

⎛

⎝
⎜

2m(V −E)

ℏ2



⎷


⎞

⎠
⎟

B′e

−i L

⎛

⎝
⎜

2m(V −E)

ℏ2



⎷


⎞

⎠
⎟

(L) = (L)A +B = +Ψ′
II Ψ′

III

⎛

⎝

⎜⎜⎜e
i L

2mE

ℏ2



⎷

 ⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜⎜e
−i L

2mE

ℏ2



⎷

 ⎞

⎠

⎟⎟⎟ A′

⎛

⎝

⎜⎜⎜e
i L

2m(V −E)

ℏ2



⎷

 ⎞

⎠

⎟⎟⎟ B′

⎛

⎝

⎜⎜⎜e
−i L

2m(V −E)

ℏ2



⎷

 ⎞

⎠

⎟⎟⎟

(L) = (L)Ψ′
II Ψ′

III

A(i ) −B(i )
2mE

ℏ2

− −−−−
√ e

i L
2mE

ℏ



⎷


2mE

ℏ2

− −−−−
√ e

i L
2mE

ℏ



⎷



= (i ) − (i )A′ 2m(V −E)

ℏ2

− −−−−−−−−−

√ e
i L

2m(V −E)

ℏ



⎷




B′ 2m(V −E)

ℏ2

− −−−−−−−−−

√ e
i L

2m(V −E)

ℏ



⎷




asx → −∞, (x) = 0ΨI

asx → ∞, (x) = 0 ∴ = 0ΨIII A′

(0), (0), (L) = (L), and  (L) = (L)ΨI ΨII ΨII ΨIII Ψ′
II Ψ′

III

B = −A(eqn. 1)

A +B =e
i L

2mE

ℏ



⎷




e
−i L

2mE

ℏ



⎷




B′e
i L

2m(V −E)

ℏ



⎷




A(i ) −B(i ) = − (i )
2mE

ℏ2

− −−−−
√ e

i L
2mE

ℏ



⎷




L
2mE

ℏ2

− −−−−−
√ e

−i L
2mE

ℏ2



⎷




B′ 2m(V −E)

ℏ2

− −−−−−−−−−

√ e
−i L

2m(V −E)

ℏ2



⎷




A −A =e
i L

2mE

ℏ2



⎷




e
−i L

2mE

ℏ2



⎷




B′e
−i L

2m(V −E)

ℏ2



⎷




A[cos( L)+ i sin( )]−A[cos( L)− i sin( )] =
2mE

ℏ2

− −−−−
√ L

2mE

ℏ2

− −−−−−
√

2mE

ℏ2

− −−−−
√ L

2mE

ℏ2

− −−−−−
√ B′e

−i L
(V −E)

ℏ2



⎷




2Ai sin( L) =
2mE

ℏ2

− −−−−
√ B′e

−i L
2m(V −E)

ℏ2



⎷




sin( L) =  (eqn. 4)
2mE

ℏ2

− −−−−
√

B′

2Ai
e

−i L
2m(V −E)

ℏ2



⎷



A(i ) +A(i ) = − (i )
2mE

ℏ2

− −−−−
√ e

i L
⎛

⎝
⎜

2mE

ℏ2



⎷


⎞

⎠
⎟

2mE

ℏ2

− −−−−
√ e

−i L
⎛

⎝
⎜

2mE

ℏ2



⎷


⎞

⎠
⎟

B′ 2m(V −E)

ℏ2

− −−−−−−−−−

√ e

−1 L

⎛

⎝
⎜

2m(V −E)

ℏ2



⎷




⎞

⎠
⎟

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/75033?pdf


22.1.6.14 https://chem.libretexts.org/@go/page/75033

This page titled 22.1.6: vi. Exercise Solutions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons via source
content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

A(i )(cos( L)+ i sin( L))
2mE

ℏ2

− −−−−
√

2mE

ℏ2

− −−−−
√

2mE

ℏ2

− −−−−
√

+A(i )(cos( L)− i sin( L))
2mE

ℏ2

− −−−−
√

2mE

ℏ2

− −−−−
√

2mE

ℏ2

− −−−−
√
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22.2.1: i. Review Exercises

Q1 

Draw qualitative shapes of the (1) s, (3) p and (5) d "tangent sphere" atomic orbitals (note that these orbitals represent only the
angular portion and do not contain the radial portion of the hydrogen like atomic wavefunctions) Indicate with ± the relative signs
of the wavefunctions and the position(s) (if any) of any nodes.

Q2 
Define the symmetry adapted "core" and "valence" orbitals of the following systems:  
i.  in the  point group, 
ii.  in the  point group, 
iii.  (cis) in the  point group, 
iv. N in , and  point groups,  
v. N \text{, and } C_s\) point groups.

Q3 
Plot the radial portions of the 4s, 4p, 4d, and 4f hydrogen like atomic wavefunctions.

Q4 

Plot the radial portions of the 1s, 2s, 2p, 3s, and 3p hydrogen like atomic wavefunctions for the Si atom using screening concepts
for any inner electrons.

This page titled 22.2.1: i. Review Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack
Simons via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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22.2.2: ii. Exercises
1. In quantum chemistry it is quite common to use combinations of more familiar and easy- to-handle "basis functions" to

approximate atomic orbitals. Two common types of basis functions are the Slater type orbitals (STO's) and gaussian type
orbitals (GTO's). STO's have the normalized form:  

 
whereas GTO's have the form: 

 
Orthogonalize (using Löwdin (symmetric) orthogonalization) the following 1s (core), 2s (valence), and 3s (Rydberg) STO's for
the Li atom given:  

 

 

Express the three resultant orthonormal orbitals as linear combinations of these three normalized STO's.

2. Calculate the expectation value of r for each of the orthogonalized 1s, 2s, and 3s Li orbitals found in Exercise 1.
3. Draw a plot of the radial probability density (e.g.,  with R referring to the radial portion of the STO) versus r for

each of the orthonormal Li s orbitals found in Exercise 1.

This page titled 22.2.2: ii. Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

(θ, ϕ) ,( )
2ξ

a0

n+
1

2 ( )
1

(2n)!

1

2
rn−1e

⎛

⎝

−ξr

a0

⎞

⎠
Yl,m

N (θ, ϕ).r1e(−ξ )r2

Yl,m

L ξ = 2.6906i1s

L ξ = 0.6396i2s

L ξ = 0.1503.i3s

[ (r)r2 Rnl ]2
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22.2.3: iii. Problems

Q1 

Given the following orbital energies (in hartrees) for the N atom and the coupling elements between two like atoms (these coupling
elements are the Fock matrix elements from standard ab-initio minimum-basis SCF calculations), calculate the molecular orbital
energy levels and 1-electron wavefunctions. Draw the orbital correlation diagram for formation of the  molecule. Indicate the
symmetry of each atomic and molecular orbital. Designate each of the molecular orbitals as bonding, non-bonding, or antibonding.

*The Fock matrices (and orbital energies) were generated using standard STO3G minimum basis set SCF calculations. The Fock
matrices are in the orthogonal basis formed from these orbitals.

Q2 
Given the following valence orbital energies for the C atom and  molecule draw the orbital correlation diagram for formation of
the  molecule (via a  insertion of C into  resulting in bent ). Designate the symmetry of each atomic and molecular
orbital in both their highest point group symmetry and in that of the reaction path ( ).

*The orbital energies were generated using standard STO3G minimum basis set SCF calculations.

Q3 

Using the empirical parameters given below for C and H (taken from Appendix F and "The HMO Model and its Applications" by
E. Heilbronner and H. Bock, Wiley- Interscience, NY, 1976), apply the Hückel model to ethylene in order to determine the valence
electronic structure of this system. Note that you will be obtaining the 1-electron energies and wavefunctions by solving the
secular equation (as you always will when the energy is dependent upon a set of linear parameters like the MO coefficients in the
LCAO- MO approach) using the definitions for the matrix elements found in Appendix F.

N2

= −N1s 15.31*

= −N2s 0.86*

= −N2p 0.48*

N2σgFock matrix*

⎡

⎣
⎢

−6.52

−6.22

3.61

−7.06

4.00 −3.92

⎤

⎦
⎥ (22.2.3.1)

N2πg  For Matrix*

[0.28]

N2σu For Matrix*

⎡

⎣
⎢

1.02

−0.60

0.02

−7.59

7.42 −8.53

⎤

⎦
⎥ (22.2.3.2)

N2πu Fock matrix*

[−0.58]

H2

CH2 C2v H2 CH2

C2v

= −C1s 10.91*

= −C2s 0.60*

= −C2p 0.33*

= −H2σg 0.58*

=H2σu 0.67*

(22.2.3.3)

(22.2.3.4)

(22.2.3.5)

C = −11.4eVα2pπ

C = −14.7eVαsp2
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a. Determine the C=C  1-electron molecular orbital energies and wavefunctions. Calculate the  transition energy for
ethylene within this model.

b. Determine the C-C ( ) 1-electron molecular orbital energies and wavefunctions.
c. Determine the C-H ( -s) 1-electron molecular orbital energies and wavefunctions (note that appropriate choice of symmetry

will reduce this 8x8 matrix down to 4 2x2 matrices; that is, you are encouraged to symmetry adapt the atomic orbitals before
starting the Hückel calculation). Draw a qualitative orbital energy diagram using the HMO energies you have calculated.

Q4Q5 
Using the empirical parameters given below for B and H (taken from Appendix F and "The HMO Model and its Applications" by
E. Heilbronner and H. Bock, Wiley- Interscience, NY, 1976), apply the Hückel model to borane ( ) in order to determine the
valence electronic structure of this system.

Determine the symmetries of the resultant molecular orbitals in the  point group. Draw a qualitative orbital energy diagram
using the HMO energies you have calculated.

Q5 
Qualitatively analyze the electronic structure (orbital energies and 1-electron wavefunctions) of . Analyze only the 3s and 3p
electrons of P and the one 2p bonding electron of each F. Proceed with a  analysis in the following manner:

a. Symmetry adapt the top and bottom F atomic orbitals.
b. Symmetry adapt the three (trigonal) F atomic orbitals.
c. Symmetry adapt the P 3s and 3p atomic orbitals.
d. Allow these three sets of  orbitals to interact and draw the resultant orbital energy diagram. Symmetry label each of these

molecular energy levels. Fill this energy diagram with 10 "valence" electrons.

This page titled 22.2.3: iii. Problems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

H = −13.6eVαs

C −C = −1.2eVβ2pπ−2π

C −C = −5.0eVβs −2p2 p2

C −H = −4.0eVβs −sp2

(2π) π → π*

sp2

sp2

BH3

B = −8.5eVα2pπ

B = −10.7eVαsp2

H = −13.6eVαs

B −H = −3.5eVβs −sp2

D3h

P F5

D3h

D3h
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22.2.4: iv. Review Exercises Solutions
1.  

 

2. i. In ammonia the only "core" orbital is the N 1s and this becomes an a1 orbital in  symmetry. The N 2s orbitals and 3 H 1s
orbitals become 2  and an e set of orbitals. The remaining N 2p orbitals also become 1  and a set of e orbitals. The total
valence orbitals in  symmetry are  and 2e orbitals. 
 
ii. In water the only core orbital is the O 1s and this becomes an a1 orbital in  symmetry. Placing the molecule in the yz
plane allows us to further analyze the remaining valence orbitals as: O , O . The H 1s + H
1s combination is an  whereas the H 1s - H 1s combination is a . 
 
iii. Placing the oxygens of  in the yz plane (z bisecting the oxygens) and the (cis) hydrogens distorted slightly in +x and -
x directions allows us to analyze the orbitals as follows. The core O 1s + O 1s combination is an a orbital whereas the O 1s - O
1s combination is aborbital. The valence orbitals are: O2s+O2s=a, O2s-O2s=b, O  = b, O 2px - O 2px = a, O 2py
+ O 2py = a, O 2py - O 2py = b, O 2pz + O 2pz = b, O 2pz - O 2pz = a, H 1s + H 1s = a, and finally the H 1s - H 1s = b.
 
iv. For the next two problems we will use the convention of choosing the z axis as principal axis for the 
point groups and the xy plane as the horizontal reflection plane in  symmetry.  
 

 
 

C3v

a1 a1

C3v 3a1

C2v

2 =pz a1 2  as   , and O 2  as py b2 px b1

a1 b2

H2O2

2  + O 2px px

,  , and D∞h D2h C2v

Cs

N1s

N2s

N2px

N2py

N2pz

D∞h

σg

σg

πxu

πyu

σu

D2h

ag

ag

b3u

b2u

b1u

C2v

a1

a1

b1

b2

a1

Cs

a′

a′

a′

a′

a′′

(22.2.4.1)

(22.2.4.2)

(22.2.4.3)

(22.2.4.4)

(22.2.4.5)

(22.2.4.6)
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v. The Nitrogen molecule is in the yz plane for all point groups except the Cs in which case it is placed in the xy plane.  
 

 

3.  
 

 

 

N1s +N1s

N1s −N1s

N2s +N2s

N2s −N2s

N2 +N2px px

N2 −N2px px

N2 +N2py py

N2 −N2py py

N2 +N2pz pz

N2 −N2pz pz

D∞h

σg

σu

σg

σu

πxu

πxg

πyu

πyg

σu

σg

D2h

ag

b1u

ag

b1u

b3u

b2g

b2u

b3g

b1u

ag

C2v

a1

b2

a1

b2

b1

a2

a1

b2

b2

a1

Cs

a′

a′

a′

a′

a′

a′

a′

a′

a′′

a′′
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(22.2.4.9)

(22.2.4.10)

(22.2.4.11)

(22.2.4.12)

(22.2.4.13)

(22.2.4.14)

(22.2.4.15)

(22.2.4.16)

(22.2.4.17)
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4.  
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22.2.5: v. Exercise Solution
1. Two Slater type orbitals, i and j, centered on the same point results in the following overlap integrals:  

 
 

For these s orbitals l = m = 0 and  Performing the integrations over  and  yields  which then cancels

with these Y terms. The integral then recuces to:  

 

 
 
Using integral equation (4) the integral then reduces to:  
 

 
 
We then substitute in the values for each of these constants: 

 

 

 
 
Evaluating each of these matrix elements we obtain:  
 

 

= (θ,ϕ) (θ,Sij ∫

0

2π

∫

0

π

∫

0

∞

( )
2ξi
a0

+ni

1

2 1

(2 )!ni

− −−−−

√ r( −1)ni e

⎛

⎝

− rξi

a0

⎞

⎠
Y ,li mi

( )
2ξj
a0

+nj

1

2 1

(2 )!nj

− −−−−−

√ r( −1)nj e

⎛

⎝
⎜

− rξj

a0

⎞

⎠
⎟

Y ,lj mj

ϕ) sinθdrdθdϕ.r2

(θ,ϕ) = .Y0,0
1

4π
−−

√
θ ϕ 4π

= drSij ( )
2ξi
a0

+ni

1

2 1

(2 )!ni

− −−−−

√ ( )
2ξj
a0

+nj

1

2 1

(2 )!nj

− −−−−−

√ ∫

0

∞

r( −1+ −1)ni nj e

⎛

⎝
⎜

−( + )rξi ξj

a0

⎞

⎠
⎟

r2

= dr( )
2ξi
a0

+ni

1

2 1

(2 )!ni

− −−−−

√ ( )
2ξj
a0

+nj

1

2 1

(2 )!nj

− −−−−−

√ ∫

0

∞

r( −1+ −1)ni nj e

⎛

⎝
⎜

−( + )rξi ξj

a0

⎞

⎠
⎟

r2

= ( + )! .Sij ( )
2ξi
a0

+ni

1

2 1

(2 )!ni

− −−−−

√ ()
+nj

1

2
1

(2 )!nj

− −−−−−

√ ni nj ( )
a0

+ξi ξj

+ +1ni nj

for i=1; n=1, l=m=0, and ξ = 2.6906

for i=2; n=2, l=m=0, and ξ = 0.6396

for i=3; n=3, l=m=0, and ξ = 0.1503.

= (12.482992)(0.707107)(12.482992)(0.707107)(2.00)(0.006417) = 1.000000S11

= = (1.850743)(0.204124)(12.482992)(0.707107)(6.00)(0.008131) = 0.162673S21 S12
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We now solve the matrix eigenvalue problem S U =  U. 
The eigenvalues, , of this overlap matrix are:  
[ 0.807436 0.999424 1.193139 ], 
and the corresponding eigenvectors, U, are: 
 

 
 

The  matrix becomes: 
 

 
 

Back transforming into the original eigenbasis gives , e.g.

 

 
 

= (1.850743)(0.204124)(1.850743)(0.204124)(24.00)(0.291950) = 1.00S22

= = (0.0144892)(0.037268)(12.482992)(0.707107)(24.00)(0.005404) = 0.000635S31 S13

= = (0.014892)(0.037268)(1.850743)(0.204124)(120.00)(4.116872) = 0.103582S32 S23

= (0.014892)(0.037268)(0.014892)(0.037268)(720.00)(4508.968136) = 1.00S33

S =
⎡

⎣
⎢

1.000000

0.162673

0.000635

1.000000

0.103582 1.000000

⎤

⎦
⎥

λ

λ

⎡

⎣
⎢

0.596540

−0.707634

0.378675

−0.537104

−0.001394

0.843515

−0.596372

0.706578

−0.380905

⎤

⎦
⎥ (22.2.5.1)

λ
−

1

2

= .λ
−

1

2
⎡

⎣
⎢

1.112874

0.000000

0.000000

0.000000

1.000288

0.000000

0.000000

0.000000

0.915492

⎤

⎦
⎥

S
−

1

2

= US
−

1

2 λ
−

1

2 U T

=S
−

1

2
⎡

⎣
⎢

1.010194

−0.083258

0.006170

1.014330

−0.052991 1.004129

⎤

⎦
⎥
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The old ao matrix can be written as: 
 

 
 
The new ao matrix (which now gives each ao as a linear combination of the original aos) then becomes: 
 

 
 
These new aos have been constructed to meet the orthonormalization requirement  since: 
 

 
 
But, it is always good to check our result and indeed: 
 

 
2. The least time consuming route here is to evaluate each of the needed integrals first. These are evaluated analogous to exercise

1, letting  denote each of the individual Slater Type Orbitals. 
 

 
 
Once again using integral equation (4) the integral recduces to: 
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(22.2.5.3)
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Again, upon substituting in the values for each of these constants, evaluation of these expectation values yields: 
 

 

 

 

 

 

 
 

 
 
Using these integrals one then proceeds to evaluate the expectation values of each of the orthogonalized aos, , as: 

 
This results in the following expectation values (in atomic units): 
 

 
3. The radial density for each orthogonalized orbital, , assuming integrations over θ and  have already been performed can be

written as:  
 

⟨r = (12.482992)(0.707107)(12.482992)(0.707107)(6.00)(0.001193) = 0.557496⟩11

⟨r = ⟨r (1.850743)(0.204124)(12.482992)(0.707107)(24.00)(0.002441) = 0.195391⟩21 ⟩12

⟨r = (1.850743)(0.204124)(1.850743)(0.204124)(120.00)(0.228228) = 3.908693⟩22

⟨r = ⟨r = (0.014892)(0.0337268)(12.482292)(0.707107)(120.00)(0.001902) = 0.001118⟩31 ⟩13

⟨r = ⟨r = (0.014892)(0.037268)(1.850743)(0.204124)(720.00)(5.211889) = 0.786798⟩32 ⟩23

⟨r = (0.014892)(0.037268)(0.014892)(0.037268)(5040.00)(14999.893999) = 23.286760⟩33

r dr = ⟨r∫

0

∞
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∞
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∞
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2

r dr∫
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∞
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2

=

=

=

0.563240 bohr

3.973199 bohr

23.406622 bohr

(22.2.5.4)

(22.2.5.5)

(22.2.5.6)
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Therefore a plot of the radial probability for a given orthogonalized atomic orbital, n, will be:  

 
Plot the orthogonalized 1s orbital probability density vs r; note there are no nodes. 
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0

∞

χ′
nχ′

nr
2 ∑

i=1

3

∑
j=1

3

C ′
niC

′
nj

dr , where   and   are the radial portions of the individual Slater Type Orbitals, e.g.,∫

0

∞

RiRjr
2 Ri Rj

=RiRjr
2 ( )

2ξi
a0

+ni

1

2 1

(2 )!ni

− −−−−

√ ( )
2ξj
a0

+nj

1

2 1

(2 )!nj

− −−−−−

√ r( + )ni nj e

−
⎛

⎝
⎜

( + )rξi ξj

a0

⎞

⎠
⎟

 vs. r.∑
i=1

3

∑
j=1

3

C ′
niC

′
njRiRjr

2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/80355?pdf


22.2.5.6 https://chem.libretexts.org/@go/page/80355

 

This page titled 22.2.5: v. Exercise Solution is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack
Simons via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/80355?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/22%3A_Problems/22.02%3A_Simple_Molecular_Orbital_Theory/22.2.05%3A_v._Exercise_Solution
https://creativecommons.org/licenses/by-nc-sa/4.0
http://simons.hec.utah.edu/
http://simons.hec.utah.edu/TheoryPage/BookPDF/


22.2.6.1 https://chem.libretexts.org/@go/page/80357

22.2.6: vi. Problem Solutions
1.  

 

The above diagram indicates how the SALC-AOs are formed from the 1s, 2s, and 2p N atomic orbitals. It can be seen that there are , , , , , and  SALC - AOs. The
Hamiltonian matrices (Fock matrices) are given. Each of these can be diagonalized to give the following MO energies: 
 
3 ; -15.52, -1.45, and -0.54 (hartrees) 
3 ; -15.52, -0.72, and 1.13 

 -0.58 
 -0.58 
 0.28 
 0.28 

 
It can be seen that the 3  orbitals are bonding, the 3  orbitals are antibonding, the  and  orbitals are bonding, and the  and  orbitals are antibonding. The eigenvectors one obtains
are in the orthogonal basis and therefore pretty meaningless. Back transformation into the original basis will generate the expected results for the 1e  MOs (expected combinations of SALC-AOs). 
 
2. Using these approximate energies we can draw the following MO diagram:

 
This MO diagram is not an orbital correlation diagram but can be used to help generate one. The energy levels on each side (C and ) can be "superimposed" to generate the left side of the orbital
correlation diagram and the center  levels can be used to form the right side. Ignoring the core levels this generates the following orbital correlation diagram.

3σg 3σu 1πux 1πuy 1πgx 1πgy

σg
σu

1 ;πux
1 ;πuy
1 ;πgx
1 ;πgy

σg σu 1πux 1πuy 1πgx 1πgy
−

H2

CH2
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3.

Using  symmetry and labeling the orbitals  as shown above proceed by using the orbitals to define a reducible representation which may be subsequently reduced to its irreducible
components. Use projectors to find the SALC-AOs for these irreps.

3. a. The  orbitals on each carbon form the following reducible representation:

 
The number of irreducible representations may be found by using the following formula: 

 
where g = the order of the point group (8 for ).

Similarly, 

Projectors using the formula:

may be used to find the SALC-AOs for these irreducible representations.

Normalization of this SALC-AO (and representing the SALC-AOs with ) yields:

D2h ( − )f1 f12

2Px

D2h

Γ2px

 

 

E

2

 

 

(z)C2

−2

 

 

(y)C2

0

 

 

(x)C2

0

 

 

i

0

 

 

σ(xy)

0

 

 

σ(xz)

2

 

 

σ(yz)

−2

(22.2.6.1)

(22.2.6.2)

= (R) (R),nirrep

1

g
∑
R

χred χirrep

D2h

nAg
=

=

(R) (R)
1

8
∑
R

Γ2px
Ag

[(2)(1) +(−2)(1) +(0)(1) +(0)(1) +(0)(1) +(0)(1) +(2)(1) +(−2)(1)] = 0
1

8

(22.2.6.3)

(22.2.6.4)

nB1g

nB2g

nB3g

nAu

nB1u

nB2u

nB3u

=

=

=

=

=

=

=

0

1

0

0

0

0

1

(22.2.6.5)

(22.2.6.6)

(22.2.6.7)

(22.2.6.8)

(22.2.6.9)

(22.2.6.10)

(22.2.6.11)

= (R)R,Pirrep ∑
R

χirrep

= (R)R,PB2g
∑
R

χB2g

PB2g
=

=

=

=

(1)E +(−1) (z) +(1) (y) +(−1) (x) +(1)i +(−1)σ(xy) +(1)σ(xz) +(−1)σ(yz)f1 C2 f1 C2 f1 C2 f1 f1 f1 f1 f1

(1) +(−1) − +(1) − +(−1) +(1) − +(−1) +(1) +(−1) −f1 f1 f2 f2 f2 f2 f1 f1

+ − − − − + +f1 f1 f2 f2 f2 f2 f1 f1

4 −4f1 f2

(22.2.6.12)

(22.2.6.13)

(22.2.6.14)

(22.2.6.15)

ϕ

∫ N( − )N( − )dτ = 1f1 f2 f1 f2

(∫ dτ −∫ dτ −∫ dτ +∫ dτ) = 1N 2 f1f1 f1f2 f2f1 f2f2

(1 +1) = 1N 2

2 = 1N 2

N =
1

2
–

√
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The  SALC-AO may be found in a similar fashion:

Normalization of this SALC-AO yields:

Since there are only two SALC-AOs and both are of different symmetry types these SALC-AOs are MOs and the 2x2 Hamiltonian matrix reduces to 2 1x1 matricies.

This results in a  splitting of 2.4 eV.

3. b. The  orbitals forming the C-C bond generate the following reducible representation:

This reducible representation reduces to  irreducible representations.

Projectors are used to find the SALC-AOs for these irreducible representations.

Normalization of this SALC-AO yields:

The  SALC-AO may be found in a similar fashion:

Normalization of this SALC-AOs yields:

Again sine there are only two SALC-AOs and both are of different symmetry types these SALC-AOs are MOs and the 2x2 Hamiltonian matrix reduces to 2 1x1 matrices.

3. c. The C  orbitals and the H s orbitals forming the C-H bonds generate the following reducible representation:

This reducible representation reduces to  irreducible representation.

Projectors are used to find the SALC-AOs for these irreducible representations.

= ( − ).ϕ1b2g

1

2
–

√
f1 f2

B3u

PB3u f1 =

=

=

(1) +(−1) − +(−1) − +(1) +(−1) − +(1) +(1) +(−1) −f1 f1 f2 f2 f2 f2 f1 f1

+ + + + + + +f1 f1 f2 f2 f2 f2 f1 f1

4 +4f1 f2

(22.2.6.16)

(22.2.6.17)

(22.2.6.18)

= ( + ).ϕ1b3u

1

2
–

√
f1 f2

H1 ,1b2g b2g
=

=

=

=

=

∫ ( − )H ( − )dτ
1

2
–

√
f1 f2

1

2
–

√
f1 f2

(∫ H dτ −2 ∫ H dτ +∫ H dτ)
1

2
f1 f1 f1 f2 f2 f2

( −2 + )
1

2
α2pπ β2pπ−2pπ α2pπ

−α2pπ β2pπ−2pπ

−11.4 −(−1.2) = −10.2

(22.2.6.19)

(22.2.6.20)

(22.2.6.21)

(22.2.6.22)

(22.2.6.23)

H1 ,1b3u b3u
=

=

=

=

=

∫ ( + )H ( + )dτ
1

2
–

√
f1 f2

1

2
–

√
f1 f2

(∫ H dτ +2 ∫ H dτ +∫ H dτ)
1

2
f1 f1 f1 f2 f2 f2

( +2 + )
1

2
α2pπ β2pπ−2pπ α2pπ

+α2pπ β2pπ−2pπ

−11.4 +(−1.2) = −12.6

(22.2.6.24)

(22.2.6.25)

(22.2.6.26)

(22.2.6.27)

(22.2.6.28)

π → π*

sp2

D2h

Γ2
Csp

2

E

2

(z)C2

0

(y)C2

0

(x)C2

0

i

0

σ(xy)

2

σ(xz)

2

σ(yz) (22.2.6.29)

(22.2.6.30)

1  and 1Ag B1u

PAg
f3

(1) +(1) +(1) +(1) +(1) +(1) +(1) +(1)f3 f3 f4 f4 f4 f4 f3 f3

=

=

(1)E +(1) (z) +(1) (y) +(1) (x) +(1)i +(1)σ(xy) +(1)σ(xz) +(1)σ(yz)f3 C2 f3 C2 f3 C2 f3 f3 f3 f3 f3

4 +4f3 f4

(2

(2

(2

= ( + ).ϕ1ag

1

2
–

√
f3 f4

B1u

PB1u
f3 =

=

(1) +(1) +(−1) +(−1) +(−1) +(−1) +(1) +(1)f3 f3 f4 f4 f4 f4 f3 f3

4 −4f3 f4

(22.2.6.34)

(22.2.6.35)

= ( − ).ϕ1b3u

1

2
–

√
f3 f4

H1 ,1ag ag

H1 ,1b1u b1u

=

=

=

=

=

=

=

=

=

=

∫ ( + )H ( + )dτ
1

2
–

√
f3 f4

1

2
–

√
f3 f4

(∫ H dτ +2 ∫ H dτ +∫ H dτ)
1

2
f3 f3 f3 f4 f4 f4

( +2 + )
1

2
αsp2 βs −sp2 p2 αsp2

+αsp2 βs −sp2 p2

−14.7 +(−5.0) = −19.7

∫ ( − )H ( − )dτ
1

2
–

√
f3 f4

1

2
–

√
f3 f4

(∫ H dτ −2 ∫ H dτ +∫ H dτ)
1

2
f3 f3 f3 f4 f4 f4

( −2 + )
1

2
αsp2 β2 −2p2 p2 αsp2

−αsp2 βs −sp2 p2

−14.7 −(−5.0) = −9.7
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(22.2.6.37)

(22.2.6.38)

(22.2.6.39)

(22.2.6.40)

(22.2.6.41)

(22.2.6.42)

(22.2.6.43)

(22.2.6.44)

(22.2.6.45)
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Normalization yields: 

Normalization yields: 

Normalization yields: 

Normalization yields: 

Normalization yields: 

Normalization yields: 

Normalization yields: 

Normalization yields: 

Each of these four 2x2 symmetry blocks generate identical Hamitonian matrices. This will bve demonstrated for the  symmetry, the others proceed analogously:

This matrix eigenvalue problem then becomes:

PAg
f6 =

=

=

(1)E +(1) (z) +(1) (y) +(1) (x) +(1)i (1)σ(xy) +(1)σ(xz) +(1)σ(yz)f6 C2 f6 C2 f6 C2 f6 f6 f6 f6 f6

(1) +(1) +(1) +(1) +(1) +(1) +(1) +(1)f6 f5 f7 f8 f8 f7 f5 f6

2 +2 +2 +2f5 f6 f7 f8

(22.2.6.48)

(22.2.6.49)

(22.2.6.50)

ϕ2 = ( + + + ).ag
1

2
f5 f6 f7 f8

PAgf10 =

=

=

(1)E +(1) (z) +(1) (y) +(1) (x) +(1)i +(1)σ(xy) +(1)σ(xz) +(1)σ(yz)f10 C2 f10 C2 f10 C2 f10 f10 f10 f10 f10

(1) +(1) +(1) +(1) +(1) +(1) +(1) +(1)f10 f9 f11 f12 f12 f11 f9 f10

2 +2 +2 +2f9 f10 f11 f12

(22.2.6.51)

(22.2.6.52)

(22.2.6.53)

= ( + + + ).ϕ3ag
1

2
f9 f10 f11 f12

PB3g
f6 =

=

(1) +(−1) +(−1) +(1) +(1) +(−1) +(−1) +(1)f6 f5 f7 f8 f8 f7 f5 f6

−2 +2 −2 +2f5 f6 f7 f8

(22.2.6.54)

(22.2.6.55)

= (− + − + ).ϕ1b3g

1

2
f5 f6 f7 f8

PB3g
f10 =

=

(1) +(−1) +(−1) +(1) +(1) +(−1) +(−1) +(1)f10 f9 f11 f12 f12 f11 f9 f10

−2 +2 −2 +2f9 f10 f11 f12

(22.2.6.56)

(22.2.6.57)

= (− + − + ).ϕ2b3g

1

2
f9 f10 f11 f12

PB1u f6 =

=

(1) +(1) +(−1) +(−1) +(−1) +(−1) +(1) +(1)f6 f5 f7 f8 f8 f7 f5 f6

2 +2 −2 −2f5 f6 f7 f8

(22.2.6.58)

(22.2.6.59)

= ( + − − ).ϕ2b1u

1

2
f5 f6 f7 f8

0PB1u
f1 =

=

(1) +(1) +(−1) +(−1) +(−1) +(−1) +(1) +(1)f10 f9 f11 f12 f12 f11 f9 f10

2 +2 −2 −2f9 f10 f11 f12

(22.2.6.60)

(22.2.6.61)

= ( + − − ).ϕ3b1u

1

2
f9 f10 f11 f12

= (1) +(−1) +(1) +(−1) +(−1) +(1) +(−1) +(1)PB2u f6 f6 f5 f7 f8 f8 f7 f5 f6 = −2 +2 +2 −2f5 f6 f7 f8 (22.2.6.62)

= (− + − − ).ϕ1b2u

1

2
f5 f6 f7 f8

= (1) +(−1) +(1) +(−1) +(−1) +(1) +(−1) +(1)PB2u f10 f10 f9 f11 f12 f12 f11 f9 f10 = −2 +2 +2 −2f9 f10 f11 f12 (22.2.6.63)

= (− + + − ).ϕ2b2u

1
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f9 f10 f11 f12

B3g
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=
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−

+

−
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f5 f6 f7 f8
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f5 f5 f5 f6 f5 f7 f5 f8
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(22.2.6.65)

(22.2.6.66)

(22.2.6.67)
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(22.2.6.69)
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−
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∫ H dτ +∫ H dτ −∫ H dτ +∫ H dτf6 f9 f6 f10 f6 f11 f5 f12

∫ H dτ −∫ H dτ +∫ H dτ −∫ H dτf7 f9 f7 f10 f7 f11 f7 f12

∫ H dτ +∫ H dτ −∫ H dτ +∫ H dτ]f8 f9 f8 f10 f8 f11 f8 f12

[ −0 +0 −0 −0 + −0 +0 +0 −0 + −0 −0 +0 −0 + ] =
1

4
βs −sp2 βs −sp2 βs −sp2 βs −sp2 βs −sp2

(22.2.6.70)

(22.2.6.71)

(22.2.6.72)

(22.2.6.73)

(22.2.6.74)

(22.2.6.75)

H2 ,2b3g b3g =

=

=

−

+

−

∫ (− + − + )H (− + − + )dτ
1

2
f9 f10 f11 f12

1

2
f9 f10 f11 f12

[∫ H dτ −∫ H dτ +∫ H dτ −∫ H dτ
1

4
f9 f9 f9 f10 f9 f11 f9 f12

∫ H dτ +∫ H dτ −∫ H dτ +∫ H dτf10 f9 f10 f10 f10 f11 f10 f12

∫ H dτ −∫ H dτ +∫ H dτ −∫ H dτf11 f9 f11 f10 f11 f11 f11 f12

∫ H dτ +∫ H dτ −∫ H dτ +∫ H dτ]f12 f9 f12 f10 f12 f11 f12 f12

[ −0 +0 −0 −0 + −0 +0 +0 −0 + −0 −0 +0 −0 + ] =
1

4
αs αs αs αs αs

(22.2.6.76)

(22.2.6.77)
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Solving this yields eigenvalues of:

and corresponding eigenvectors:

This results in an orbital energy diagram:

For the ground state of ethylene you would fill the bottom 3 levels (the C-C, C-H, and  bonding orbitals), with 12 electrons.

4.

Using the hybrid atomic orbitals as labeled above (functions ) and the  point group

symmetry it is easiest to construct three sets of reducible representations:

i. the B  orbital (labeled function 1) 
ii. the 3 B  hybrids (labeled functions 2 - 4) 
iii. the 3 H 1s orbitals (labeled functions 5 - 7).

i. The B  orbital generates the following irreducible representation:

This irreducible representation is  and is its own SALC-AO.

ii. The B  orbitals generate the following reducible representation:

This reducible representation reduces to  and 1E' 
irreducible representations. 
Projectors are used to find the SALC-AOs for these irreducible representations. 
Define:  = 120 degree rotations,  degree rotation, 

 = rotation around  = rotation around , and 
 = rotation adound .  and  are defined analogous 

to  and  with accompanying horizontal reflection. 
 = a reflection plane through  = a reflection plane 

through  and  = a reflection plan through 

Normalization yields: 

To find the second e' (orthogonal to the first), projection of  yields ( ) and projection on  yields ). Neither of these functions are orthogonal to the first,
but a combination of the two (  yields a function which is orthogonal to the first.

= 0
∣

∣
∣

− ϵαsp2

βs −sp2

βs −sp2

− ϵαs

∣

∣
∣

= 0
∣

∣
∣

−14.7 − ϵ

−4.0

−4.0

−13.6

∣

∣
∣

| |−18.19 −10.11 (22.2.6.82)

∣

∣
∣

−0.7537

−0.6572

−0.6572

0.7537

∣

∣
∣ (22.2.6.83)
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3σv
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(22.2.6.84)

(22.2.6.85)

A′′
2

sp2

∣

∣
∣

D3h

Γ2p

E
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3C2

1

σh

3

2S3
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3σv
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∣

∣
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1A′
1

C3 = 240C ′
3

C2 ,f4 C ′
2 f2

C2 f3 S3 S ′
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C3 C ′
3

σv ,f4 σ′
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,f2 σ′′
v f3

= (1)E +(1) +(1) +(1) +(1) +(1) +(1) +(1) +(1) +(1)PA′
1
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3f2 C2f2 C ′
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2 f2 σhf2 S3f2 S ′
3f2 σvf2

+(1) +(1)σ′
vf2 σ′′

v f2

= (1) +(1) +(1) +(1) +(1) +(1) +(1) +(1) +(1) +(1) +(1) +(1)σf2 f3 f4 f3 f2 f4 f2 f3 f4 f3 f2 f4

= 4 +4 +4f2 f3 f4

= (2 − − ) .ϕ1e′

1

6
–

√
f2 f3 f4
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Normalization yields: \

iii. The H 1s orbitals generate the following reducible representation:

This reducible representation reduces to  and 1E' irreducible representations exactly like part ii. and in addition the projectors used to find the SALC-AOs for these irreducible
representations is exactly analogous to part ii.

So, there are  and 2E' orbitals. Solving the Hamiltonian matrix for each symmetry block yields:

 Block:

 Block:

This matrix eigenvalue problem then becomes:

\befin{align}

& = & 0 \\

& = & 0 \end{align}

Solving this yields eigenvalues of:

and corresponding eigenvectors:

E' Block:

This 4x4 symmetry block factors to two 2x2 blocks: where one 2x2 block includes the SALC-AOs

and the other includes the SALC-AOs

= ( − ) .ϕ2e′
1

2
–

√
f3 f4
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3
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0

3C2

1

σh
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3σv
1

(22.2.6.86)

(22.2.6.87)
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= ( + + )ϕ2a′
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√
f5 f6 f7

= (2 − − ).ϕ3e′
1

6
–

√
f5 f6 f7

= ( − ).ϕ4e′
1
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–
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f6 f7
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2 A′

1

A′′
2

H1 ,1a2′ a2′ =

=

=

∫ H dτf1 f1

α2pπ
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(22.2.6.88)

(22.2.6.89)

(22.2.6.90)

A′
1
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+

+

=

∫ ( + + )H ( + + )dτ
1
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f2 f3 f4

1

3
–

√
f2 f3 f4

∫ H dτ +∫ H dτ +∫ H dτ+f3 f2 f3 f3 f3 f4
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1
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αsp2 αsp2 αsp2 αsp2

= [∫ H dτ +∫ H dτ +∫ H dτ+
1

3
f2 f2 f2 f3 f2 f4 (22.2.6.91)

(22.2.6.92)

(22.2.6.93)

(22.2.6.94)
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f5 f6 f7
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[ +0 +0 +0 + +0 +0 +0 + ] =
1

3
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= [∫ H dτ +∫ H dτ +∫ H dτ+
1

3
f2 f5 f2 f6 f2 f7 (22.2.6.95)

(22.2.6.96)

(22.2.6.97)

(22.2.6.98)
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+

+
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1
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–
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1
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αs αs αs αs

= [∫ H dτ +∫ H dτ +∫ H dτ+
1
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f5 f5 f5 f6 f5 f7 (22.2.6.99)
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(22.2.6.101)
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∣

∣
∣

αs −ϵp2

βs −sp2
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− ϵαs

∣

∣
∣ (22.2.6.103)

∣

∣
∣

−10.7 − ϵ

−3.5

−3.5

−13.6 − ϵ

∣

∣
∣ (22.2.6.104)

| |−15.94 −8.36 (22.2.6.105)

∣

∣
∣

−0.5555

−0.8315

−0.8315

0.5555

∣

∣
∣ (22.2.6.106)

ϕe′
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=

=

(2 − − )
1

6
–

√
f2 f3 f4
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1
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Both of these 2x2 matrices are identical to the ' 2x2 array and therefore yield identical energies and MO coefficients. 
This results in an orbital energy diagram:

For the ground state of  you would fill the bottom level (B-H bonding),  and e' orbitals, with 6 electrons.

5.

5. a. The two F p orbitals (top and bottom) generate the following reducible representation:

This reducible representation reduces to  and  irreducible representations. 
Projectors may be used to find the SALC-AOsfor these irreducible representations.

5. b. The three trigonal F p orbitals generate the following reducible representation:

This reducible representation reduces to  and 1E' irreducible representations. 
Projectors may be used to find the SALC-AOs for these irreducible representations (but they are exactly analogous to the previous few problems):

5. c. The 3 P  orbitals generate the following reducible representation:

This reducible representation reduces to  and 1E' irreducible representations. Again, projectors may be used to find the SALC-AOs for these irreducible representations.(but again they are
exactly analogous to the previous few problems):

The leftover P  orbital generate the following irreducible representation:

This irreducible representation is an 

Drawing an energy level diagram using these SALC-AOs would result in the following:

ϕe′

ϕe′

=

=

( − )
1

2
–

√
f3 f4

( − ).
1

2
–

√
f6 f7

(22.2.6.109)

(22.2.6.110)
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0
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2S3

0

3σv
2

(22.2.6.111)

(22.2.6.112)
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=
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1
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–

√
f1 f2
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(22.2.6.114)

D3h
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E

3
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0

3C2

1

σh

3

2S3

0

3σv
1

(22.2.6.115)

(22.2.6.116)
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=
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f3 f4 f5
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1
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–

√
f3 f4 f5
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1

2
–

√
f4 f5
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D3h
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E

3

2C3

0

3C2

1

σh

3

2S3

0

3σv
1
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(22.2.6.121)
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D3h

Γp

E

1

2C3
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3C2
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σh
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3σv
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22.3.1: i. Review Exercises

Q1 

For the given orbital occupations (configurations) of the following systems, determine all possible states (all possible
allowed combinations of spin and space states). There is no need to form the determinental wavefunctions simply label each
state with its proper term symbol. One method commonly used is Harry Grays "box method" found in Electrons and
Chemical Bonding.

This page titled 22.3.1: i. Review Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack
Simons via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

a. )

b. )

c. )

d. )

e. )
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T i

1 2 1 3 1a2
1 a2

1 b22 a1
1 b11

1 1 2 1 2σ2
g σ2

u σ2
u π1

u π1
u

1 1 2 2 1 3 1σ2
g σ2

u σ2
g σ2

u π4
u σ2

g π2
g

1 2 2 3 3 4 4s2 s2 p6 s2 p6 s2d1 d1

1 2 2 3 3 4 3s2 s2 p6 s2 p6 s2 d2
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22.3.2: ii. Exercises

Q1 

Show that the configuration (determinant) corresponding to the  state vanishes.

Q2 
Construct the 3 triplet and 1 singlet wavefunctions for the  configuration. Show that each state is a proper eigenfunction
of  (use raising and lowering operators for )

Q3 
Construct wavefunctions for each of the following states of  

Q4 

Construct wavefunctions for each state of the  configuration of NH.

Q5 
Construct wavefunctions for each state of the  configuration of Li.

Q6 
Determine all term symbols that arise from the  configuration of the excited N atom.

Q7 

Calculate the energy (using Slater Condon rules) associated with the ep valence electrons for the following states of the C atom.

i.  
ii.  
iii.  
iv. .

Q8 

Calculate the energy (using Slater Condon rules) associated with the  valence electrons for the following states of the NH
molecule. 
i.  
ii.  
iii. 

This page titled 22.3.2: ii. Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

L 1s(α)1s(α)i+

L 1 2i+ s1 s1

 and S2 Sz S2

C :H2

a. )

b. )

c. )

( )1B1 12
a122

a112
b231

a111
b1

( )3B1 12
a122

a112
b231

a111
b1

( )1A1 12
a122

a112
b232

a1

(22.3.2.1)

(22.3.2.2)

(22.3.2.3)

1 2 3 1σ2 σ2 σ2 π2

1 2 3s1 s1 s1

1 2 2 3s2 s2 p2 d1

P ( = 1, = 1),3 ML MS

P ( = 0, = 0),3 ML MS

S( = 0, = 0),  and 1 ML MS

D( = 0, = 0)1 ML MS

π

Δ( = 2, = 0),1 ML MS

Σ( = 0, = 0),  and 1 ML MS

Σ( = 0, = 0).3 ML MS
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22.3.3: iii. Problems

Q1 

Let us investigate the reactions:

under an assumed  reaction pathway utilizing the following information:

a. Write down (first in terms of  orbitals and then in terms of  orbitals) the: 
i. three Slater determinant (SD) wavefunctions belonging to the  state all of which have , 
ii. five D SD wavefunctions, and 
iii. one S SD wavefunction.

b. Using the coordinate system shown below, label the hydrogen orbitals  and the carbon 2s, , , , orbitals as 
. Do the same for the   

 
c. Draw an orbital correlation diagram for the  reactions. Try to represent the relative energy orderings of the
orbitals correctly.

d. Draw (on graph paper) a configuration correlation diagram for  showing all configurations which arise
from the  products. You can assume the doubly excited configurations like much (~100 kcal / mole) above their parent
configurations.

e. Repeat step d. for  again showing all configurations which arise from the  products.

f. Do you expect the reaction  to have a large activation barrier? About how long? What state of  is
produced in this reaction? Would distortions away from  symmetry be expected to raise of lower the activation barrier? Show
how one could estimate where along the reaction path the barrier top occurs.

g. Would  be expected to have a larger or smaller barrier than you found for the  reaction?

Q2 

The decomposition of the ground-state single carbene, , to produce acetylene and D carbon is known to occur with an
activation energy equal to the reaction endothermicity. However, when triplet carbene decomposes to acetylene and ground-state
(triplet) carbon, the activation energy exceeds this reaction's endothermicity. Construct orbital, configuration, and state correlation
diagrams which permit you to explain the above observations. Indicate whether single configuration or configuration interaction
wavefunctions would be required to describe the above singlet and triplet decomposition processes.

Q3 

We want to carry out a configuration interaction calculation on H2 at R=1.40 au. A minimal basis consisting of normalized 1s
Slater orbitals with =1.0 gives rise to the following overlap (S), one-electron (h), and two-electron atomic integrals:

i.

ii.

C )H2(1A1

C )H2(3B1

→

→

+C, andH2

+C,H2

(22.3.3.1)

(22.3.3.2)

C2v

2p1,0,−1 2px,y,z

P3 = 1MS
1

1

,σg σu 2px 2py spz

,  (x),  (y), or a1 b1 b2 a2 σ, σ,  ,  , n, and   orbitals of C .σ* σ* pπ H2

C → +CH2 H2

C ) → +CH2(3B1 H2

C P ) +(3 H2

C ) → +CH2(1A1 H2 C D) +(1 H2

C P ) + → C(3 H2 H2 CH2

C2v

C D) + → C(1 H2 H2 P C3

1

ξ

⟨1 |1 ⟩ = 0.753 ≡ S,SA SB

⟨1 |h|1 ⟩ = −1.110,  ⟨1 |h| ⟩ = −0.968,SA sA SB SA
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a. The normalized and orthogonal molecular orbitals we will use for this minimal basis will be determined purely by symmetry:

Show that these orbitals are indeed orthogonal.
b. Evaluate (using the one- and two- electron atomic integrals given above) the unique one- and two- electron integrals over this

molecular orbital basis (this is called a transformation from the ao to the mo basis). For example, evaluate <u|h|u>, <uu|uu>,
<gu|gu>, ect.

c. Using the two  configureations , show that the elements of the 2x2configuration interaction Hamiltonian matrix

are -1.805, 0.140, and -0.568.
d. Using this configureation interaction matrix, find the configuration interaction (CI) approximation to the ground and excited

state energies and wavefunctions.
e. Evaluate and make a rough sketch of the polarized orbitals which result from the above ground state  CI

wavefunction.

This page titled 22.3.3: iii. Problems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

⟨1 1 |h|1 1 ⟩ = 0.625 ≡ ⟨AA|AA⟩SA SA SA SA

⟨AA|BB⟩ = 0.323, ⟨AB|AB⟩ = 0.504, and

⟨AA|AB⟩ = 0.426.

= , and σg

(1 +1 )SA SB

2 +2S
− −−−−−

√

=σu

(1 −1 )SA SB

2 +2S
− −−−−−

√

1 ∑
g

+
, and σ2

g σ2
u
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g σ2

u
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22.3.4: iv. Review Exercise Solutions

Q1 

a. For non-degenerate point groups one can simply multiply the representations (since only one representation will be obtained): 

 
Constructing a "box" in this case is unnecessary since it would only contain a single row. Two unpaired electrons will result in a
singlet (S=0, =0), and three triplets (S=1, =1, S=1, =0, S=1, ). The states will be: =1), 

), (^3B_1(M_S=-1\)), and ). 
 
b. Remember that when coupling non-equivalent linear molecule angular momenta, one simple adds the individual Lz values and
vector couples the electron spin. So, in this case , we have  values of 1+1, 1-1, -1+1, and -1-1 (2,0,0, and -2). The
term symbol  is used to denote the spatially doubly degenerate level ) and there are two distinct spatially non-
degenerate levels denote by the term symbol  Again, two unpaired electrons will result in a singlet ( ),
and three triplets ). The states generate are then: 

 

 

 

 

 

 

 

 
 
c. Constructing the "box" for two equivalent  electrons one obtains: 

 
From this "box" one obtains six states: 

⊗ =a1 b1 b1

MS MS MS = −1MS (3
B1 MS

( = 03
B1 MS ( = 01

B1 MS

(1 2 )π
1
u π

1
u ML

Δ ( = ±2ML

∑( = 0).ML S = 0,  = 0MS

(S = 1,  = 1; S = 1,  = 0; S = 1,  = −1MS MS MS

Δ ( = 2); one states ( = 0),1
ML MS

Δ ( = −2); one states ( = 0),1
ML MS

Δ ( = 2); one states ( = 1, 0, and -1),3
ML MS

Δ ( = −2); one states ( = 1, 0, and -1),3
ML MS

Δ ( = 0); one states ( = 0),1
ML MS

Δ ( = 0); one states ( = 0),1
ML MS

Δ ( = 0); one states ( = 1, 0, and -1), and 3
ML MS

Δ ( = 0); one states ( = 1, 0, and -1)3
ML MS

π

Δ( = 2); one state ( = 0),1
ML MS
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d. It is not necessary to construct a "box" when coupling non-equivalent angular momenta since the vector coupling results in a
range from the sum of the two individual angular momenta to the absolute value of their difference. In this case, , L=4, 3, 2,
1, 0, and S=1, 0. The term symbol are:  THe L and S angular momenta can be vector
coupled to produce further splitting into levels:  

 
Denoting J as a term symbol subscript one can identify all the levels and the subsequent (2J + 1) states: 

 

 

 

 

 

 

 

 

 

 

Δ( = −2); one state ( = 0),1
ML MS

Δ( = 0); one state ( = 0),1
ML MS

Δ( = 0); three states ( = 1, 0, and -1),3
ML MS

3 4d
1
d

1

G G F F D D P P S S.3 ,1 ,3 ,1 ,3 ,1 ,3 ,1 ,3 , and 1

 J = L + S ... |L - S|. 

 (11 states),3
G5

 (9 states),3
G4

 (7 states),3
G3

 (9 states),1
G4

 (9 states),3
F4

 (7 states),3
F3

 (5 states),3
F2

 (7 states),1
F3

 (7 states),3
D3

 (5 states),3
D2

 (3 states),3
D1
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e. Construction of a "box" for the two equivalent d electrons generates (note the "box" has been turned side ways for convenience): 

 
The term symbols are:  The L and S angular momenta can be vector coupled to produce further splitting
into levels: 

 

 

 

 

 (5 states),1
D2

 (5 states),3
P2

 (3 states),3
P1

 (1 states),3
P0

 (3 states),1
P1

 (3 states), and3
S5

 (1 states).1
S0

G F D P S.1 , 3 , 1 , 3 , and 1

 (9 states),1
G4

 (9 states),3
F4

 (7 states),3
F3

 (5 states),3
F2

 (5 states),1
D2
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22.3.5: v. Exercise Solutions

Q1 

Constructing the Slater determinant corresponding to the "state"  with the rows labeling the orbitals and the columns labeling the electrons gives: 

 

Q2 
Staring with the  state which in a "box" for this  case would contain only one product function;  and applying  gives: 

 
 
The three triplet states are then: 

 
 
The single state which must be constructed orthogonal to the three singlet states (and in particular to the  state) can be seen to be: 

 
Applying  to each of these states gives: 

 
 

 
 

1s(α)1s(α)

|1sα1sα| =

=

=

1

2√

∣

∣
∣
1sα(1)

1sα(1)

1sα(2)

asα(2)

∣

∣
∣

(1sα(1)1sα(2) −1sα(1)1sα(2))
1

2
–

√
0

(22.3.5.1)

(22.3.5.2)

(22.3.5.3)

= 1 SMS  3 = 0,  = 1ML MS |1sα2sα|) S−

S(S = 1, = 1)S3
− MS

So, ℏ S(S = 1, = 0)2
–√

3
MS

S(S = 1, = 0)3 MS

=

=

=

=

=

=

=

=

S(S = 1, = 0)1(1 +1) −1(1 −1)
− −−−−−−−−−−−−−−

√ ℏ3 MS

ℏ S(S = 1, = 0)2
–

√
3

MS

( (1) + (2)) |1sα2sα|S− S−

(1)|1sα2sα| + (2)|1sα2sα|S− S−

ℏ [|1sβ2sα+|1sα2sβ|]( +1)− ( −1)
1

2

1

2

1

2

1

2

− −−−−−−−−−−−−−−−−−−−

√

ℏ (|1sβ2sα| + |1sα2sβ|)

ℏ(|1sβ2sα| + |1sα2sβ|)

(|1sβ2sα| + |1sα2sβ|))
1

2
–

√

(22.3.5.4)

(22.3.5.5)

(22.3.5.6)

(22.3.5.7)

(22.3.5.8)

(22.3.5.9)

(22.3.5.10)

(22.3.5.11)

S(S = 1, = 1) = |1sα2sα|,3 MS

S(S = 1, = 0) = (|1sβ2sα| + |1sα2sβ|) , and3 MS

1

2
S(S = 1, = −1) = |1sβ2sβ|.3 MS

(22.3.5.12)

(22.3.5.13)

(22.3.5.14)

S(S = 0, = 0)3 MS

S(S = 0, = 0) = (|1sβ2sα| − |1sα2sβ|) .1 MS

1

2
–

√

 and S2 Sz

|1sα2sα|SZ

|1sα2sα|S2

=

=

=

=

=

=

=

=

( (1) + (2)) |1sα2sβ|SZ SZ

(1)|1sα2sα| + (2)|1sα2sα|SZ SZ

ℏ( ) |1sα2sα| +ℏ( ) |1sα2sα|
1

2

1

2

ℏ|1sα2sα|

( + +ℏ ) |1sα2sα|S−S+ S2
Z SZ

|1sα2sα| + |1sα2sα| +ℏ |1sα2sα|S−S+ S2
Z

SZ

0 + |1sα2sα| + |1sα2sα|ℏ2 ℏ2

2 |1sα2sα|ℏ2

(22.3.5.15)

(22.3.5.16)

(22.3.5.17)

(22.3.5.18)

(22.3.5.19)

(22.3.5.20)

(22.3.5.21)

(22.3.5.22)

(|1sβ2sα| + |1sα2sβ||)SZ

1

2
–

√
=

=

=

=

( (1) + (2)) (|1sβ2sα| + |1sα2sβ|)SZ SZ

1

2
–

√

( (1) + (2)) |1sβ2sα| + ( (1) + (2)) |1sα2sβ|
1

2
–

√
SZ SZ

1

2
–

√
SZ SZ

(ℏ(− )+ℏ( )) |1sβ2sα| + (ℏ( )+ℏ(− )) |1sα2sβ|
1

2
–

√

1

2

1

2

1

2
–

√

1

2

1

2

0ℏ (|1sβ2sα| + |1sα2sβ|)
1

2
–

√

(22.3.5.23)

(22.3.5.24)

(22.3.5.25)

(22.3.5.26)
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Q3 

a. Once the spatial symmetry has been determined by multimplication of the irreducible representations, the spon coupling is identical to exercise 2 and gives the result: 

 
b. There are three states here (again analogous to exercise 2): 

 
c.

 

Q4 
As shown in review exercise 1c, for two ewuivalent  electrons one obtains six states: 

(|1sβ2sα| + |1sα2sβ|)S2 1

2
–

√
=

=

=

=

=

=

=

( + +ℏ ) (|1sβ2sα| + |1sα2sβ|)S−S+ S2
Z SZ

1

2
–

√

(|1sβ2α| + |1sα2sβ|)S−S+
1

2
–

√

( ( (1) + (2)) |1sβ2sα| + ( (1) + (2)) |1sα2sβ|)
1

2
–

√
S− S+ S+ S− S+ S+

( ℏ|1sα2sα| + ℏ|1sα2sα|)
1

2
–

√
S− S−

2ℏ (( (1) + (2)) |1sα2sα|)
1

2
–

√
S− S−

2ℏ (ℏ|1sβ2sα| + |ℏ|1sα2sβ|)
1

2
–

√

2 (1sβ2sα| + |1sα2sβ|)ℏ2 1

2
–

√

(22.3.5.27)

(22.3.5.28)

(22.3.5.29)

(22.3.5.30)

(22.3.5.31)

(22.3.5.32)

(22.3.5.33)

|1sβ2sβ|S2 =

=

=

=

( + −ℏ ) |1sβ2sβ|S+S− S2
Z SA

|1sβ2sβ|1sβ2sβ| −ℏ |1sβ2sβ|S+S− SZ

0 + |1sβ2sβ| + |1sβ2sβ|ℏ2 ℏ2

2 |1sβ2sβ|ℏ2

(22.3.5.34)

(22.3.5.35)

(22.3.5.36)

(22.3.5.37)

(|1sβ2sα| − |1sα2sβ|)SZ

1

2
–

√
=

=

=

=

( (1) + (2)) (|1sβ2sα| − |1sα2sβ|)SZ SZ

1

2
–

√

( (1) + (2)) |1sβ2sα| − ( (1) + (2)) |1sα2sβ|
1

2
–

√
SZ SZ

1

2
–

√
SZ SZ

(ℏ(− )+ℏ( )) |1sβ2sα| − (ℏ( )+ℏ(− )) |1sα2sβ|
1

2
–

√

1

2

1

2

1

2
–

√

1

2

1

2

0ℏ (1sβ2sα| − |1sα2sβ|)
1

2
–

√

(22.3.5.38)

(22.3.5.39)

(22.3.5.40)

(22.3.5.41)

(1sβ2sα| − |1sα2sβ|)S2 1

2
–

√
=

=

=

=

=

=

=

( +ℏ ) (|1sβ2sα| − |1sα2sβ|)S−S+S
2
Z SZ

1

2
–

√

(|1sβ2sα| − |1sα2sβ|)S−S+
1

2
–

√

( ( (1) + (2)) |1sβ2sα| − ( (1) + (2)) |1sα2sβ|)
1

2
–

√
S− S+ S+ S− S+ S+

( ℏ|1sα2sα| − ℏ|1sα2sα|)
1

2
–

√
S− S−

0ℏ (( (1) + 2)) |1sα2sα|)
1

2
–

√
S− S(

0ℏ (ℏ|1sβ2sα| −ℏ|1sα2sβ|)
1

2
–

√

0 (|1sβ2sα| − |1sα2sβ|)ℏ2 1

2
–

√

(22.3.5.42)

(22.3.5.43)

(22.3.5.44)

(22.3.5.45)

(22.3.5.46)

(22.3.5.47)

(22.3.5.48)

(| α1 β| − | β1 α|)
1

2
–

√
3a1 b1 3a1 b1

1.)| α1 α|,3a1 b1

2.) (| α1 β| + | β1 α|) , and
1

2
–

√
3a1 b1 3a1 b1

3.)| β1 β|3a1 b1

(22.3.5.49)

(22.3.5.50)

(22.3.5.51)

| α β|3a1 3a1

π

Δ( = 2); one state ( = 0),1 ML MS

Δ( = −2); one state ( = 0),1 ML MS

∑( = 0); one state ( = 0), and 1 ML MS

∑( = 0); three states ( = 1, 0, and -1).3 ML MS

(22.3.5.52)

(22.3.5.53)

(22.3.5.54)

(22.3.5.55)
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By inspecting the "box" in review exercise 1c, it should be fairly straightforward to write down the wavefunctions for each of these: 

 

Q5 

We can conveniently couple another s electron to the states generate from the  configuration in exercise 2: 

 
Constructing a "box" for this case would yield: 

 
One can immediately identify the wavefunctions for two of the quartets (they are single entries): 

 

Applying  yields: 

 

 

Applying  

 

Applying  yields: 

 

 

Applying 

It only remains to construct the doublet states which are orthogonal to these quartet states. Recall that the orthogonal combinations for systems having three equal components (for example when
symmetry adapting the 3  symmetry) give results of + + +, +2 - -, and 0 + -. Notice that the quartets are the + + + combinations and therefore the doublets can be
recognized as:  
 

Δ( = 2); | α β|1 ML π1 π1

Δ( = −2); | α β|1 ML π1 π1

∑( = 0); (| β α| − | α β|)1 ML

1

2
–

√
π1 π−1 π1 π−1

∑( = 0, = 1); | α α|3 ML MS π1 π−1

∑( = 0, = 0); (| β α| + | α β|)3 ML MS

1

2
–

√
π1 π−1 π1 π−1

∑( = 0, = −1); | β β|3 ML MS π1 π−1

(22.3.5.56)

(22.3.5.57)

(22.3.5.58)

(22.3.5.59)

(22.3.5.60)

(22.3.5.61)

1 2s1 s1

S(L = 0,S = 1)with 3 3 (L = 0,S = )giving :s1 1

2

L = 0,S = , S(4states)an S(2states).
3

2

1

2
,4 d2

S(L = 0,S = 0)with3 (L = 0,S = )giving :1 s1 1

2

L = 0,S = S(2states).
1

2
;2

(22.3.5.62)

(22.3.5.63)

(22.3.5.64)

(22.3.5.65)

S(S = , = ) : |1sα2sα3sα|4 3

2
MS

3

2

S(S = , = − ) : |1sβ2sβ3sβ|4 3

2
MS

3

2

(22.3.5.66)

(22.3.5.67)

S(S = , = − )S− to 4
3

2
MS

3

2

S(S = , = )S4
−

3

2
MS

3

2

|1sα2sα3sα|S−

S(S = , = )So, 4
3

2
MS

1

2

=

=

=

=

ℏ S(S = , = )( +1)− ( −1)
3

2

3

2

3

2

3

2

− −−−−−−−−−−−−−−−−−−−

√

4
3

2
MS

1

2

ℏ S(S = , = )3
–

√
4 3

2
MS

1

2
ℏ (|1sβ2sα3sα| + |1sα2sβ3sα| + |1sα2sα3sβ|)

(|1sβ2sα3sα| + |1sα2sβ3sα| + |1sα2sα3sβ|)
1

3
–

√

(22.3.5.68)

(22.3.5.69)

(22.3.5.70)

(22.3.5.71)

(S = , = − ) yields:S+ to S
3

2
MS

3

2

S(S = , = − )S+ to 4
3

2
MS

3

2

S(S = , = − )S4
+

3

2
MS

3

2

|1sβ2sβ3sβ|S+

S(S = , = − )So, 4
3

2
MS

1

2

=

=

=

=

ℏ S(S = , = − )( +1)−− ( +1)
3

2

3

2

3

2

3

2

− −−−−−−−−−−−−−−−−−−−−−

√

4
3

2
MS

1

2

ℏ S(S = , = − )3
–

√
4 3

2
MS

1

2
ℏ (|1sα2sβ3sβ| + |1sβ2sα3sβ| + |1sβ2sβ3sα|)

(|1sα2sβ3sβ| + |1sβ2sα3sβ| + |1sβ2sβ3sα|)
1

3
–

√

(22.3.5.72)

(22.3.5.73)

(22.3.5.74)

(22.3.5.75)

(S = , = − ) yields:S+ to S
3

2
MS

3

2

s  hybrids in   or p2 C2v D3h
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Q6 

As illustrated in this chapter a  configuration (two equivalent p electrons) gives rise to the term symbols:  Coupling an additional electron  configureation will give
the desired  term symbols: 

 

Q7 
The notation used for the Slater Condon tules will be the same as used in the test: 
(a.) zero (spin orbital) difference; 

 
(b.) one (spin orbital) difference ; 

 
(c.) two (spin orbital) differences  

 
(d.) three or more (spin orbital) differences; 

 
 
i.  

 
Error!. Using the Slater Condon rule (a.) above (SCa): 

 

ii.  

 
Evaluating each matrix element gives: 

 
Substitution of these expressions give: 

S(S = , = − )2 1

2
MS

1

2

S(S = , = − )2 1

2
MS

1

2

S(S = , = − )2 1

2
MS

1

2

S(S = , = − )2 1

2
MS

1

2

=

=

=

=

(|1sβ2sα3sα| + |1sα2sβ3sα| −2|1sα2sα3sβ|)
1

6
–

√

(|1sβ2sα3sα| − |1sα2sβ3sα| +0|1sα2sα3sβ|)
1

2
–

√

(|1sα2sβ3sβ| + |1sβ2sα3sβ| −2|1sβ2sβ3sα|)
1

6
–

√

(|1sα2sβ3sβ| − |1sβ2sα3sβ| +0|1sβ2sβ3sα|)
1

3
–

√

(22.3.5.76)

(22.3.5.77)

(22.3.5.78)

(22.3.5.79)

p2 P D S.3 ,1 , and 1 (3 ) to this d1 p2

1 2 2 3s2 s2 p2 d1

P (L = 1,S = 1) (L = 2,S = )generates;3  with D
1

2

L = 3, 2, 1, and S = , F F D D P S,
3

2

1

2
 with term symbols  4 ,2 ,4 ,2 ,4 , and 2

S(L = 0,S = 0) D(L = 2,S = )generates;1  with 2
1

2

L = 2 and S = D.
1

2
 with term symbol 2

(22.3.5.80)

(22.3.5.81)

(22.3.5.82)

(22.3.5.83)

⟨|F +G|⟩ =

=

⟨ |f | ⟩+ (⟨ |g| ⟩− ⟨ |g| ⟩)ϕi ϕi ∑
i>j

ϕiϕj ϕiϕj ϕiϕj ϕjϕi

+ ( − )∑
i

fii ∑
i>j

gijij gijji

(22.3.5.84)

(22.3.5.85)

( ≠ϕp ϕp′

⟨|F +G|⟩ =

=

⟨ |f | ⟩+ (⟨ |g| ⟩− ⟨ |g| ⟩)ϕp ϕp′ ∑
j≠p;p′

ϕpϕj ϕp′ϕj ϕpϕj ϕjϕp′

+ ( − )fpp′ ∑
j≠p;p′

gpj jp′ gpjjp′

(22.3.5.86)

(22.3.5.87)

( ≠  and  ≠ );ϕp ϕp′ ϕq ϕq ′

⟨|F +G|⟩ =

=

⟨ |g| ⟩− ⟨ |g| ⟩ϕpϕq ϕp′ϕq ′ ϕpϕq ϕjϕp′

−gpqp′q ′ gpqq−′p′

(22.3.5.88)

(22.3.5.89)

⟨|F +G|⟩ = 0

P ( = 1, = 1) = | α α|3 ML MS p1 p0

⟨| α α|H| α α|⟩ =p1 p0 p1 p0

⟨|10|H|10|⟩ = + + −f11 f00 g1010 g1001

P ( = 0, = 0) = (| α β| + | β α|)3 ML MS

1

2
–

√
p1 p−1 p1 p−1

P ( = 0, = 0)|H P ( = 0, = 0)⟩⟨3 ML MS |3 ML MS =

= (⟨| α β|H| α β|⟩+ ⟨| α β|H| β α|⟩+ ⟨| β α|H| α β|⟩+ ⟨| β α|H| β α|⟩)
1

2
p1 p−1 p1 p−1 p1 p−1 p1 p−1 p1 p−1 p1 p−1 p1 p−1 p1 p−1

(22.3.5

(22.3.5

⟨| α β|H| α β|⟩p1 p−1 p1 p−1

⟨| α β|H| β α|⟩p1 p−1 p1 p−1

⟨| β α|H| α β|⟩p1 p−1 p1 p−1

⟨| β α|H| β α|⟩p1 p−1 p1 p−1

=

=

=

=

=

=

=

=

+ + − (SCA)f1α1α f−1β−1β g1α−1β1α−1β g1α−1β−1β1α

+ + −0f11 f−1−1 g1−11−1

− (SCc)g1α−1β1β−1α g1α−1β−1α1β

0 −g1−1−11

− (SCc)g1β−1α1α−1β g1β−1α−1β1α

0 −g1−1−11

+ + − (SCa)f1β1β f−1α−1α g1β−1α1β−1α g1β−1α−1α1β

+ + −0f11 f−1−1 g1−11−1

(22.3.5.92)

(22.3.5.93)

(22.3.5.94)

(22.3.5.95)

(22.3.5.96)

(22.3.5.97)

(22.3.5.98)

(22.3.5.99)

P ( = 0, = 0)|H P ( = 0, = 0)⟩⟨3 ML MS |3 ML MS =

=

( + + − − + + + )
1

2
f11 f−1−1 g1−11−1 g1−1−11 g1−1−11 f11 f−1−1 g1−11−1

+ + −f11 f−1−1 g1−11−1 g1−1−11

(22.3.5.100)

(22.3.5.101)
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iii.   

 
Evaluating each matrix element gives: 

 
Substitution of these expressions give: 

 
 

iv.  

 
Evaluating  we note that all the Slater Condon matrix elements generated are the same as those evaluated in part iii. (the sign for the wavefunction
components and the multiplicative factor of two for one of the components, however, are different). 
 

 

Q8 

i.  

 
 

ii. 

 
 
Evaluating each matrix element gives: 

S( = 0, = 0); (| α β| − | α β| − | α β|)1 ML MS

1

3
–

√
p0 p0 p1 p−1 p−1 p1

S( = 0, = 0)|H S( = 0, = 0)⟩⟨1 ML MS |1 ML MS =

+

−

+

(⟨| α β|H| α β|⟩− ⟨| α β|H| α β|⟩
1

3
p0 p0 p0 p0 p0 p0 p1 p−1

⟨| α β|H| α β|⟩+ ⟨| α β|H| α β|⟩p1 p−1 p1 p−1 p1 p−1 p−11 p1

⟨| α β|H| α β|⟩+ ⟨| α β|H| α β|⟩p−1 p1 p0 p0 p−1 p1 p1 p−1

⟨| α β|H| α β|⟩)p−1 p1 p−1 p1

− ⟨| α β|H| α β|⟩− ⟨| α β|H| α β|⟩p0 p0 p−1 p1 p1 p−1 p0 p0 (22

(22

(22

(22

⟨| α β|H| α β|⟩P0 p0 p0 p0

⟨| α β|H| α β|⟩p0 p0 p1 p−1

⟨| α β|H| α β|⟩p0 p0 p−1 p1

⟨| α β|H| α β|⟩p1 p−1 p1 p−1

⟨| α β|H| α β|⟩p1 p−1 p−1 p1

⟨| α β|H| α β|⟩p−1 p1 p−1 p1

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

+ + − (SCa)f0α0α f0β0β g0α0β0α0β g0α0β0β0α

+ + −0f00 f00 g0000

⟨| α β|H| α β|⟩p1 p−1 p0 p0

− (SCc)g0α0β1α−1β g0α0β−1β1α

−0g001−1

⟨| α β|H| α β|⟩p−1 p1 p0 p0

− (SCc)g0α0β−1α1β g0α0β1β−1α

−0g00−11

+ + − (SCa)f1α1α f−1β−1β g1α−1β1α−1β g1α−1β−1β1α

+ + −0f11 f−1−1 g1−11−1

⟨| α β|H| α β|⟩p−1 p1 p1 p−1

− (SCc)g1α−β−1α1β g1α−1β1β−1α

−0g1−1−11

+ + − (SCa)f−1α−1α f1β1β g−1α1β−1α1β g−1α1β1β−1α

+ + −0f−1−1 f11 g−11−11

(22.3.5.106)

(22.3.5.107)

(22.3.5.108)

(22.3.5.109)

(22.3.5.110)

(22.3.5.111)

(22.3.5.112)

(22.3.5.113)

(22.3.5.114)

(22.3.5.115)

(22.3.5.116)

(22.3.5.117)

(22.3.5.118)

(22.3.5.119)

(22.3.5.120)

S( = 0, = 0)⟨1 ML MS

=

=

|H S( = 0, = 0)⟩|
1

ML MS

( + + − − − + + + + − + +
1

3
f00 f00 g0000 g001−1 g00−11 g001−1 f11 f−1−1 g1−11−1 g1−1−11 g00−11 g1−1−11 f−1−1

+ + )f11 g−11−11

(2 +2 +2 + −4 +2 +2 )
1

3
f00 f11 f−1−1 g0000 g001−1 g1−11−1 g1−1−11

(22.3.5.121)

(22.3.5.122)

(22.3.5.123)

D( = 0, = 0) = (2| α β| + | α β| + | α β|)1 ML MS

1

6
–

√
p0 p0 p1 p−1 p−1 p1

D( = 0, = 0)|H D( = 0, = 0)⟩⟨1 ML MS |1 ML MS

D ( = 0, = 0) |H D ( = 0, = 0)⟩⟨1 ML MS |1 ML MS

(4 +4 +4 +2 +2 +2 + + + + +2 +
1

6
f00 f00 g0000 g001−1 g00−11 g001−1 f11 f−1−1 g1−11−1 g1−1−11 g00−11 g1−1−11

+ + + )f−1−1 f11 g−11−11

= (8 +2 +2 +4 +8 +2 +2 )
1

6
f00 f11 f−1−1 g0000 g001−1 g1−11−1 g1−1−11

(22.3.5.124)

(22.3.5.125)

(22.3.5.126)

( = 2, = 0) = | α β|Δ ML MS π1 π1

Δ ( = 2, = 0) |H Δ ( = 2, = 0)⟩⟨1 ML MS |1 ML MS

=

=

=

=

⟨| α β|H| α β|⟩π1 π1 π1 π1

+ + − (SCa)f1α1α f1β1β g1α1β1α1β g1
alpha1β1β1α

+ + −0f11 f11 g1111

2 +f11 g1111

(22.3.5.127)

(22.3.5.128)

(22.3.5.129)

(22.3.5.130)

(22.3.5.131)

∑ ( = 0, = 0) = (| α β| − | β α|)1 ML MS

1

2
–

√
π1 π−1 π1 π−1

∑ ( = 0, = 0) |H ∑ ( = 0, = 0)⟩⟨3 ML MS |3 ML MS

= (⟨| α β|H| α β|⟩− ⟨| α β|H| β α|⟩− ⟨| β α|H| α β|⟩+ ⟨| β α|H| β α|⟩)
1

2
π1 π−1 π1 π−1 π1 π−1 π1 π−1 π1 π−1 π1 π−1 π1 π−1 π1 π−1
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Substitution of these expressions give: 

 
 

iii.  

 
Evaluating each matrix element gives: 
 

 
 
Substitution of these expressions give: 

 
 

This page titled 22.3.5: v. Exercise Solutions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons via source content that was edited to the style and standards of the
LibreTexts platform; a detailed edit history is available upon request.

⟨| α β|H| α β|⟩π1 π−1 π1 π−1

⟨| α β|H| β α|⟩π1 π−1 π1 π−1

⟨| β α|H| α β|⟩π1 π−1 π1 π−1

⟨| β α|H| β β|⟩π1 π−1 π1 π−1

=

=

=

=

=

=

=

+ + − (SCa)f1α1α f−1β−1β g1α−1β1α−1β g1α−1β−1β1α

0 −g1−1−11

+ + −0f11 f−1−1 g1−11−1

− (SCc)g1α−1β1β−1α g1α−1β−1α1β

0 −g1−1−11

+ + − (SCa)f1β1β f−1α−1α g1β−1α1β−1α g1β−1α−1α1β

+ + −0f11 f−1−1 g1−11−1

(22.3.5.134)

(22.3.5.135)

(22.3.5.136)

(22.3.5.137)

(22.3.5.138)

(22.3.5.139)

(22.3.5.140)

∑ ( = 0, = 0) |H ∑ ( = 0, = 0)⟩⟨3 ML MS |3 ML MS =

=

( + + + + + + + )
1

2
f11 f−1−1 g1−11−1 g1−1−11 g1−1−11 f11 f−1−1 g1−11−1

+ + +f11 f−1−1 g1−11−1 g1−1−11

(22.3.5.141)

(22.3.5.142)

∑ ( = 0, = 0) = (| α β| + | β α|)3 ML MS

1

2
–

√
π1 π−1 π1 π−1

∑ ( = 0, = 0) |H ∑ ( = 0, = 0)⟩⟨3 ML MS |
3

ML MS

= (⟨| α β|H| α β|⟩+ ⟨| α β|H| β α|⟩+ ⟨| β α|H| α β|⟩+ ⟨| β α|H| β α|
1

2
π1 π−1 π1 π−1 π1 π−1 π1 π−1 π1 π−1 π1 π−1 π1 π−1 π1 π−1

⟨| α β|H| α β⟩π1 π−1 π1 π−1

⟨| α β|H| β α|⟩π1 π−1 π1 π−1

⟨| β α|H| α α|⟩π1 π−1 π1 π−1

=

=

=

=
=

=

+ + − (SCa)f1α1α f−1β−1β g1α−1β1α−1β g1α−1β−1β1α

+ + −0f11 f−1−1 g1−11−1

− (SCc)g1α−1β1β−1α g1α−1β−1α1β

0 −g1−1−11

+ + − (SCa)f1β1β f−1α−1α g1β−1α1β−1α g1β−1α−1α1β

+ + −0f11 f−1−1 g1−11−1

(22.3.5.145)

(22.3.5.146)

(22.3.5.147)

(22.3.5.148)
(22.3.5.149)

(22.3.5.150)

⟨

=

=

( = 0, = 0) |H ∑ ( = 0, = 0)⟩∑ ML MS |3 ML MS

( + + − + + + )
1

2
f11 f−1−1 g1−11−1 g1−1−11 f11 f−1−1 g1−11−1

+ + −f11 f−1−1 g1−11−1 g1−1−11

(22.3.5.151)

(22.3.5.152)

(22.3.5.153)
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22.3.6: vi. Problem Solutions

Q1 

a. All the Slater determinants have in common the  "core" and hence this component will not be written out explicitly for each case. 

 
As you can see, the symmetried of each of these states cannot be labeled with a single irreducible representation of the  point group. For example,  is xz 

 and  is yz  and hence the  functions are degenerate for the C atom and any combination of these functions would also be
degenerate. Therefore we can choose new combinations which can be labeled with "pure"  point group labels. 

 
Now we can do likewise for the five degenerate  states: 

|1sα1sβ2sα2sβ|

P ( = 1, = 1)3 ML MS

P ( = 0, = 1)3 ML MS

( − i )α|
1

2
–

√
px py

P ( = −1. = 1)3 ML MS

=

=

=

=

=

=

=

=

=

=

=

| α α|p1 p0

| ( + i )α( )α|
1

2
–

√
px py pz

(| α α| + i| α α|)
1

2
–

√
px pz py pz

| α α|p1 p−1

| ( + i )α|
1

2
–

√
px py

(| α α| − i| α α| + i| α α| + | α α|)
1

2
px px px py py px py py

(0 − i| α α|)
1

2
px py

− i| α α|px py

| α α|p−1 p0

| ( − i )α( )α|
1

2
–

√
px py pz

(| α α| − i| α α|)
1

2
–

√
px pz py pz

(22.3.6.1)

(22.3.6.2)

(22.3.6.3)

(22.3.6.4)

(22.3.6.5)

(22.3.6.6)

(22.3.6.7)

(22.3.6.8)

(22.3.6.9)

(22.3.6.10)

(22.3.6.11)

C2v | α α|px pz

( )B1 | α α|py pz ( )B2 P ( , = 1)3 ML MS

C2v

P (xz, = 1)3 MS

P (yx, = 1)3 MS

P (yz, = 1)3 MS

=

=

=

=

=

=

| α α|px pz

P ( = 1, = 1) P ( = −1, = 1))
1

2
–

√
(3 ML MS +3 ML MS =3 B1

| α α|py px

P ( = 0, = 1))
1

i
(3 ML MS =3 A2

| α α|py pz

P ( = 1, = 1) P ( = −1, = 1))
1

i 2
–

√
(3 ML MS −3 ML MS =3 B2

(22.3.6.12)

(22.3.6.13)

(22.3.6.14)

(22.3.6.15)

(22.3.6.16)

(22.3.6.17)

D1
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Analogous to the three  states we can also choose combinations of the five degenerates  states which can be labeled with "pure"  point group labels: 

 
The only state left is the : 

 
Each of the componenets of this state are  and hence this state has  symmetry. 
 
b. Forming SALC-AOs from the C and H atomic orbitals would generate the following:

D( = 2, = 0)1 ML MS

D( = −2, = 0)1 ML MS

( = 1, = 0)1D ML MS

D( = −1, = 0)1 ML MS

D( = 0, = 0)1 ML MS

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

| α β|p1 p1

| ( + i )α ( + i )β|
1

2
–

√
px py

1

2
–

√
px py

(| α β| + i| α β| + i| α β| − | α β|)
1

2
px px px py py px py py

| α β|p−1 p−1

| ( − i )α ( − i )β|
1

2
–

√
px py

1

2
–

√
px py

(| α β| − i| α β| − i| α β| − | α β|)
1

2
px px px py py px py py

(| α β| − | β α|)
1

2
–

√
p0 p1 p0 p1

(|( )α ( + i )β| − |( )β ( + i )α|)
1

2
–

√
pz

1

2
–

√
px py pz

1

2
–

√
px py

(| α β| + i| α β| − | β α| − i| β α|)
1

2
pz px pz py pz px pz py

(| α β| − | β α|)
1

2
–

√
p0 p−1 p0 p−1

(|( )α ( − i )β| − |( )β ( − i )α|)
1

2
–

√
pz

1

2
–

√
px py pz

1

2
–

√
px py

(| α β| − i α β| − | β α| + |i| β α|)
1

2
pz px pz py pz px pz py

(2| α β| + | α β| + | α β|)
1

6
–

√
p0 p0 p1 p−1 p−1 p1

(2| α β| + | ( + i )α ( − i )β| + | ( − i )α ( + i )β|)
1

6
–

√
pz pz

1

2
–

√
px py

1

2
–

√
px py

1

2
–

√
px py

1

2
–

√
px py

(2| α β| + (| α β| − i| α β| + i| α β| + | α β|)
1

6
–

√
pz pz

1

2
px px px py py px py py

+ (| α β| + i| α β| − i| α β| + | α β|))
1

2
px px px py py px py py

(2| α β| + | α β| + | α β|)
1

6
–

√
pz pz px px py py

(22.3.6.18)

(22.3.6.19)

(22.3.6.20)

(22.3.6.21)

(22.3.6.22)

(22.3.6.23)

(22.3.6.24)

(22.3.6.25)

(22.3.6.26)

(22.3.6.27)

(22.3.6.28)

(22.3.6.29)

(22.3.6.30)

(22.3.6.31)

(22.3.6.32)

(22.3.6.33)

p3 D1 C2v

D(xx −yy, = 0)1 MS

D(yx, = 0)1 MS

D(zx, = 0)1 MS

D(zy, = 0)1 MS

D(2zz +xx +yy, = 0)1 MS

=

=

=

=

=

=

=

=

=

=

| α β| − | α β|px px py py

D( = 2, = 0) D( = −2, = 0))(1 ML MS +1 ML MS =1 A1

| α β| + | α β|px py py px

D( = 2, = 0) D( = −2, = 0))
1

i
(1 ML MS −1 ML MS =1 A2

| α β| − | β α|pz py pz py

D( = 1, = 0) D( = −1, = 0))(1 ML MS +1 ML MS =1 B1

| α β| − | β α|pz py pz py

D( = 1, = 0) D( = −1, = 0))
1

i
(1 ML MS −1 ML MS =1 B2

(2| α β| + | α β| + | α β|))
1

6
–

√
pz pz px px py py

D( = 0, = 0)1 ML MS =1 A1

(22.3.6.34)

(22.3.6.35)

(22.3.6.36)

(22.3.6.37)

(22.3.6.38)

(22.3.6.39)

(22.3.6.40)

(22.3.6.41)

(22.3.6.42)

(22.3.6.43)

S1

S( = 0, = 0)1 ML MS =

=

=

=

(| α β| − | α β| − | α β|)
1

3
–

√
p0 p0 p1 p−1 p−1 p1

(| α β| − | ( + i )α ( − i )β| − | ( − i )α ( + i )β|)
1

3
–

√
pz pz

1

2
–

√
px py

1

2
–

√
px py

1

2
–

√
px py

1

2
–

√
px py

(| α β| − (| α β| − i| α β| + i| α β| + | α β|) (| α β| + i| α β| − i| α β|
1

3
–

√
pz pz

1

2
px px px py py px py py

1

2
px px px py py px

+| α β|))py py

(| α β| − α β| − | α β|)
1

3
–

√
pz pz px px py py

(22.3.6.44)

(22.3.6.45)

(22.3.6.46)

(22.3.6.47)

A1 A1
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c.

 
d. - e. It is necessary to determine how the wave functions found in part a. correlate with states of the  molecule: 

 
Note, the C +  state to which the lowest  state decomposes would be  This sate  cannon be obtained by a simple combination of
the  states. In order to obtain pure  cannon be obtained by a simple combination of the  states. In order to obtain pure  it is necessary to combine 

 For example, 

 
This indicates that a CCD must be drawn with a barrier near the  asymptote to represent the fact that  correlates with a mixture of  carbon plus
hydrogen. The C +  state to which the lowest  state decomposes would be 

CH2

P (xz, = 1)3 MS ;3 B1

P (yx, = 1)3 MS ;3 A2

P (yz, = 1)3 MS ;3 B2

=

=

=

⟶ sigmσ2
g s2pxpz a2n2pπσ*

⟶ σσ2
g s2pxpy σ2n2pπ

⟶ σσ2
g s2pypz σ2n2 σ*

D(xx −yy, = 0) ⟶ −1 MS ;1 A1 σ2n2p2
π σ2n2σ2

D(yx, = 0) ⟶ σ1 MS ;1 A2 σ2n2 pπ

D(zx, = 0) ⟶1 MS ;1 B1 σ2n2σ*pπ

D(zy, = 0) ⟶ σ1 MS ;1 B2 σ2n2σ*

D(2zz +xx +yy, = 0) ⟶ 2 + +1 MS ;1 A1 σ2n2σ*2 σ2n2p2
π σ2n2σ2

(22.3.6.48)

(22.3.6.49)

(22.3.6.50)

(22.3.6.51)

(22.3.6.52)

(22.3.6.53)

(22.3.6.54)

(22.3.6.55)

H2 ( )C1A1 σ2n2σ2 H2 .σ2
g s2p2

y ( )σ2
g s2p2

y

D1 )σ2
g s2p2

y D1 σ2
g s2p2

y

S D.1  with 1

= ( D(0, 0) −2 S(0, 0))− ( D(2, 0) D(−2, 0)) .σ2
g s2p2

y

1

6
6
–

√
1

3
–

√
1 1

2
1 +1

D1 1A1  CH2 D S1  and 1

H2 ( n )C3B1 σ2 σ2pπ H2 s .σ2
g p2

ypx
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f. If you follow the  component of the  (since it leads to the ground state products) to  you must go over an approximately 20 Kcal/mole barrier.
Of course this path produces  product. Distortions away from  symmetry, for example to  symmetry, would make the  orbitals identical in
symmetry (a'). The  orbitals would maintain their identity group going to a" symmetry. Thus  (both  symmetry and odd under reflection
through the molecular plane) can mix. The system could thus follow the  component of the  surface to the place (marked with a circle on the CCD)
where it crosses the  surface upon which it then moves and continues to products. As a result, the barrier would be lowered.  
You can estimate when the barrier occurs (late or early) using thermodynamic information for the reaction (i.e. slopes and asymptotic energies). For example, an early
barrier would be obtained for a reaction with the characteristics:

 
This relation between reaction endothermicity or exothermicity is known as the Hammond postulate. Note that the  reaction of interest here (see
the CCD) has an early barrier. 
g. The reaction  should have no symmetry barrier )this can be recognized by the following the  reactants down to the 

 products on the CCD). 

3B1 C P ) +(3 H2 C3B1 H2

C3B1 H2 C2v C −s  and a1 b2

b1
3B1  and 3A2 A "  in 3 Cs

3A2 C P ) +(3 H2
3B1

C ) + → C(3P1 H2 H2

C D) + → C )(1 H2 H2(1A1 (C D) + )1A1 (1 H2

(C )1A1 H2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/83349?pdf


22.3.6.5 https://chem.libretexts.org/@go/page/83349

Q2 

This problem in many respects is analogous to problem 1. 
The  surface certainly requires a two configuration CI wavefunction; the  and the  The  surface could use the 

 only but once again there is n combination of  determinants which gives purely this configuration . Thus mixing of both 
determinants are necessary to yield the required  configuration. Hence even the  surface would require a multiconfigurational wavefunction for adequate
description. 

 

Q3 
a. 

 
 

3B1 n ( s )σ2σ2 px π2p2
y px ( ).σ2n2pxσ* π2s2pxpz

1A1

sigm ( )a2σ2n2 π2s2p2
y D1 ( )π2s2p2

y D S1  and 1

pi2s2p2
y

1A1

⟨ | ⟩σg σg =

=

=

=

⟨ ⟩
1 +1sA sB

2 +2S
− −−−−−

√
∣
∣
∣

1 +1sA sB

2 +2S
− −−−−−

√

(⟨1 |1 ⟩+ ⟨1 |1 ⟩+ ⟨1 |1 ⟩+ ⟨1 |1 ⟩)
1

2 +2S
sA sA sA sB sB sA sB sB

(0.285)((1.000) +(0.753) +(0.753) +(1.000))

0.999 ≈ 1

(22.3.6.56)

(22.3.6.57)

(22.3.6.58)

(22.3.6.59)
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b.  

 

⟨ | ⟩σg σu

⟨ |⟩σu

=

=

=

=

=

=

=

=

⟨ ⟩
1 +1sA sB

2 +2S
− −−−−−

√
∣
∣
∣

1 −1sA sB

2 −2S
− −−−−−

√
⟨1 |1 ⟩+ ⟨1 |1 ⟩+ ⟨1 |1 ⟩+ ⟨1 |1 ⟩sA sA sA sB sB sA sB sB

2 +2S
− −−−−−

√ 2 −2S
− −−−−−

√
(1.434)(0.534)((1.000) −(0.753) +(0.753) −(1.000))

0

⟨ ⟩
1 −1sA sB

2 −2S
− −−−−−

√

∣
∣
∣

1 −1sA sB

2 −2S
− −−−−−

√
⟨1 |1 ⟩− ⟨1 |1 ⟩− ⟨1 |1 ⟩+ ⟨1 |1 ⟩sA sA sA sB sB sA sB sB

2 −2S

(2.024)((1.000) −(0.753) −(0.753) +(1.000))

1.000

(22.3.6.60)

(22.3.6.61)

(22.3.6.62)

(22.3.6.63)

(22.3.6.64)

(22.3.6.65)

(22.3.6.66)

(22.3.6.67)

⟨ |h| ⟩σg σg

⟨ |h| ⟩σu σu

⟨ |h| ⟩σgσg σgσg

⟨uu|uu⟩

=

=

=

=

=

=

=

=

≡

=

=

=

=

=

=

=

⟨ h ⟩
1 +1sA sB

2 +2S
− −−−−−

√
∣
∣
∣

∣
∣
∣

1 +1sA sB

2 +2S
− −−−−−

√
⟨1 |h|1 ⟩+ ⟨1 |h|1 ⟩+ ⟨1 |h|1 ⟩+ ⟨1 |h|1 ⟩sA sA sA sB sB sA sB sB

2 +2S
(0.285)((−1.110) +(−0.968) +(−0.968) +(−1.110))

−1.184

⟨ h ⟩
1 −1sA sB

2 −2S
− −−−−−

√
∣
∣
∣

∣
∣
∣

1 −1sA sB

2 −2S
− −−−−−

√
⟨1 |h|1 ⟩− ⟨1 |h|1 ⟩− ⟨1 |h|1 ⟩+ ⟨1 |h|1 ⟩sA sA sA sB sB sA sB sB

2 −2S
(2.024)((−1.110) +(0.968) +(0.968) +(−1.110))

−0.575

⟨gg|gg⟩=
1

2 +2S

1

2 +2S
⟨(1 +1 )(1 +1 )(1 +1 )(1 +1 )sA sB sA sB sA sB sA sB

(⟨AA|AA⟩+ ⟨AA|AB⟩+ ⟨AA|BA⟩+ ⟨AA|BB⟩+ ⟨AB|AA⟩+ ⟨AB|AB⟩+ ⟨AB|BA⟩+ ⟨AB|BB⟩+
1

(2 +2S)2

⟨BA|AA⟩+ ⟨BA|AB⟩+ ⟨BA|BA⟩+ ⟨BA|BB⟩+ ⟨BB|AA⟩+ ⟨BB|BA⟩+ ⟨BB|BA⟩+ ⟨BB|BB⟩)

(0.081)((0.625) +(0.426) +(0.426) +(0.323) +(0.426) +(0.504) +(0.323) +(0.426)+

(0.426) +(0.323) +(0.504) +(0.426) +(0.323) +(0.426) +(0.426) +(0.625))

0.564
1

2 −2S

1

2 −2S
⟨(1 −1 )(1 −1 )|(1 −1 )(1 −1 )⟩sA sB sA sB sA sB sA sB

(⟨AA|AA⟩− ⟨AA|AB⟩− ⟨AA|BA⟩⟨AA|BB⟩− ⟨BA|AA⟩+ ⟨BA|AB⟩+ ⟨BA|BA⟩− ⟨BA|BB⟩
1

(2 −2S)2

⟨BA|AA⟩+ ⟨BA|AB⟩+ ⟨BA|BA⟩− ⟨BA|BB⟩+ ⟨BB|AA⟩− ⟨BB|AB⟩− ⟨BB|BA⟩+ ⟨BB|BB⟩)

(4.100)((0.625) −(0.426) −(0.426) +(0.323) −(0.426) +(0.504) +(0.323) −(0.426)−

(0.426) +(0.323) +(0.504) −(0.426) +(0.323) −(0.426) −(0.426) +(0.625))

0.582

(22.3.6.68)

(22.3.6.69)

(22.3.6.70)

(22.3.6.71)

(22.3.6.72)

(22.3.6.73)

(22.3.6.74)

(22.3.6.75)

(22.3.6.76)

(22.3.6.77)

(22.3.6.78)

(22.3.6.79)

(22.3.6.80)

(22.3.6.81)

(22.3.6.82)

(22.3.6.83)

(22.3.6.84)

(22.3.6.85)

(22.3.6.86)

(22.3.6.87)

(22.3.6.88)

(22.3.6.89)
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Note, that  from symmetry considerations, but this can be easily verified. For example, 

 
 
c. We can now set up the configuration interaction Hamiltonian matrix. The elements are evaluated by using the Slater-Condon rules as shown in the text.  

 
 
d. Solving this eigenvalue problem: 

 
 

⟨gg|uu⟩

⟨gu|gu⟩

=

=

=

=

=

=

=

=

1

2 +2S

1

2 −2S
⟨(1 +1 )(1 +1 )|(1 −1 )(1 −1 )⟩sA sB sA sB sA sB sA sB

1

2 +2S

1

2 −2S

(⟨AA|AA⟩− ⟨AA|AB⟩− ⟨AA|BA⟩+ ⟨AA|BB⟩+ ⟨AB|AA⟩− ⟨AB|AB⟩− ⟨AB|BA⟩+ ⟨AB|BB⟩+
+ ⟨BA|AA⟩− ⟨BA|AB⟩− ⟨BA|BA⟩+ ⟨BA|BB⟩+ ⟨BB|AA⟩− ⟨BB|AB⟩− ⟨BB|BA⟩+ ⟨BB|BB⟩)

(0.285)(2.024)((0.625) −(0.426) −(0.426) +(0.323) +(0.426) −(0.504) −(0.323) +(0.426)+

+(0.426) −(0.323) −(0.504) −(0.426) +(0.323) −(0.426) −(0.426) +(0.625)

0.140
1

2 +2S

1

2 −2S
⟨(1 +1 )(1 −1 )(1 +1 )(1 −1 )⟩sA sB sA sB sA sB sA sB

1

2 +2S

1

2 −2S

(⟨AA|AA⟩− ⟨AA|AB⟩+ ⟨AA|BA⟩− ⟨AA|BB⟩− ⟨AB|AA⟩+ ⟨AB|AB⟩− ⟨AB|BA⟩+ ⟨AB|BB⟩

+ ⟨BA|AA⟩− ⟨BA|AB⟩+ ⟨BA|BA⟩− ⟨BA|BB⟩− ⟨BB|AA⟩+ ⟨BB|AB⟩− ⟨BB|BA⟩+ ⟨BB|BB⟩)

(0.285)(2.024)((0.625) −(0.426) +(0.426) −(0.323) −(0.426) +(0.504) −(0.323) +(0.426)+. . .

. . . +(0.426) −(0.323) +(0.504) −(0.426) −(0.323) +(0.426) −(0.426) +(0.625))

0.557

(22.3.6.90)

(22.3.6.91)

(22.3.6.92)

(22.3.6.93)
(22.3.6.94)

(22.3.6.95)

(22.3.6.96)

(22.3.6.97)

(22.3.6.98)

(22.3.6.99)

(22.3.6.100)

(22.3.6.101)
(22.3.6.102)

(22.3.6.103)

(22.3.6.104)

(22.3.6.105)

⟨gg|gu⟩= ⟨uu|ug⟩= 0

⟨gg|gu⟩. =

=

=

1

2 +2S
− −−−−−

√

1

(2 −2S)3− −−−−−−−
√

⟨(1 +1 )(1 +1 ) (1 +1 )(1 −1 )⟩sA sB sA sB
∣
∣
∣ sA sB sA sB

.
1

2 +2S
− −−−−−

√

1

(2 −2S)3

(⟨AA|AA⟩− ⟨AA|AB⟩+ ⟨AA|BA⟩− ⟨AA|BB⟩

⟨AB|AA⟩− ⟨AB|AB⟩+ ⟨AB|BA⟩− ⟨AB|BB⟩+

⟨BA|AA⟩− ⟨BA|AB⟩+ ⟨BA|BA⟩− ⟨BA|BB⟩+

⟨BB|AA⟩− ⟨BB|AB⟩+ ⟨BB|BA⟩− ⟨BB|BB⟩)

(0.534)(2.880)((0.625) −(0.426) +(0.426) −(0.323) +(0.426) −(0.504) +(0.323) −(0.426)+. . .

. . . +(0.426) −(0.323) +(0.504) −(0.426) +(0.323) −(0.426) +(0.426) −(0.625))

0.000

(22.3.6.106)

(22.3.6.107)

(22.3.6.108)

(22.3.6.109)

(22.3.6.110)

(22.3.6.111)

(22.3.6.112)

(22.3.6.113)

(22.3.6.114)

(22.3.6.115)

H11

H21

H22

=

=

=

=

=

=

=

=

=

⟨ α β|H| α β⟩σg σg σg σg

2 +fσgσg gσgσgσgσg

2(−1.184) +0.564 = −1.804

= ⟨ α β|H| α β⟩H12 σg σg σu σu

gσgσgσuσu

0.140

⟨ α β|H| α β⟩σu σu σu σu

2 +fσuσu
gσuσuσuσu

2(−0.575) +0.582 = −0.568

(22.3.6.116)

(22.3.6.117)

(22.3.6.118)

(22.3.6.119)

(22.3.6.120)

(22.3.6.121)

(22.3.6.122)

(22.3.6.123)

(22.3.6.124)

∣

∣
∣
−1.804 −ε

0.140

0.140

−0.568 −ε

∣

∣
∣

(−1.804 −ε)(−0.568 −ε) −(0.140)2

1.025 +1.804ε +0.568ε + −0.0196ε2

+2.372ε +1.005ε2

ε

=

=

=

=

=

=

=

0

0

0

0

−2.372 ± (2.372 −4(1)(1.005))2
− −−−−−−−−−−−−−−−−

√

(2)(1)

−1.186 ±0.634

−1.820,  and  −0.552.

(22.3.6.125)

(22.3.6.126)

(22.3.6.127)

(22.3.6.128)

(22.3.6.129)

(22.3.6.130)

(22.3.6.131)
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Solving for the coefficients: 

 
For the first eigenvalue this becomes: 

 
For the second eigenvalue this becomes: 

 
 
e. The polarized orbitals, , are given by: 

This page titled 22.3.6: vi. Problem Solutions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons via source content that was edited to
the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

[ ][ ] = [ ]
−1, 804 −ε

0.140

0.140

−0.568 −ε

C1

C2

0

0
(22.3.6.132)

[ ][ ] = [ ]
−1.804 +1.820

0.140

0.140

−0.568 +1.820

C1

C2

0

0

[ ][ ] = [ ]
0.016

0.140

0.140

1.252

C1

C2

0

0
(0.140)( ) +(1.252)( ) = 0C1 C2

= −8.943C1 C2

+ = 1(from normalization)C 2
1 C 2

2

(−8.943 + = 1C2)2 C 2
2

80.975 = 1C 2
2

= 0.111, = −0.994C2 C1

(22.3.6.133)

(22.3.6.134)

(22.3.6.135)

(22.3.6.136)

(22.3.6.137)

(22.3.6.138)

(22.3.6.139)

(22.3.6.140)

[ ][ ] = [ ]
−1.804 +0.552

0.140

0.140

−0.568 +0.552

C1

C2

0

0

[ ][ ] = [ ]
−1.252

0.140

0.140

−0.016

C1

C2

0

0
(−1.252)( ) +(0.140)( )C1 C2

= 0.112C1 C2

+ = 1 (from normalization) C 2
1 C 2

2

(0.112 + = 1C2)2 C 2
2

1.0125 = 1C 2
2

= 0.994, = 0.111C2 C1

(22.3.6.141)

(22.3.6.142)

(22.3.6.143)

(22.3.6.144)

(22.3.6.145)

(22.3.6.146)

(22.3.6.147)

(22.3.6.148)

R±

R±

R±

R±

R+

R−

=

=

=

=

=

±σg

C2

C1

−−−

√ σu

±σg

0.111

0.994

− −−−−
√ σu

±0.334σg σu

+0.334  (left polarized) σg σu

−0.334  (right polarized) σg σu

(22.3.6.149)

(22.3.6.150)

(22.3.6.151)

(22.3.6.152)

(22.3.6.153)
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22.4: Molecular Rotation and Vibration
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22.4.1: i. Exercises

Q1 

Consider the molecules  
a. What kind of rotor are they (symmetric top, ect; do not bother with oblate, or near-prolate, etc.) 
b. Will they show pure rotational spectra? 
c. Assume that ammonia shows a pure rotational spectrum. If the rotational constrants are 9.44 and 6.20 , use the energy
expression: 

 
to calculate the energies ( in ) of the first three lines (i.e., those with lowest K, J quantum number for the adsorbing level) in
the absorption spectrum (ignoring higher order terms in the energy expression). 

Q2 

The molecule  has a vibrational frequency , a rotational constant , and a bond energy
from the bottom of the potential well of .  
 
Use integral atomic masses in the following: 
a. In the approximation that the molecule can be represented as a Morse oscillaor, calculate the bond length,  in angstroms, the
centrifugal distortion constant, , the anharmonicity constant, , the zero-point corrected bond energy, 
in eV, the vibrational rotation interaction constant, , and the vibrational state specific rotation constants, 

. Use the vibration-rotation energy expression for a Morse oscillator: 

 
b. Will this molecule show a pure rotation spectrum? A vibration-rotation spectrum? Assume that it does, what are the energies 

 of the first three lines in the P branch  of the fundamental absorption? 

Q3 
Consider trans- . The vibrational normal modes of this molecule are shown below. What is the symmetry of the molecule?
Label each of the modes with the appropriate irreducible representation.

CC , CHC ,  and C C .l4 l3 H2 l2

cm
−1

E = (A −B) +BJ(J +1),K
2

cm
−1

O
11

B
16 = 1885cωe m

−1
B −e = 1, 78cm

−1

= 8.28eVD
0
e

Re

 in cDe m
−1

ωeXe  in cm−1
D

0
0

αe  in cm−1

 and B0 B1  in cm−1

E

Bv

=

=

ℏ (v+ )−ℏ + J(J +1) − (J +1 , whereωe

1

2
ωeXe(v = )

1

2

2

Bv DeJ
2 )2

− (v+ ) , = + , and  =Be αe

1

2
αe

−6B2
e

ℏωe

6 ℏB
3
e ωeXe

− −−−−−−−√

ℏωe

De

4B3
e

ℏω
2
e
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22.4.2: ii. Problems

Q1 

Suppose you are given two molecules (one is  and the other is  but you don't know which is which). Both molecules
have  symmetry. The CH bond length of molecule I is 1.121 Å and for molecule II it is 1.076 Å. The bond angle of molecule I
is 104  and for molecule II it is 136 . 

 
a. Using a coordinate system centered on the C nucleus as shown above (the molecule is in the YZ plane), compute the moment of
inertia tensors of both species (I and II). The definitions of the componenets of the tensor are, for example: 

 
 
Here,  is the mass of the nucleus j, M is the mass of the entire molecule, and X, Y, Z are the coordinates of the center of mass of
the molecule. Use Å for distances and amu's for masses. 
b. Find the principal moment of interia  for both compounds ( in amu Å  units) and convert these values into rotational
constants A, B, and C in  using, for example,  

 
c. Both compounds are "nearly prolate tops" whose energy levels can be well approximated using the prolate top formula: 

 
if one uses for the B constant the average of the B and C valued determined earlier. Thus, take B and C values (for each compound)
and average them to produce an effective B constant to use in the above energy formula. Write down ( in  units) the energy
formula for both species. What values are J and K allowed to assume? What is the degeneracy of the level labeled by a given J and
K? 
d. Draw a picture of both compounds and show the directions of the three principle axes (a,b,c). On these pictures show the kinf of
rotational motion associated with the quantum number K. 
e. Given that the electrical transition moment vector  connecting species I and II is directed along the Y axis, what are the
selection rules J and K? 
f. Suppose you are given the photoelectron spectrum of . In this spectrum  transitions are called R-branch
absorptions and those obeying  are called P-branch transitions , The spacing between lines can increase or decrease as
functions of  depending on the changes in the moment of inertia for the transition. If spacings grow closer and closer, we say that
the spectrum exhibits a so-called band head formation. In the photoelectron spectrum that you are given, a rotational analysis of the
vibrational lines in this spectrum is carried out and it is found that the R-branches show band head formation but the P-branches do
not. Based on this information, determine which compound I or II is the  anion. Explain your reasoning. 
g. At what J value (of the absorbing species) does the band head occur and at what rotational energy difference? 

CH2 CH−
2

C2v
∘ ∘

Ixx

Ixy

=

=

( + ) −M( + )∑
j

mj y
2
j z2

j Y 2 Z2

− −MXY∑
j

mjxjyj

(22.4.2.1)

(22.4.2.2)

mj

⟨ ⟨Ia Ib Ic
2

cm−1

A = .
h

8 cπ2 Ia

E = (A−B) +BJ(J +1),K2

cm−1

μ⃗ 

CH−
2

= +1Jj Ji
= −1Jj Ji

Ji

CH−
2
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Q2 

Let us consider the vibrational motions of benzene. To consider all of the vibrational modes of benzene we should attach a set of
displacement vectors in the x, y, and z directions to each atom in the molecule (giving 36 vectors in all), and evaluate how these
transform under the symmetry operations of . For this problem, however, let's only inquire about the C-H stretching vibrations.  
a. Represent the C-H stretching motion on each C-H bond by an outward-directed vector on each H atom, designated :  

 
These vectors form the basis for a reducible representation. Evaluate the characters for this reducible representation under the
symmetry operations of the  group. 
b. Decompose the reducible representation you obtained in part a. into its irreducible components. These are the symmetries of the
various C-H stretching vibrational modes in benzene. 
c. The vibrational state with zero quanta in each of the vibrational modes (the ground vibrational state) of any molecule always
belongs to the totally symmetric representation. For benzene the ground vibrational state is therefore of  symmetry. Am excited
state which has one quantum of vibrational excitation in a mode which is of a given symmetry species has the same symmetry
species as the mode which is excied (because the vibrational wave functions are given as Hermite polynomials in the stretching
coordinate). Thus, for example, excitation (by one quantum) of a vibrational mode of  symmetry gives a wavefunction of 
symmetry. To resolve the question of what vibrational modes may be excited by the absorption of infrared radiation we must
examine the x, y, and z componenets of the transition dipole integral for initial and final state wave functions ,
respectively: 

 
Using the information provided above, which of the C-H vibrational modes of benzene will be infrared-active, and how will the
transitions be polarized? How many C-H vibrations will you observe in the infrared spectrum of benzene? 
d. A vibrational mode will be acrive in Raman spectroscopy only if one of the following integrals is nonzero: 

 
Using the fact that the quadratic operators transform according to the irreducible representations: 

 
Determine which of the C-H vibrational modes will be Raman-active.  
e. Are there any of the C-H stretching vibrational motions of benzene which cannot be observed in either infrared of Raman
spectroscopy? Give the irreducible representation label for these unobservable modes.

D6h

ri

D6h

A1g

A2u A2u

 and ψi ψf

|⟨ |x| ⟩|, |⟨ |y| ⟩|,  and |⟨ |z| ⟩|.ψf ψi ψf ψi ψf ψi

|⟨ |xy| ⟩|, |⟨ |xz| ⟩|, |⟨ |yz| ⟩|,ψf ψi ψf ψi ψf ψi

|⟨ | | ⟩|, |⟨ | | ⟩|,  and |⟨ | | ⟩|.ψf x2 ψi ψf y2 ψi ψf z2 ψi

(22.4.2.3)

(22.4.2.4)

( + , )x2 y2 z2

(xz, yz)

( − , xy)x2 y2

⇒

⇒

⇒

A1g

E1g

E2g

(22.4.2.5)

(22.4.2.6)

(22.4.2.7)
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Q3 

In treating the vibrational and rotational motion of a diatomic molecule having reduced mass μ, equilibrium bond length re and
harmonic force constant k, we are faced with the following radial Schrödinger equation:  

 

a. Show that the substitution  leads to: 

 

b. Taking  

show that so-called vibration-rotation coupling term  can be approximated (for small 

 

Keep terms only through order  
c. Show that, through terms of order , the above equation for F can be rearranged to yield a new equation of the form: 

 
Give explicit expressions for how the modified force constant , and energy shift  depend on J, k,  
d. Given the above modified vibrational problem, we can now conclude that the modified energy levels are: 

 
Explain how the conclusion is "obvious", how for J = 0, k =  = 0, we obtain the usual harmonic oscillator energy levels.
Describe how the energy levels would be expected to vary as J increases from zero and explain how these changes arise from
changes in k and . Explain in terms of physical forces involved in the rotating-vibrating molecule why  and k are changed by
rotation.

This page titled 22.4.2: ii. Problems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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22.4.3: iii. Exercise Solutions

Q1 

a.  is tetrahedral and therefore is a spherical top.  symmetry and therefore is a symmetric top. 
 symmetry and therefore is an asymmetric top. 

b.  has such high symmetry that it will not exhibit pure rotational spectra.  will both exhibit pure
rotation spectra. 
c.  is a symmetric top (oblate). Use the given energy expression,| 

 

A = 6.20 , B = 9.44 , selection rules , and the fact that  lies along the figure axis such that , to
give: 

 
So, lines are at 18.88 , 37.76 . and 56.64 . 

Q2 
To convert between  and energy, multiply by hc = . 
Let all quantities in  be designated with a bar, 
e.g.  = 1.78 . 
a.

CCl4 CHC  has l3 C3v

C C  has H2 l2 C2v

CCl4 CHC  and C Cl3 H2 l2

NH3

E = (A −B) +BJ(J +1),K2

cm−1 cm−1 ΔJ = ±1 μ0
→

ΔK = 0

ΔE = 2B(J +1) = 2B, 4B, and 6B(J = 0, 1, and 2).

cm−1 cm−1 cm−1

cm−1 6.62618x  J sec )(2.997925x ) = 1.9865x  J cm 10−34 1010 cm sec−1 1023

cm−1

Bē cm−1
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b. The molecule has a dipole moment and so it should have a pure rotational spectrum. In addition, the dipole moment should
change with R and so it should have a vibration rotation spectrum. 
The first three lines correspond to J  

hcBē
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=

=

=

=

=

=

=

=

=

=

=

=
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=

=

=

=

=

ℏ2

2μR2
e

,
ℏ

2μhcBē
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(22.4.3.2)

(22.4.3.3)

(22.4.3.4)

(22.4.3.5)

(22.4.3.6)

(22.4.3.7)

(22.4.3.8)

(22.4.3.9)

(22.4.3.10)

(22.4.3.11)

(22.4.3.12)

(22.4.3.13)

(22.4.3.14)

(22.4.3.15)

(22.4.3.16)

(22.4.3.17)

(22.4.3.18)

(22.4.3.19)

= 1 → 0, J = 2 → 1, J = 3 → 2
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ΔĒ

ΔĒ

(J = 1)ΔĒ
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¯ J 3

1885 −2(13.3) −1.77J(J +1) +1.75J(J −1) −4(6.35x )10−6 J 3

1858.4 −1.77J(J +1) +1.75J(J −1) −2.54x10−5J 3
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1851.3cm−1

1847.7cm−1
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Q3 

The  molecule has a  plane of symmetry (plane of molecule) a  axis (  to plane), and inversion symmetry, this
result in  symmetry. Using  symmetry labels the modes can be labeled as follows: 

This page titled 22.4.3: iii. Exercise Solutions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack
Simons via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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22.4.4: iv. Problem Solutions

Q1 

 
 

 

 
a.

 

 
b. Since the moment of inertia tensor is already diagonal, the principal moments of inertia have already been determined to be 

 

Using the formula:  

Molecule I

= 1.121ÅRCH

=∠HCH 104∘

=  R Sin( ) = ±0.8834yH
θ

2

=  R Cos( ) = −0.2902zH
θ

2

 Center of Mass(COM):

Z = = −0.0986

12(0) −2RCos( )
θ

2

14

Molecule II

= 1.076ÅRCH

=∠HCH 136∘

= ±0.9976yH

= −0.4031zH

clearly, X = Y = 0, 

Z = −0.0576

(22.4.4.1)

(22.4.4.2)

(22.4.4.3)

(22.4.4.4)

(22.4.4.5)

(22.4.4.6)

(22.4.4.7)

Ixx

Txy

=

=

( + ) −M( + )∑
j

mj y2
j z2

j Y 2 Z2

− −MXY∑
j

mjxjyj

(22.4.4.8)

(22.4.4.9)

= 2(1.121 −14(−0.0986Ixx )2 )2

= 2.377

= 2(0.6902 −14(−0.0986Iyy )2 )2

= 0.8167

= 2(0.8834Izz )2

= 1.561

= = = 0Ixz Iyz Ixy

= 2(1.076 −14(−0.0576Ixx )2 )2

= 2.269

= 2(0.4031 −14(−0.0576Iyy )2 )2

= 0.2786

= 2(0.9976Izz )2

= 1.990

(22.4.4.10)

(22.4.4.11)

(22.4.4.12)

(22.4.4.13)

(22.4.4.14)

(22.4.4.15)

(22.4.4.16)

( ⟨ ⟨ ) :Ia Ib Ic

⟨ ⟨Iyy Izz Ixx

0.8167⟨1.561⟨2.377

⟨ ⟨Iyy Izz Ixx

0.2786⟨1.990⟨2.269

(22.4.4.17)

(22.4.4.18)

(22.4.4.19)

A = =
h

8 cπ2 Ia
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similarly,  

So, 

 
c. Averaging B + C: 

 
Using the Prolate top formula 

 

 
Levels: J = 0,1,2,... and K = 0,1, ... J 
For a given level defined by J and K, there are  degeneracies given by: (2J + 1)x

 
d.

Molecule I  Molecule II

 

e. Since  is along Y, K = 0 since K describes rotation about the y axis. 
Therefore  
f. Assume molecule I is  and molecule II is . Then, , where:  

 
For R-branches:  

A =
16.84

Ia
cm−1

B = , and C  = . cm−1
16.84

Ic
 cm−1

Molecule I

y ⇒ A = 20.62

z ⇒ B = 10.79

x ⇒ C = 7.08

Molecule II

y ⇒ A = 60.45

z ⇒ B = 8.46

x ⇒ C = 7.42

(22.4.4.20)

(22.4.4.21)

(22.4.4.22)

(22.4.4.23)

B = B = 8.94
B+C

2
A−B = 11.68

B = = 7.94
B+C

2
A−B = 52.51

(22.4.4.24)

(22.4.4.25)

E = (A−B) +BJ(J +1),K2

Molecule I

E = 11.68 +8.94J(J +1)K2

Molecule II

E = 52, 51 +7.94J(J +1)K2

(22.4.4.26)

(22.4.4.27)

MJ

{ }
1 for K = 0

2 for K  ≠ 0
(22.4.4.28)

μ⃗  Δ

ΔJ = ±1

CH−
2 CH2 ΔE = (C )EJj H2

E(C ) = 52.51 +7.94J(J +1), and E(C ) = 11.68 +8.94J(J +1)H2 K2 H2 K2

= +1, ΔK = 0;Jj Ji
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For P-branches:  

This indicates that the R branch lines occur at energies which grow closer and closer together as J increases (since the 15.88 - 
term will cancel). The P branch lines occur at energies which lie more and more negative (i.e. to the left of the origin). So, you can
predict that if molecule I is  and molecule II is  then the R-branch has a band head and the P-branch does not. This is
observed therefore our assumption was correct: 
 
molecule I is  and molecule II is . 

g. The band head occurs when .  

 
 
At J = 7.44: 

 

Q2 

a.

ΔER =

=

=

=

=

(C ) − (C )EJj H2 EJi H2

7.94( +1)( +1 +1) −8.94 ( +1)Ji Ji Ji Ji

( +1){7.94( +1 +1) −8.94 }Ji Ji Ji

( +1){(7.94 −8.94) +2(7.94)}Ji Ji

( +1){− +15.88}Ji Ji

(22.4.4.29)

(22.4.4.30)

(22.4.4.31)

(22.4.4.32)

(22.4.4.33)

−1, ΔK = 0;Jj

ΔEP =

=

=

=

=

(C ) − (C )EJj H2 EJi H2

7.94( −1)( −1 +1) −8.94 ( +1)Ji Ji Ji Ji

{7.94( −1) −8.94( +1)}Ji Ji Ji

{(7.94 −8.94) −7.94 −8.94}Ji Ji

{− −16.88}Ji Ji

(22.4.4.34)

(22.4.4.35)

(22.4.4.36)

(22.4.4.37)

(22.4.4.38)

Ji

CH−
2 CH2

CH−
2 CH2

= 0
d(Δ )ER

dJ

d(Δ )ER

dJ
=

=

=

∴

[( +1){− +15.88}] = 0
d

dJ
Ji Ji

(− − +15.88 +15.88) = 0
d

dJ
J 2
i Ji Ji

−2 +14.88 = 0Ji

= 7.44, so J = 7 or 8.Ji

(22.4.4.39)

(22.4.4.40)

(22.4.4.41)

(22.4.4.42)

ΔER

ΔER

=

=

(J +1){−J +15.88}

(7.44 +1){−7.44 +15.88} = (8.44)(8.44) = 71.2 above the origin.cm−1

(22.4.4.43)

(22.4.4.44)
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b. The number of irreducible representations may be found by using the following formula:  

nirrep

where g 

nA1g

nA2g

nB1g

nB2g

nE1g

nE2g

=

=

=

=

=

=

=

=

=

=

=

=

=

=

(R) (R),
1

g
∑
R

ξred ξirrep

the order of the point group (24 for  ).D6h

(R) (R)
1

24
∑
R

ΓC−H A1g
˙

{(1)(6)(1) +(2)(0)(1) +(2)(0)(1) +(1)(0)(1)+. . .
1

24
+(3)(0)(1) +(3)(2)(1) +(1)(0)(1) +(2)(0)(1)+. . .

+(2)(0)(1) +(1)(6)(1) +(3)(2)(1) +(3)(0)(1)}

1

{(1)(6)(1) +(2)(0)(1) +(2)(0)(1) +(1)(0)(1)+. . .
1

24
+(3)(0)(−1) +(3)(2)(−1) +(1)(0)(1) +(2)(0)(1)+. . .

+(2)(0)(1) +(1)(6)(1) +(3)(2)(−1) +(3)(0)(−1)}

0

{(1)(6)(1) +(2)(0)(−1) +(2)(0)(1) +(1)(0)(−1)+. . .
1

24
+(3)(0)(1) +(3)(2)(−1) +(1)(0)(1) +(2)(0)(−1)+. . .

+(2)(0)(1) +(1)(6)(−1) +(3)(2)(1) +(3)(0)(−1)}

0

{(1)(6)(1) +(2)(0)(−1) +(2)(0)(1) +(1)(0)(−1)+. . .
1

24
+(3)(0)(−1) +(3)(2)(1) +(1)(0)(1) +(2)(0)(−1)+. . .

+(2)(0)(1) +(1)(6)(−1) +(3)(2)(−1) +(3)(0)(1)}

0

{(1)(6)(2) +(2)(0)(1) +(2)(0)(−1) +(1)(0)(−2)+. . .
1

24
+(3)(0)(0) +(3)(2)(0) +(1)(0)(2) +(2)(0)(1)+. . .

+(2)(0)(−1) +(1)(6)(−2) +(3)(2)(0) +(3)(0)(0)}

0

{(1)(6)(2) +(2)(0)(−1) +(2)(0)(−1) +(1)(0)(2)+. . .
1

24
+(3)(0)(0) +(3)(2)(0) +(1)(0)(2) +(2)(0)(−1)+. . .

(22.4.4.45)

(22.4.4.46)

(22.4.4.47)

(22.4.4.48)

(22.4.4.49)

(22.4.4.50)

(22.4.4.51)

(22.4.4.52)

(22.4.4.53)

(22.4.4.54)

(22.4.4.55)

(22.4.4.56)

(22.4.4.57)

(22.4.4.58)

(22.4.4.59)

(22.4.4.60)

(22.4.4.61)

(22.4.4.62)

(22.4.4.63)

(22.4.4.64)

(22.4.4.65)

(22.4.4.66)

(22.4.4.67)

(22.4.4.68)

(22.4.4.69)
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We see that  
 
c. x and y  , so, the ground state  level can be excited to the degenerate  level by coupling through the x
or y transition dipoles. Therefore  is infrared active and  polarized. 
 
d. , so, the ground sate  level can be excited to the degenerate 

 level by coupling through the  or xy transitions or be excited to the degenerate  level by coupling through the xz or
yz transitions. Therefore  are Raman active.

Q3 
a.  

nA1u

nA2u

nB1u

nB2u

nE1u

nE2u

=

=

=

=

=

=

=

=

=

=

=

=

=

+(2)(0)(−1) +(1)(6)(2) +(3)(2)(0) +(3)(0)(0)}

0

{(1)(6)(1) +(2)(0)(1) +(2)(0)(1) +(1)(0)(1)+. . .
1

24
+(3)(0)(1) +(3)(2)(1) +(1)(0)(−1) +(2)(0)(−1)+. . .

+(2)(0)(−1) +(1)(6)(−1) +(3)(2)(−1) +(3)(0)(−1)}

0

{(1)(6)(1) +(2)(0)(1) +(2)(0)(1) +(1)(0)(1)+. . .
1

24
+(3)(0)(−1) +(3)(2)(−1) +(1)(0)(−1) +(2)(0)(−1)+. . .

+(2)(0)(−1) +(1)(6)(−1) +(3)(2)(1) +(3)(0)(1)}

0

{(1)(6)(1) +(2)(0)(−1) +(2)(0)(1) +(1)(0)(−1)+. . .
1

24
+(3)(0)(1) +(3)(2)(−1) +(1)(0)(−1) +(2)(0)(1)+. . .

+(2)(0)(−1) +(1)(6)(1) +(3)(2)(−1) +(3)(0)(1)}

0

{(1)(6)(1) +(2)(0)(−1) +(2)(0)(1) +(1)(0)(−1)+. . .
1

24
+(3)(0)(−1) +(3)(2)(1) +(1)(0)(−1) +(2)(0)(1)+. . .

+(2)(0)(−1) +(1)(6)(1) +(3)(2)(1) +(3)(0)(−1)}

1

{(1)(6)(2) +(2)(0)(1) +(2)(0)(−1) +(1)(0)(−2)+. . .
1

24
+(3)(0)(0) +(3)(2)(0) +(1)(0)(−2) +(2)(0)(−1)+. . .

+(2)(0)(1) +(1)(6)(2) +(3)(2)(0) +(3)(0)(0)}

1

{(1)(6)(2) +(2)(0)(−1) +(2)(0)(−1) +(1)(0)(2)+. . .
1

24
+(3)(0)(0) +(3)(2)(0) +(1)(0)(−2) +(2)(0)(1)+. . .

+(2)(0)(1) +(1)(6)(−2) +(3)(2)(0) +(3)(0)(0)}

0

(22.4.4.70)

(22.4.4.71)

(22.4.4.72)

(22.4.4.73)

(22.4.4.74)

(22.4.4.75)

(22.4.4.76)

(22.4.4.77)

(22.4.4.78)

(22.4.4.79)

(22.4.4.80)

(22.4.4.81)

(22.4.4.82)

(22.4.4.83)

(22.4.4.84)

(22.4.4.85)

(22.4.4.86)

(22.4.4.87)

(22.4.4.88)

(22.4.4.89)

(22.4.4.90)

(22.4.4.91)

(22.4.4.92)

(22.4.4.93)

(22.4.4.94)

(22.4.4.95)

= ⊕ ⊕ ⊕ΓC−H A1g E2g B2u E1u

⇒ , z  ⇒E1u A2u A1g E1u

E1u ⊥

( + , ) ⇒ , (xz, yz) ⇒ , ( − , xy) ⇒x2 y2 z2 A1g E1g x2 y2 E2g A1g

E2g −x2 y2 A1g

 and A1g E2g

( )
d

dr

F

r

( )r2 d

dr

F

r

( ( ))
d

dr
r2 d

dr

F

r

=

=

=

−
F ′

r

F

r2

r −FF ′

− +rF ′ F ′ F ′′

(22.4.4.96)

(22.4.4.97)

(22.4.4.98)
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So, 

 

Rewriting the radial Schrödinger equation with the substitution:  gives: 

 
Using the above derived identity gives: 

 
Cancelling out an : 

 
 
b.

 
So, 

 
 
c. Using this substitution we now have: 

 
Now, regroup the terms which are linear and quadratic in : 

 

 
Now, we must complete the square: 

( ( ))
−ℏ2

2μr2

d

dr
r2 d

dr

F

r
=

−ℏ2

2μ

F ′′

r
(22.4.4.99)

R =
F

r

( )+ ( )+ k(r− ( ) =( )
−h2

2μr2

d

dr
r2

d(F )r−1

dr

J(J +1)ℏ2

2μr2

F

r

1

2
re)2 F

r

F

r

+ ( )+ k(r− ( ) = E( )
−ℏ2

2μ

F ′′

r

J(J +1)ℏ2

2μr2

F

r

1

2
re)2 F

r

F

r

r−1

+ F + k(r− F = EF
−ℏ2

2μ
F ′′ J(J +1)ℏ2

2μr2

1

2
re)2

= = ≈ (1 − + )
1

r2

1

( +Δrre )2

1

(1 + )r2
e

Δr

re

1

r2
e

2Δr

re

3Δr2

r2
e

≈ (1 − + )
J(J +1)ℏ2

2μr2

J(J +1)ℏ2

2μr2
e

2Δr

re

3Δr2

r2
e

+ (1 − + )F + k(r− F = EF
−ℏ2

2μ
F ′′

J(J +1)ℏ2

2μr2
e

2Δr

re

3Δr2

r2
e

1

2
re)2

Δr = r−re

kΔ + Δ − Δr
1

2
r2 J(J +1)ℏ2

2μr2
e

3

r2
e

r2 J(J +1)ℏ2

2μr2
e

2

re

=( k+ )Δ −( )Δr
1

2

J(J +1)ℏ2

2μr2
e

3

r2
e

r2 J(J +1)ℏ2

2μr2
e

2

re
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So, 

 

Now, redefine the first term as , second term as (r - , and the third term as  giving: 

 
From: 

 
and making the above substitution result in: 

 
or, 

 
 
d. Since the above is nothing but a harmonic oscillator differential equation in x with force constant  and equilibrium bond length 

, we know that: 

 
So, 

 
tell us that: 

aΔ −bΔr = a − .r2 (Δr− )
b

2a

2
b2

4a

( k+ ) −
1

2

J(J +1)ℏ2

2μr2
e

3

r2
e

Δr−

⎛

⎝

⎜⎜⎜⎜

J(J +1)ℏ2

2μr2
e

1

re

k+
1

2

J(J +1)ℏ2

2μr2
e

3

r2
e

⎞

⎠

⎟⎟⎟⎟

2

( )
J(J +1)ℏ2

2μr2
e

1

re

2

k+
1

2

J(J +1)ℏ2

2μr2
e

3

r2
e

k
1

2
rē)2 −Δ

−Δ
1

2
k̄(r− )rē

2

+ (1 − + )F + k(r− F = EF ,
−ℏ2

2μ
F ′′ J(J +1)ℏ2

2μr2
e

2Δr

re

3Δr2

r2
e

1

2
re)2

+ F +( (− + )+ kΔ )F = EF
−ℏ2

2μ
F ′′ J(J +1)ℏ2

2μre

J(J +1)ℏ2

2μr2
e

2Δr

re

3Δr2

r2
e

1

2
r2

(22.4.4.100)

(22.4.4.101)

+ F +( −Δ)F = EF ,
−ℏ2

2μ
F ′′ J(J +1)ℏ2

2μr2
e

1

2
k̄(r− )rē

2

+ (r−r F =(E− +Δ)F .
−ℏ2

2μ
F ′′ 1

2
k̄ rē)2

J(J +1)ℏ2

2μr2
e

k̄

r̄e

+ (r− FεF , has energy levels:
−ℏ2

2μ
F ′′ 1

2
k̄ r̄e)

2

ε = ℏ (v+ ) , v = 0, 1, 2, ... 
k̄

μ

−−

√
1

2

(22.4.4.102)

(22.4.4.103)

E+Δ. − = ε
J(J +1)ℏ2

2μr2
e

(22.4.4.104)
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As J increases,  increases because of the centrifugal force pushing the two atoms apart. On the other hand  increases which
inicates that the molecule finds it more difficult to stretch against both the centrifugal and Hooke's Law (spring) Harmonic force

field. The total energy level (labeled by J and v) will equal a rigid rotor componenet  plus a Harmonic oscillator part 

 (which has a force constant  which increases with J).

This page titled 22.4.4: iv. Problem Solutions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack
Simons via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

E = ℏ (v+ )+ −Δ.
k̄

μ

−−

√
1

2

J(J +1)ℏ2

2μr2
e

(22.4.4.105)

r̄e k̄

J(J +1)ℏ2

2μr2
e

ℏ (v+ )
k̄

μ

1

2
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√ k̄
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22.5.1: i. Exercises

Q1 

Time dependent perturbation theory provides an expression for the radiative lifetime of an excited electronic state, given by : 

 
where i refers to the excited state, f refers to the lower state, and  is the transition dipole.  
a. Evaluate the z-component of the transition dipole for the  1s transition in a hydrogenic atom of nuclear charge Z, given: 

 
Express your answer in units of  
b. Use symmetry to demonstrate that the x- and y-components of  are zero, i.e. 

 

c. Calculate the radiative lifetime  of a hydrogenlike atom in its  state. Use the relation  to simplify our results. 

Q2 
Consider a case in which the complete set of states  for a Hamiltonian is known.  
a. If the system is initially in the state m at time t=0 when a constant perturbation V is suddenly turned on, find the probability
amplitudes , to second order in V, that describe the system being in a different state k or the same state m at
time t. 
b. If the perturbation is turned on adiabatically, what are ? 
Here, consider that the initial time is , and the potential is V e^{\eta}t\), where the positive parameter  is allowed to
approach zero  in order to describe the adiabatically (i.e., slowly) turned on perturbation.  
c. Compare the results of parts a. and b. and explain any differences. 

d. Ignore first order contributions (assume they vanish) and evaluate the transition rates  for the results of part b. by

taking the limits , to obtain the adiabatic results. 

Q3 

If a system is initially in a state m, conservation of probability requires that the total probability of transitions out of state m be
obtainable from the decrease in the probability of being in state m. Prove this to the lowest order by using the results of exercise 2,
i.e. show that: 

This page titled 22.5.1: i. Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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22.5.2: ii. Problems

Q1 

Consider an interaction or perturbation which is carried out suddenly (instantaneously, e.g., within an interval of time ∆t which is
small compared to the natural period  corresponding to the transition from state m to state n), and after that is turned off
adiabatically (i.e., extremely slowly as V ). The transition probability in this case is given as:  

 
where V corresponds to the maximum value of the interaction when it is turned on. This formula allows one to calculate the
transition probabilities under the action of sudden perturbations which are small in absolute value whenever perturbation theory is
applicable. Let's use this "sudden approximation" to calculate the probability of excitation of an electron under a sudden change of
the charge of the nucleus. Consider the reaction:  

 
and assume the tritium atom has its electron initially in a 1s orbital.  
a. Calculate the transition probability for the transition 1s → 2s for this reaction using the above formula for the transition
probability.  
b. Suppose that at time t = 0 the system is in a state which corresponds to the wavefunction , which is an eigenfunction of the
operator . At t = 0, the sudden change og the Hamiltonian occurs (now denoted as H and remains unchanged). Calculate the
same 1s → 2s transition probability as in part a., only this time as the square of the magnitude of the coefficient,  using the
expansion:  

 
Note, that the eigenfunctions of H are  with eigenvalues . Compare this "exact" value with that obtained by perturbation
theory in part a. 

Q2 

The methyl iodide molecule is studied using microwave (pure rotational) spectroscopy. The following integral governs the
rotational selection rules for transitions labeled J, M, K → J', M', K': 

 
The dipole moment  lies along the molecule's  symmetry axis. Let the electric field of the light  define the lab-fixed Z-
direction. 
a. Using the fact that Cos , show that 

 
b. What restrictions does this result place on  Explain physically why the K quantum number can not change. 

Q3 
Consider the molecule BO. 
a. What are the total number of possible electronic states which can be formed by combination of ground state B and O atoms? 
b. What electron configurations of the molecule are likely to be low in energy? Consider all reasonable orderings of the molecular
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orbitals. What are the states corresponding to these configurations? 
c. What are the bond orders in each of these states? 
d. The true ground state of BO is . Specify the +/- and u/g symmetries for this state. 
e. Which of the excited states you derived above will radiate to the  ground state? Consider electric dipole, magnetic dipole,
and electric quadrupole radiation. 
f. Does ionization of the molecule to form a cation lead to a stronger, weaker, or equivalent bond strength?  
g. Assuming that the energies of the molecular orbitals do not change upon ionization, what are the ground state, the first excited
state, and the second excited state of the positive ion?  
h. Considering only these states, predict the structure of the photoelectron spectrum you would obtain for ionization of BO.  

Q4 

The above figure shows part of the infrared absorption spectrum of HCN gas. The molecule has a CH stretching vibration, a
bending vibration, and a CN stretching vibration.  
a. Are any of the vibrations of linear HCN degenerate? 
b. To which vibration does the group of peaks between 600  and 800  belong? 
c. To which vibration does the group of peaks between 3200  and 3400  belong? 
d. What are the symmetries  of the CH stretch, CN stretch, and bending vibrational motions?  
e. Starting with HCN in its 0,0,0 vibrational level, which fundamental transitions would be infrared active under parallel polarized
light (i.e., z-axis polarization):  
i. 000 → 001? 
ii. 000 → 100? 
iii. 000 → 010? 
f. Which transitions would be active when perpendicular polarized light is used?  
g. Why does the 712  transition have a Q-branch, whereas that near 3317  has only P- and R-branches?

This page titled 22.5.2: ii. Problems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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22.5.3: iii. Exercise Solutions

Q1 

a. Evaluate the z-componenet of : 

 
 
Using integral equation 4 to integrate over r and equation 17 to integrate over  we obtain: 
 

 
 
b. Examine the symmetry of the integrands for .

Function Symmetry

- 1

x + 1

1s + 1

y + 1

Under this operation the integrand of  is (-1)(1)(1) = -1 (it is antisymmetric) and hence . 
Similarly, under this operation the integrand of  is (-1)(1)(1) = -1 (it is antisymmetric) and hence . 
 
c.

 
So, for example: 

μfi

μfi

μfi

=

=

=

=

⟨2 |erCosθ|1s⟩, where  = , and  = rCosθpz ψ1s
1

π−−√
( )

Z

a0

3

2
e

−Zr

a0 ψ2pz

1

4 2π
−−

√
( )

Z

a0

5

2
e

−Zr

2a0

⟨rCosθ |erCosθ| ⟩
1

4 2π
−−

√
( )

Z

a0

5

2 1

π−−√
( )

Z

a0

3

2
e

−Zr

2a0 e

−Zr

a0

dr Sinθdθ dφ Co θ
e

4π 2
–

√
( )

Z

a0

4

∫

0

∞

r2 ∫

0

π

∫

0

2π ⎛

⎝
⎜r2e

−Zr

2a0 e

−Zr

a0

⎞

⎠
⎟ s2

2π dr SinθCo θdθ
e

4π 2
–

√
( )

Z

a0

4

∫

0

∞⎛

⎝
⎜r4e

−3Zr

2a0

⎞

⎠
⎟ ∫

0

π

s2

(22.5.3.1)

(22.5.3.2)

(22.5.3.3)

(22.5.3.4)

θ

=

=

=

2π ( )Co θ
e

4π 2
–

√
( )

Z

a0

4 4

( )
3Z

2a0

5

−1

3
s3 ∣

∣
∣
π

0

2π ( ) ((−1 −(1 )
e

4π 2
–

√
( )

Z

a0

4 425a5
0

35Z5

−1

3
)3 )3

= = 0.7499
e

2
–

√

28a0

Z35

ea0

Z

28

2
–

√ 35

ea0

Z

(22.5.3.5)

(22.5.3.6)

(22.5.3.7)

⟨2 |ex|1s⟩ and ⟨2 |ey|1s⟩pz pz

2pz

⟨2 |ex|1s⟩pz ⟨2 |ex|1s⟩ = 0pz
⟨2 |ey|1s⟩pz ⟨2 |ey|1s⟩ = 0pz

τR

Inserting e2

τR

=

=

=

=

=

=

=

=

,
3ℏ4c3

4( ( ) )
3

8

e2

a0
Z2

3

(( ) )
ea0

Z

28

2
–

√ 35

2

3ℏ4c3

4 ( ) ( )
33

83

e6

a3
0

Z6
e2a2

0

Z2

216

(2)310

ℏ4c338a0

e8Z428

 we obtain  :
ℏ2

mea0

=
ℏ4c338a0m4

ea4
0

ℏ8Z428

38

28

c3a5
0m

4
e

ℏ4Z4

25.6289
c3a5

0m
4
e

ℏ4Z4

256, 289( )x
1

Z4

(2.998x (0.529177x cm (9.109x  g1010cm sec−1)3 10−8 )5 10−28 )4

(1.0546x10−27  g cm2  sec−1)4

1.595x  sec x( )10−9 1

Z4

(22.5.3.8)

(22.5.3.9)

(22.5.3.10)

(22.5.3.11)

(22.5.3.12)

(22.5.3.13)

(22.5.3.14)

(22.5.3.15)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/84793?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/22%3A_Problems/22.05%3A_Time_Dependent_Processes/22.5.03%3A_iii._Exercise_Solutions


22.5.3.2 https://chem.libretexts.org/@go/page/84793

Atom

H 1.595 ns

He 99.7 ps

Li 19.7 ps

Be 6.23 ps

Ne 159 fs

 

Q2 

a.  

let  

 
 
Going back a few equations and multiplying from the left by  instead of  we obtain: 
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ċ j ωjcj e−i tωj φj cj e−i tωj H0 H ′ φj

[iℏdot + − − λ ] = 0∑
j

cj Ejcj cjEj cj H ′ e−i tωj φj

[iℏ ⟨m|j⟩− λ⟨m| |j⟩] = 0∑
j
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and substituting into above we obtain: 
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So, the overall amplitudes , to second order are: 

first order: 

second order: 

(n+1  order: )st

Similarly: 

first order: 

second order: 

 order: (n + 1)st

So, 

 and similarly, 
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=ċ
(n)
k

1

iℏ
∑
j

c
(n−1)
j H ′

kj
e−i( )tωjk

= =ċ (1)
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b. The perturbation equations still hold: 

 
 
c. In part a. the  grow linearly with time ( for  = 0) while in part b. they remain finite for . The result in par a. is due to the sudden turning on of the field. 
d.  

 

Q3 
For the sudden perturbation case: 

 
 to order , with no assumptions made regarding  
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, with no assumptions made regarding  for this case as well.
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iℏ2η

1

( − + iℏη)Em Ej

1

( − − iℏη)Em Ej
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22.5.4: iv. Problem Solutions

Q1 

a.  

evaluating  (using only the radial portions of the 1s and 2s wavefunctions since the spherical harmonics will integrate to unity) where V =  
 

 
Using integral equation 4 for two integration we obtain: 

 
 

b.  

The orthogonality of the spherical harmonics results in only s-states having non-zero values for . We can then drop the  (integrating this term will only
result in unity) in determining the value of . 

 
Evaluating these integrals using integral equation 4 we obtain: 
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The transition probability is the square of this amplitude: 

 
The difference in these two results (parts a. and b.) will become negligible at large values of Z when the perturbation becomes less significant as in the case of Z =
1. 

Q2 

 is along Z (lab fixed), and  is along z (the C-I module fixed bond). The angle between Z and z is : 

 
So, 
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The 3-J symbols vanish unless: K' + 0 = K and M' + 0 = M. 
So,  

 

b.  and  vanish unless J' = J + 1, J, J - 1  

The K quantum number can not change because the dipole moment lies along the molecule's  axis and the light's electric field thus can exert no torque that
twists the molecule about this axis. As a result, the light can not induce transitions that excite the molecule's spinning motion about this axis. 

Q3 

a. B atom:  ground state L = 1, S = , gives degeneracy ((2L + 1)(2S + 1)) of 6. 

O atom: ,  ground state L = 1, S = 1, gives a degeneracy ((2L + 1)(2S + 1)) of 9. 
The total number of states formed is then (6)(0) = 54. 
b. We need only consider the p orbitals to find the low lying molecular states: 

 
Which, in reality look like this: 
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This is the correct ordering to give a  ground state. The only low-lying electron configurations are . These lead to 
states, respectively. 

c. The bond orders in both states are . 

d. The  is + and g/u cannot be specified since this is a heteronuclear molecule.  
e. Only one excited state, the , is spin-allowed to radiate to the . Consider symmetries of transitio moment operators that arise in the E1, E2 and M1
contributions to the transition rate 
Electric dipole allowed:  is electric dipole allowed via a perpendicular band.  
Magnetic dipole allowed:  is magnetic dipole allowed. 
Electric quadrupole allowed:  is electric quadrupole allowed as well. 
f. Since ionization will remove a bonding electron, the BO  bond is weaker than the BO bond. 
g. The ground state BO  is  corresponding to a  electron configuration. An electron configuration of  leads to a  and a  state. The  will
be lower in energy. A  confirmation will lead to higher lying states of . 
h. There should be 3 bands corresponding to formation of BO  in the  states. Since each of these involves removing a bonding electron, the
Franck-Conden integrals will be appreciable for several vibrational levels, and thus a vibrational progression should be observed. 

Q4 

a. The bending  vibration is degenerate. 
b.

 
c.

 
d. CH stretch (  in figure) is  CN stretch is  and HCN  in figure) bend is . 
e. Under z light the CN stretch and the CH stretch can be exited, since  provides coupling. 
f. Under x,y ( ) light the HCN bend can be excited, since  and x,y =  provides coupling. 
g. The bending vibration is active under (x,y) perpendicular polarized light.  are the selection rules for  transitions. The CH stretching vibration is
active under (z)  polarized light.  are the selection rules for  transitions.

This page titled 22.5.4: iv. Problem Solutions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons via source content that was
edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

2 ∑
+ 1 5  or 1 5π3 σ2 π4 σ1 Π2  and 2\Sum+

2
1

2
∑2

Π2 2 ∑
+

z → , x, y → Π, ∴ Π∑+  the 2 →2 ∑+

→ , → Π, ∴ /rightarroRz ∑
−

Rx,y  the ∑ w2 ∑
+

+ , → , xy, yz → Π, − , xy → Δ ∴ Πx2 y2 z2 ∑+ x2 y2  the 2 →2 ∑+

+

+ 1 ∑
+ 1π4 1 5π3 σ1 Π3 Π1 Pi3

1 5π2 σ2 Δ,3 ∑−,1  and 1 ∑+

+ Π1 ∑+,3 , and Π

(π)

H −−

⇑

−C ≡ N

bending fundamental

(22.5.4.38)

(22.5.4.39)

(22.5.4.40)

H −−

⇑

−C ≡ N

stretching fundamental

(22.5.4.41)

(22.5.4.42)

(22.5.4.43)

ν3 σ σ (ν2 π

(σ) = σ, = σ and z = σψ0 ψ1

π = σ, = πψ0 ψ1 π

ΔJ = 0, ±1 ⊥
∥ ΔJ = ±1 ∥

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/84794?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/22%3A_Problems/22.05%3A_Time_Dependent_Processes/22.5.04%3A_iv._Problem_Solutions
https://creativecommons.org/licenses/by-nc-sa/4.0
http://simons.hec.utah.edu/
http://simons.hec.utah.edu/TheoryPage/BookPDF/


22.6.1 https://chem.libretexts.org/@go/page/73557

SECTION OVERVIEW

22.6: More Quantitative Aspects of Electronic Structure Calculations
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22.6.1: i. Review Execises

Q1 

Contrast Slater type orbitals (STOs) with Gaussian type orbitals (GTOs).
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22.6.3: ii. Exercises

Q1 

By expanding the molecular orbitals  as linear combinations of atomic orbitals ,

show how the canonical Hartree-Fock (HF) equations:

 
reduce to the matrix eigenvalue-type equation of the form given in the text:

where: 

 
 
Note that the sum over i in  is a sum over spin orbitals. In addition, show

that this Fock matrix can be further reduced for the closed shell case to: 

where the charge bond order matrix, P, is defined to be: 

 
where the sum over i here is a sum over orbitals not spin orbitals.  

Q2 
Show that the HF total energy for a closed-shell system may be written in terms of integrals over the orthonormal HF orbitals as:

 

Q3 
Show that the HF total energy may alternatively be expressed as:  

{ϕκ} { }χμ

=ϕk ∑
μ

cμkχμ
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(22.6.3.1)
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where the  refer to the HF orbital energies.
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22.6.4: iii. Problems

Q1 

This problem will be concerned with carrying out an SCF calculation for the HeH  molecule in the  ground state. The
one- and two-electron integrals (in atomic units) needed to carry out this SCF calculation at R = 1.4 a.u. using Slater type orbitals
with orbital exponents of 1.6875 and 1.0 for the He and H, respectively are:  

 
where 1 refers to  Note that the two-electrons integrals are given in Dirac notation. Parts a. - d. should be done
by hand. Any subsequent parts can make use of the QMIC software provided. 
a. Using  for the initial guess of the occupied molecular orbital, form a 2x2 Fock matrix. Use the equation derived above
in question 1 for . 
b. SOlve the Fock matrix eigenvalue equations given above to obtain the orbital energies and an improved occupied molecular
orbital. In so doing, note that  gives the needed normalization condition for the expansion coefficients of
the  in the atomic orbital basis. 
c. Determine the total SCF energy using the result of exercise 3 above at this step of the iterative procedure. When will this energy
agree with that obtained by using the alternative expression for E(SCF) given in exercise 2?  
d. Obtain the new molecular orbital, , from the solution of the matrix eigenvalue problem (part b).  
e. A new Fock matrix and related total energy can be obtained with this improved choice of molecular orbital, . This process can
be continued until a convergence criterion has been satisfied. Typical convergence criteria include: no significant change in the
molecular orbitals or the total energy (or both) from one iteration to the next. Perform this iterative procedure for the HeH  system
until the difference in total energy between two successive iterations is less than  a.u. 
f. Show, by comparing the difference between the SCF total energy at one iteration and the converged SCF total energy, that the
convergence of the above SCF approach is primarily linear (or first order).  
g. Is the SCF total energy calculated at each iteration of the above SCF procedure (via exercise 3) an upper bound to the exact
ground-state total energy?  
h. Using the converged self-consistent set of molecular orbitals, , calculate the one- and two-electron integrals in the
molecular orbital basis. Using the equations for E(SCF) in exercises 2 and 3 calculate the converged values of the orbital energies
making use of these integrals in the mo basis.  
i. Does this SCF wavefunction give rise (at R ) to proper dissociation products? 

Q2 

This problem will continue to address the same HeH  molecular system as above, extending the analysis to include "correlation
effects." We will use the one- and two-electron integrals (same geometry) in the converged (to 10  au) SCF molecular orbital
basis which we would have obtained after 7 iterations above. The converged mos you would have obtained in problem 1 are:  

 
 
a. Carry out a two configuration CI calculation using the  configurations first by obtaining an expression for the CI
matrix elements  in terms of one- and two-electron integrals, and secondly by showing that the resultant CI
matrix is (ignoring the nuclear repulsion term): 

+ (1 )1 ∑+
g σ2

= 1.0,S11
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= 0.5664,g1212
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(22.6.4.1)

(22.6.4.2)

(22.6.4.3)

(22.6.4.4)
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b. Obtain the two CI energies and eigenvectors for the matrix found in a part a. 
c. Show that the lowest energy CI wavefunction is equivalent to the following two-determinant (single configuration)
wavefunction: 

 

involving the polarized orbitals: , where a = 0.9984 and b = 0.0556. 
d. Expanding the CI list to 3 configurations by adding the  to the original  and  configurations of part a above. First,
express the proper singlet spin-coupled  configuration as a combination of Slater determinants and then computer all elements
of this 3x3 matrix. 
e. Obtain all eigenenergies and corresponding normalized eigenvectors for this CI problem.  
f. Determine the excitation energies and transition moments for HeH  using the full CI result of part e above. The nonvanishing
matrix elements of the dipole operator r(x,y,z) in the atomic basis are: 

First determine the matrix elements of r in the SCF orbital basis then determine the excitation energies and transition moments
from the ground state to the two excited singlet states of HeH . 
g. Now turning to perturbation theory, carry out a RSPT calculation of the first-order wavefunction  for the case in which
the zeroth-order wavefunction is taken to be the  Slater determinant. Show that the first-order wavefunction is given by:  

 
h. Why does the  configuration not enter into the first-order wavefuncion? 
i. Normalize the resultant wavefunction that contains zeroth- plus first-order parts and compare it to the wavefunction obtained in
the two-configuration CI study of part b. 
j. Show that the second-order RSPT correlation energy,  is -0.0056 a.u. How does this compare with the correlation
energy obtained from the two- configuration CI study of part b? 

Q3 

Using the QMIC programs, calculate the SCF energy of  using the same geometry as in problem 1 and the STO3G basis set
provided in the QMIC basis set library. How does this energy compare to that found in problem 1? Run the calculation again with
the 3- 21G basis basis provided. How does this energy compare to the STO3G and the energy found using STOs in problem 1?

Q4 
Generate SCF potential energy surfaces for  using the QMIC software provided. Use the 3-21G basis set and
generate points for geometries of R = 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, and 10.0. Plot the energies vs. geometry for each system.
Which system dissociates properly?  

Q5 
Generate CI potential energy surfaces for the 4 states of  resulting from a CAS calculation with 2 electrons in the lowest 2 SCF
orbitals . Use the same geometries and basis set as in problem 4. Plot the energies vs. geometry for each system.
Properly label and characterize each of the states (e.g., repulsive, dissociate properly, etc.).

This page titled 22.6.4: iii. Problems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons via
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22.6.5: iv. Review Exercise Solutions

Q1 

Slater type orbitals (STOs) are "hydrogen-like" in that they have a normalized form of:

where as gaussian type orbitals GTOs have the form:

where a, b, and c are quantum numbers each ranging from zero upward in unit steps. So, STOs give "better" overall energies and
properties that depend on the shape of the wavefunction near the nuclei (e.g., Fermi contact ESR hyperfine constants) but they are
more difficult to use (two-electron integrals are more difficult to evaluate; especially the 4- center variety which have to be
integrated numerically). GTOs on the other hand are easier to use (more easily integrable) but improperly describe the
wavefunction near the nuclear centers because of the so-called cusp condition (they have zero slope at R = 0, whereas 1s STOs
have non-zero slopes there).

This page titled 22.6.5: iv. Review Exercise Solutions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Jack Simons via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.
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22.6.6: v. Exercise Solutions

Q1 

 
Let the closed shell Fock potential bewritten as: 

 
, and transforming from the mo to ao basis we obtain: 

 
SO,  becomes:  

 
Tis is FC = SCE. 

Q2 
The Slater Condon rule for zero (spin orbital) difference with N electrons in N spin orbitals is: 
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If all orbitals are doubly occupied and we carry out the spin integration we obtain: 

 
where i and j now refer to orbitals (not spin-orbitals). 

Q3 

If the occupied orbitals obey , then the expression for E in problem 2 above can be rewritten as. 

 
We recognize the closed shell Fock operator expression and rewrite this as  
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22.6.7: vi. Problem Solutions
1. We will use the QMIC software to do this problem. Lets just start from the beginning. Get the starting "guess" mo coefficients on disk. Using the program MOCOEFS it asks us for the

first and second mo vectors. We input 1, 0 for the first mo (this means that the first mo is 1.0 times the He 1s orbital plus 0.0 times the H 1s orbital; this bonding mo is more likely to be
heavily weighted on the atom having the higher nuclear charge) and 0, 1 for the second. Our beginning mo-ao array looks like:

and is placed on disk in a file we choose to call "mocoefs.dat". We also put the ao integrals on disk using the program RW_INTS. It asks for the unique one- and two- electron integrals
and places a canonical list of these on disk in a file we choose to call "ao_integrals.dat". At this point it is useful for us to step back and look at the set of equations which we wish to
solve: FC = SCE. The QMIC software does not provide us with a so-called generalized eigenvalue solver (one that contains an overlap matrix; or metric), so in order to use the
diagonalization program that is provided we must transform this equation (FC = SCE) to one that looks like (F'C' = C'E). We do that in the following manner: 

Since S is symmetric and positive definite we can find an ,etc. rewrite FC = SCE by inserting unity between FC and multiplying the

whole equation on the left by . This gives: 

 
Letting:

 
Note, that to get the next iterations mo coefficients we must calculate C from C':  

C' = C, so, multiplying through on the left by  gives:

 
This will be the method we will use to solve our fock equations. 

Find  by using the program FUNCT_MAT (this program generates a function of a matrix). This program will ask for the elements of the S array and write to disk a file (name of

your choice ... a good name might be "shalf") containing the  array. Now we are ready to begin the iterative Fock procedure. 
a. Calculate the Fock matrix, F, using program FOCK which reads in the mo coefficients from "mocoefs.dat" and the integrals from "ao_integrals.dat" and writes the resulting Fock
matrix to a user specified file (a good filename to use might be something like "fock1").  

b. Calculate F' =  using the program UTMATU which reads in F and  from files on the disk and writes F' to a user specified file (a good filename to use might be
something like "fock1p"). Diagonalize F' using the program DIAG. This program reads in the matrix to be diagonalized from a user specified filename and writes the resulting
eigenvectors to disk using a user specified filename (a good filename to use might be something like "coef1p"). You may wish to choose the option to write the eigenvalues (Fock orbital

energies) to disk in order to use them at a later time in program FENERGY. Calculate C by back transforming e.g. C =  C'. This is accomplished by using the program MATXMAT
which reads in two matrices to be multiplied from user specified files and writes the product to disk using a user specified filename (a good filename to use might be something like
"mocoefs.dat").  
c. The QMIC program FENERGY calculates the total energy, using the result of exercises 2 and 3;  

 
This is the conclusion of one iteration of the Fock procedure ... you may continue by going back to part a. and proceeding onward.  
d. and e. Results for the successful convergence of this system using the supplied QMIC software is as follows (this is alot of bloody detail but will give the user assurance that they are
on the right track; alternatively one could switch to the QMIC program SCF and allow that program to iteratively converge the Fock equations):  
The one-electron AO integrals: 

 
The two-electron AO integrals: 

 
The "initial" MO-AO coeffficients: 
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1

2 S
−

1

2 S
+

1

2

F ′

C ′

F ′C ′

= FS
−

1

2 S
−

1

2

= C, and inserting expressions above give: S
+

1

2

= EC ′

(22.6.7.2)

(22.6.7.3)

(22.6.7.4)

S
+

1

2 S
−

1

2

= C = CS
−

1

2 C ′ S
−

1

2 S
+

1

2

S
−

1

2

S
−

1

2

FS
−

1

2 S
−

1

2 S
−

1

2

S
−

1

2

2⟨k|h|k⟩+2⟨k1|1k⟩− ⟨k1|1k⟩+ , and  + ⟨k|h|k⟩+ .∑
kl

∑
μ>ν

ZμZν

Rμν

∑
k

εk ∑
μ>ν

ZμZν

Rμν

[ ]
−2.644200

−1.511300

−1.511300

−1.720100

1

2

2

2

2

2

1

1

1

2

2

2

1

1

2

1

2

2

1

1

1

1

1

2

1.054700

0.4744000

0.5664000

0.2469000

0.3504000

0.6250000

(22.6.7.5)

(22.6.7.6)

(22.6.7.7)

(22.6.7.8)

(22.6.7.9)

(22.6.7.10)
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AO overlap matrix (S): 

 

 
 
************ 
ITERATION 1 
************ 
 
The charge bond order matrix 

 
The Fock matrix (F): 

 

 

 
The eigenvalues of this matrix (Fock orbital energies) are: 

 

Their corresponding eigenvectors (C = ) are: 

 

The "new" MO-AO coefficients (C = *C') 

 
The one-electron MO integrals: 

 
The two-electron MO integrals: 

 
The closed shell Fock energy from formula: 

 
from formula: 

[ ]
1.000000

0.000000

0.000000

1.000000

[ ]
1.000000

0.578400

0.578400

1.000000

[ ]S
−

1

2
1.168032

−0.3720709

−0.3720709

1.168031

[ ]
1.000000

0.000000

0.000000

0.000000

[ ]
−1.589500

−1.036900

−1.036900

−0.8342001

FS
−

1

2 S
−

1

2

[ ]
−1.382781

−0.5048678

−0.5048679

−0.4568883

[−1.604825 −0.2348450]

∗CS
+

1

2

[ ]
−0.9153809

−0.4025888

−0.4025888

0.9153810

S
−

1

2

[ ]
−0.9194022

−0.1296498

−0.8108231

1.218985

[ ]
−2.624352

−0.1644336

−0.1644336

−1.306845

1

2

2

2

2

2

1

1

1

2

2

2

1

1

2

1

2

2

1

1

1

1

1

2

0.9779331

0.1924623

0.5972075

0.1170838

−0.0007945194

0.6157323

(22.6.7.11)

(22.6.7.12)

(22.6.7.13)

(22.6.7.14)

(22.6.7.15)

(22.6.7.16)

2⟨k|h|k⟩+2⟨k1|k1⟩− ⟨k1|1k⟩+ = −2.84219933∑
kl

∑
μ>ν

ZμZν

Rμν

+ ⟨k|h|k⟩+ = −2.80060530∑
k

εk ∑
μ>ν

ZμZν

Rμν
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the difference is: 

 
 
************ 
ITERATION 2 
************ 
 
The change bond order matrix: 

 
The Fock matrix: 

 

 

 
The eigenvalues of this matrix (Fock orbital energies) are: 

 

Their corresponding eigenvectors (C' = *C) are: 

 

The "new" MO-AO coefficients (C = *C'): 

 
The one-electron MO integrals: 

 
The two-electron MO integrals: 

 
The closed shell Fock energy from formula: 

 
from formula: 

 
the difference is: 

 
 
************ 
ITERATION 3 
************ 

−0.04159403

[ ]
0.8453005

0.1192003

0.1192003

0.01680906

[ ]
−1.624673

−1.083623

−1.083623

−0.8772071

FS
−

1

2 S
−

1

2

[ ]
−1.396111

−0.5411037

−0.5411037

−0.4798213

[−1.646972 −0.2289599]

S
+

1

2

[ ]
−0.9072427

−0.4206074

−0.4206074

0.9072427

S
−

1

2

[ ]
−0.9031923

−0.1537240

−0.8288413

1.216184

[ ]
−2.617336

−0.1903475

−0.1903475

−1.313861

1

2

2

2

2

2

1

1

1

2

2

2

1

1

2

1

2

2

1

1

1

1

1

2

0.9626070

0.1949828

0.6048143

0.1246907

0.003694540

0.6158437

(22.6.7.17)

(22.6.7.18)

(22.6.7.19)

(22.6.7.20)

(22.6.7.21)

(22.6.7.22)

2⟨k|h|k⟩+2⟨kl|kl⟩− ⟨kl|lk⟩+ = −2.84349298∑
kl

∑
μ>ν

ZμZν

Rμν

+ ⟨k|h|k⟩+ = −2.83573675∑
k

εk ∑
μ>ν

ZμZν

Rμν

−0.00775623
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The change bond order matrix: 

 

 

 
The eigenvalues of this matrix (Fock orbital energies) are: 

 

Their corresponding eigenvectors (C' = *C) are: 

 

The "new" MM-AO coefficients (C=S *C'): 

 
The one-electron MO integrals: 

 
The two-electron MO integrals: 

 
The closed shell Fock energy from formula: 

 
from formula: 

 
the difference is: 

 
 
************ 
ITERATION 4 
************ 
 
The charge bond order matrix: 

 
The Fock matrix: 

 

 

[ ]
−1.631153

−1.091825

−1.091825

−0.8853514

FS
−

1

2 S
−

1

2

[ ]
−1.398951

−0.5470730

−0.5470731

−0.4847007

[−1.654745 −0.2289078]

S
+

1

2

[ ]
−0.9058709

−0.4235545

−0.4235546

0.9058706

−
1

2

[ ]
−0.9004935

−0.1576767

−0.8317733

1.215678

[ ]
−2.616086

−0.1945811

−0.1945811

−1.315112

1

2

2

2

2

2

1

1

1

2

2

2

1

1

2

1

2

2

1

1

1

1

1

2

0.9600707

0.1953255

0.6060572

0.1259332

0.004475587

0.6158972

(22.6.7.23)

(22.6.7.24)

(22.6.7.25)

(22.6.7.26)

(22.6.7.27)

(22.6.7.28)

2⟨k|h|k⟩+2⟨kl|kl⟩− ⟨kl|lk⟩+ = −2.84353018∑
kl

∑
μ>ν

ZμZν

Rμν

+ ⟨k|h|k⟩+ = −2.84225941∑
k

εk ∑
μ>ν

ZμZν

Rμν

−0.00127077

[ ]
0.8108885

−1.093155

−1.093155

−0.8866909

[ ]
−1.632213

−1.093155

−1.093155

−0.8866909

FS
−

1

2 S
−

1

2
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The eigenvalues of this matrix (Fock orbital energies) are:  

 

Their corresponding eigenvectors (C' = *C) are: 

 

The "new" MO-AO coefficients (C = *C'): 

 
The one-electron MO integrals: 

 
The two-electron MO integrals: 

 
 
The closed shell Fock energy from formula: 

 
from formula: 

 
the difference is: 

 
 
************ 
ITERATION 5 
************ 
 
The charge bond order matrix: 

 
The Fock matrix: 

 

 

 
The eigenvalues of this matrix (Fock orbital energies) are: 

[ ]
−1.399426

−0.5480287

−0.5480287

−0.4855191

[−1.656015 −0.2289308]

S
+

1

2

[ ]
−0.9056494

−0.4240271

−0.4240271

0.9056495

S
−

1

2

[ ]−0.9000589 −0.8322428// −0.1583111 1.215595

[ ]
−2.615881

−0.1952594

−0.1952594

−1.315315

1

2

2

2

2

2

1

1

1

2

2

2

1

1

2

1

2

2

1

1

1

1

1

2

0.9596615

0.1953781

0.6062557

0.1261321

0.004601604

0.6159065

(22.6.7.29)

(22.6.7.30)

(22.6.7.31)

(22.6.7.32)

(22.6.7.33)

(22.6.7.34)

2⟨k|h|k⟩+2⟨kl|kl⟩− ⟨kl|lk⟩+ = −2.84352922∑
kl

∑
μ>ν

ZμZν

Rμν

+ ⟨k|h|k⟩+ = −2.84332418∑
k

εk ∑
μ>ν

ZμZν

Rμν

−0.00020504

[ ]
0.8101060

0.1424893

0.1424893

0.02506241

[ ]
−1.632385

−1.093368

−1.093368

−0.8869066

FS
−

1

2 S
−

1

2

[ ]
−1.399504

−0.5481813

−0.5481812

−0.4856516

[−1.656219 −0.2289360]
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Their corresponding eigenvectors (C' = S *C) are: 

 

The "new" MO-AO coeficients (C = *C'): 

 
The one-electron MO integrals: 

 
The two-electron MO integrals: 

 
The closed shell Fock energy from formula: 

 
from formula: 

 
the difference is: 
-0.00003290 
 
************ 
ITERATION 6 
************ 
 
The charge bond order matrix: 

 
The Fock matrix: 

 

 

 
The eigenvalues of this matrix (Fock orbital energies) are: 

 

Their corresponding eigenvectors (C' = *C) are: 

 

The "new" MO-AO coefficients (C = *C'): 

+
1

2

[ ]
−0.9056138

−0.4241028

−0.4241026

0.9056141

S
−

1

2

[ ]
−0.8999892

−0.1584127

−0.8323179

1.215582

[ ]
−2.615847

−0.1953674

−0.1953674

−1.315348

1

2

2
2

2

2

1

1

1
2

2

2

1

1

2
1

2

2

1

1

1
1

1

2

0.9595956

0.1953862

0.6062872
0.1261639

0.004621811

0.6159078

(22.6.7.35)

(22.6.7.36)

(22.6.7.37)
(22.6.7.38)

(22.6.7.39)

(22.6.7.40)

2⟨k|h|k⟩+2⟨kl|kl⟩− ⟨kl|lk⟩+ = −2.84352779∑
kl

∑
μ>ν

ZμZν

Rμν

+ ⟨k|h|k⟩+ = −2.84349489∑
k

εk ∑
μ>ν

ZμZν

Rμν

[ ]
0.8099805

0.1425698

0.1425698

0.02509460

[ ]
−1.632412

−1.093402

−1.093402

−0.8869413

FS
−

1

2 S
−

1

2

[ ]
−1.399517

−0.5482056

−0.5482056

−0.4856730

[−1.656253 −0.2289375]

S
+

1

2

[ ]
−0.9056085

−0.4241144

−0.4241144

0.9056086

S
−

1

2
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The one-electron MO integrals: 

 
The two-electron MO integrals: 

 
The closed shell Fock energy from formula: 

 
from formula: 

 
the difference is: 
-0.00000429 
 
************ 
ITERATION 7 
************ 
 
The charge bond order matrix:  

 
The Fock matrix: 

 

 

 
The eigenvalues of this matrix (Fock orbital energies) are: 

 

Their corresponding eigenvectors (C' = *C) are: 

 

The "new" MO-AO coefficients (C= *C'): 

 
The one-electron MO integrals: 

 
The two-electron MO integrals:  

[ ]
0.8999786

−0.15842831.215580

−0.8323296

[ ]
−2.615843

−0.1953846

−0.1953846

−1.315353

1

2

2

2

2

1

1

1

2

2

1

1

2

2

2

1

1

1

1

2

0.9595859

0.1953878

0.6062925

0.004625196

0.6159083

(22.6.7.41)

(22.6.7.42)

(22.6.7.43)

(22.6.7.44)

(22.6.7.45)

2⟨k|h|k⟩2⟨kl|kl⟩− ⟨kl|lk⟩+ = −2.84352827∑
kl

∑
μ>ν

ZμZν

Rμν

+ ⟨k|h|k⟩+ = −2.84352398∑
k

εk ∑
μ>ν

ZμZν

Rμν

[ ]
0.8099616

0.1425821

0.1425821

0.02509952

[ ]
−1.632416

−1.093407

−1.093407

−0.8869464

FS
−

1

2 S
−

1

2

[ ]
−1.399519

−0.5482092

−0.5482093

−0.4856761

[−1.656257 −0.2289374]

S
+

1

2

[ ]
−0.9056076

−0.4241164

−0.4241164

0.9056077

S
−

1

2

[ ]
−0.8999770

−0.1584310

−0.8323317

1.215580

[ ]
−2.615843

−0.1953876

−0.1953876

−1.315354
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The closed shell Fock energy from formula: 

 
from formula: 

 
the difference is: 

 
 
************ 
ITERATION 8 
************ 
 
The charge bond order matrix: 

 
The Fock matrix: 

 

 

 
The eigenvalues of this matrix (Fock orbital energies) are: 

 

Their corresponding eigenvectors (C'= *C) are: 

 

The "new" MO-AO coefficients (C=  *C'): 

 
The one-electron MO integrals: 

 
The two-electron MO integrals: 

 
The closed shell Fock energy from formula: 

1

2

2

2

2

2

1

1

1

2

2

2

1

1

2

1

2

2

1

1

1

1

1

2

0.9595849

0.1953881

0.6062936

0.1261697

0.004625696

0.6159083

(22.6.7.46)

(22.6.7.47)

(22.6.7.48)

(22.6.7.49)

(22.6.7.50)

(22.6.7.51)

2⟨k|h|k⟩+2⟨kl|kl⟩− ⟨kl|lk⟩+ = −2.84352922∑
kl

∑
μ>ν

ZμZν

Rμν

+ ⟨k|h|k⟩+ = −2.84352827∑
k

εk ∑
μ>ν

ZμZν

Rμν

−0.00000095

[ ]
0.8099686

0.1425842

0.1425842

0.02510037

[ ]
−1.632416

−1.093408

−1.093408

−0.8869470

FS
−

1

2 S
−

1

2

[ ]
−1.399518

−0.5482102

−0.5482103

−0.4856761

[−1.656258 −0.2289368]

S
+

1

2

[ ]
−0.9056074

−0.4241168

−0.4241168

0.9056075

S
−

1

2

[ ]
−0.8999765

−0.1584315

−0.8323320

1.215579

[ ]
−2.615842

−0.1953882

−0.1953882

−1.315354

1

2

2

2

2

2

1

1

1

2

2

2

1

1

2

1

2

2

1

1

1

1

1

2

0.9595841

0.1953881

0.6062934

0.1261700

0.004625901

0.6159081

(22.6.7.52)

(22.6.7.53)

(22.6.7.54)

(22.6.7.55)

(22.6.7.56)

(22.6.7.57)
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\[ \sum\limits_{kl} 2\langle k|h|k\rangle + 2 \langle kl|kl\rangle - \langle kl|lk\rangle + \sum\limits_{\mu > \nu} \dfrac{Z_\mu Z_\nu}{R_{\mu\nu}} = -2.84352827 \nonumber \] 
from formula: 

 
the difference is: 

 
f. In looking at the energy convergence we see the following: 

Iteration Formula 1 Formula 2

1 -2.84219933 -2.80060530

2 -2.84349298 -2.83573675

3 -2.84353018 -2.84225941

4 -2.84352922 -2.84332418

5 -2.84352779 -2.84349489

6 -2.84352827 -2.84352827

7 -2.84352922 -2.84352827

8 -2.84352827 -2.84352827

f. If you look at the energy difference (SCF at iteration n - SCF converged) and plot this data versus iteration number, and do a 5th order polynomial fit, we see the following: 
 

 
In looking at the polynomial fit we see that the convergence is primarily linear since the coefficient of the linear term is much larger than those of the cubic and higher terms.  
g. The converged SCF total energy calculated using the result of exercise 3 is an upper bound to the ground state energy, but, during the iterative procedure it is not. At convergence, the
expectation value of the Hamiltonian for the Hartree Fock determinant is given by the equation in exercise 3.  
h. The one- and two- electron integrals in the MO basis are given above (see part e iteration 8). The orbital energies are found using the result of exercise 2 and 3 to be:  

 
i. Yes, the 1  configuration does dissociate properly because at  the lowest energy state is He + , which also has a  orbital occupancy (i.e.,  on He and ). 

1. At convergence the mo coefficients are: 

 
and the integrals in this MO basis are: 

+ ⟨k|h|k⟩+ = −2.84352827∑
k

εk ∑
μ>ν

ZμZν

Rμν

0.00000000

E(SCF )

E(SCF )

so, εk

ε1

ε2

= + ⟨k|h|k⟩+∑
k

εk ∑
μ>ν

ZμZν

Rμν

= 2⟨k|h|k⟩+2⟨kl|kl⟩− ⟨kl|lk⟩+∑
kl

∑
μ>ν

ZμZν

Rμν

= ⟨k|h|k⟩+ (2⟨kl|kl⟩− ⟨kl|lk⟩)∑
1

occ

= +2⟨11|11⟩− ⟨11|11⟩h11

= −2.615842 +0.9595841

= −1.656258
= +2⟨21|21⟩− ⟨21|12⟩h22

= −1.315354 +2 ∗ 0.6062934 −0.1261700

= −0.2289372

(22.6.7.58)

(22.6.7.59)

(22.6.7.60)

(22.6.7.61)

(22.6.7.62)

(22.6.7.63)
(22.6.7.64)

(22.6.7.65)

(22.6.7.66)

σ2 R → ∞ H+ 1σ2 1s2 1  on s0 H+

= [ ] = [ ]ϕ1
−0.8999765

−0.1584315
ϕ2

−0.8323320

1.215579
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a.

 
 
b. The eigenvalues are  The corresponding eigenvectors are: 

 
c.

 
 

d. The third configuration , 

Adding this configuration to the previous 2x2 CI results in the following 3x3 'full' CI: 

 
 
Evaluating the new matrix elements: 

 
 
e. The eigenvalues are  The corresponding eigenvectors are: 

 
 
f.

We need the non-vanishing matrix elements of the dipole operator in the mo basis. These can be obtained by calculating them by hand. They are more easily obtained by using the
TRANS program. Put the  ao integrals on disk by running the program RW_INTS. In this case you are inserting  (insert 0.0 for all the 

 integrals) ... call the output file "ao_dipole.ints" for example. The converged MO-AO coefficients should be in a file ("mocoefs.dat" is fine). The transformed integrals can be
written to a file (name of your choice) for example "mo_dipole.ints". These matrix elements are:  

= −2.615842h11

= 0.9595841g1111

= 0.1261700g2211

= −0.1953882h21

= 0.1953881g2111

= 004625901g2221

= −1.315354h22

= 0.6062934g2121

= 0.6159081g2222

(22.6.7.67)

(22.6.7.68)

(22.6.7.69)

H = [ ] = [ ]
⟨1 |H|1 ⟩σ2 σ2

⟨2 |H|1 ⟩σ2 σ2

⟨1 |H|2 ⟩σ2 σ2

⟨2 |H|2 ⟩σ2 σ2

2 +h11 g1111

g1122

g1122

2 +h22 g2222

= [ ]
2 ∗ −2.615842 +0.9595841

0.126170

0.1261700

2 ∗ −1.315354 +0.6159081

= [ ]
−4.272100

0.126170

0.126170

−2.014800

(22.6.7.70)

(22.6.7.71)

(22.6.7.72)

= −4.279131 and  = −2.007770.E1 E2

= [ ]  , C_2 = [ ]C1
−.99845123

0.05563439

0.05563438

0.99845140

1

2
[ ( + )α ( − )β + ( − )α ( + )β ]∣

∣
∣ a−−√ ϕ1 b√ ϕ2 a−−√ ϕ1 b√ ϕ2

∣
∣
∣

∣
∣
∣ a−−√ ϕ1 b√ ϕ2 a−−√ ϕ1 b√ ϕ2

∣
∣
∣

= [( + ) ( − )+( − ) ( + )] (αβ−βα)
1

2 2
–

√
a−−√ ϕ1 b√ ϕ2 a−−√ ϕ1 b√ ϕ2 a−−√ ϕ1 b√ ϕ2 a−−√ ϕ1 b√ ϕ2

= (a −b )(αβ−βα)
1

2
–

√
ϕ1ϕ1 ϕ2ϕ2

= a| α β| −b| α β|.ϕ1 ϕ1 ϕ2 ϕ2 (note from part b. a = 0.9984 and b = 0.0556)

(22.6.7.73)

(22.6.7.74)

(22.6.7.75)

(22.6.7.76)

|1σ2σ| = [|1α2β| − |1β2α|]
1

2
–

√

H =
⎡

⎣
⎢

⟨1 |H|1 ⟩σ2 σ2

⟨2 |H|1 ⟩σ2 σ2

⟨1σ2σ|H|1 ⟩σ2

⟨1 |H|2 ⟩σ2 σ2

⟨2 |H|2 ⟩σ2 σ2

⟨2 |H|1σ2σ⟩σ2

⟨1 |H|1σ2σ⟩σ2

⟨2 |H|1σ2σ⟩σ2

⟨1σ2σ|H|1σ2σ⟩

⎤

⎦
⎥

=

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

2 +h11 g1111

g1122

[2 +2 ]
1

2
–

√
h12 g2111

g1122

2 +h22 g2222

[2 +2 ]
1

2
–

√
h12 g2221

[2 +2 ]
1

2
–

√
h12 g2111

[2 +2 ]
1

2
–

√
h12 g2221

+ + +h11 h22 g2121 g2211

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥

(22.6.7.77)

(22.6.7.78)

H12

H23

H33

= = ∗ (−0.1953882 +0.1953881) = 0.0H21 2
–

√

= = ∗ (−0.1953882 +0.004626) = −0.269778H32 2
–

√

= −2.615842 −1.315354 +0.606293 +0.126170

= −3.198733

=
⎡

⎣
⎢

−4.272100

0.126170

0.0

0.126170

−2.014800

−0.269778

0.0

−0.269778

−3.198733

⎤

⎦
⎥

(22.6.7.79)

(22.6.7.80)

(22.6.7.81)

(22.6.7.82)

(22.6.7.83)

= −4.279345,  = −3.256612 and  = −1.949678.E1 E2 E3

 ,  =  ,  =
⎡

⎣
⎢

−0.99825280

0.05732290

0.01431085

⎤

⎦
⎥ C2

⎡

⎣
⎢

−0.05302767

−0.20969283

−0.9774200

⎤

⎦
⎥ C3

⎡

⎣
⎢

−0.05302767

−0.97608540

0.21082004

⎤

⎦
⎥

1e− = 0.0,  = 0.2854, and  = 1.4z11 z21 z22

2e−

= 0.11652690,  = −0.54420990,  = 1.49117320Z11 z21 z22
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The excitation energies are  
Using the Slater-Conden rules to obtain the matrix elements between configurations we get: 

 
Now, , (this can be accomplished with the program UTMATU) 

 
and,  

 
g.

Using the converged coefficients the orbital energies obtained from solving the Fock equations are  The resulting expression for the RSPT
first-order wavefunction becomes: 

 
 
h. As you can see from part c., the matrix element  (this is also a result of the Brillouin theorem) and hence this configuration does not enter into the first-order
wavefunction. 
 
i.

 
In the 2x2 CI we obtained: 

 
 
j. The expression for the  order RSPT is: 

 
Comparing the 2x2 CI energy obtained to the SCF result we have: 
-4.279131 - (-4.272102) = -0.007029 au 

2. 

The STO3G orbitals were generated as a best fit of 3 primitive gaussians (giving 1 CGTO) to the STO. So, STO3G can at best reproduce the STO result. The 3-21G orbitals are more
flexible since there are 2 CGTOs per atom. This gives 4 orbitals (more parameters to optimize) and a lower total energy. 

3. R  Energy  Energy

− = −3.256612 −−4.279345 = 1.022733, and  − = −1.949678. −−4.279345 = 2.329667.E2 E1 E3 E1

Hz

⎡

⎣
⎢

0.233054

0

−0.769629

0

2.982346

−0.769629

−0.769629

−0.769629

1.607700

⎤

⎦
⎥

=
⎡

⎣
⎢

⟨1 |z|1 ⟩σ2 σ2

⟨2 |z|1 ⟩σ2 σ2

⟨1σ2σ|z|1 ⟩σ2

⟨1 |z|2 ⟩σ2 σ2

⟨2 |z|2 ⟩σ2 σ2

⟨2 |z|1σ2σ⟩σ2

⟨1 |z|σ2σ⟩σ2

⟨2 |z|1σ2σ⟩σ2

⟨1σ2σ|z|1σ2σ⟩

⎤

⎦
⎥

=

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

2z11

0

[2 ]
1

2
–

√
z12

0

2z22

[2 ]
1

2
–

√
z12

[2 ]
1

2
–

√
z12

[2 ]
1

2
–

√
z12

+z11 z22

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥

(22.6.7.84)

(22.6.7.85)

(22.6.7.86)

⟨ |z| ⟩ =Ψ1 Ψ2 CT
1 HzC2

=
⎡

⎣
⎢

−0.99825280

0.05732290

0.01431085

⎤

⎦
⎥

T

⎡

⎣
⎢

0.233054

0

−0.769629

0

2.982346

−0.769629

−0.769629

−0.769629

1.607700

⎤

⎦
⎥
⎡

⎣
⎢

−0.02605343

−0.20969283

−0.9774200

⎤

⎦
⎥

= −0.757494

(22.6.7.87)

(22.6.7.88)

⟨ |z| ⟩ =Ψ1 Ψ3 CT
1 HzC3

=
⎡

⎣
⎢

−0.99825280

0.05732290

0.01431085

⎤

⎦
⎥

T

⎡

⎣
⎢

0.233054

0

−0.769629

0

2.982346

−0.769629

−0.769629

−0.769629

1.607700

⎤

⎦
⎥
⎡

⎣
⎢

−0.05302767

−0.97698540

0.21082004

⎤

⎦
⎥ (22.6.7.89)

= −1.656258 and  = −0.228938.ε1 ε2

1∣∣ σ2⟩(1)

1∣∣ σ2⟩(1)

1∣∣ σ2⟩(1)

= − 2 ⟩
g2211

2( − )ε2 ε1

∣∣ σ2

= − 2 ⟩
0.126170

2(−0.228938 +1.656258)
∣∣ σ2

= −0.0441982 2 ⟩∣∣ σ2

(22.6.7.90)

(22.6.7.91)

(22.6.7.92)

⟨1 |H|1σ2σ⟩ = 0σ2

0⟩ = 1 ⟩−0.0441982 2 ⟩. To normalize we divide by:∣∣ ∣∣ σ2 ∣∣ σ2

= 1.0009762[1 +(0.0441982 ])2
− −−−−−−−−−−−−−−

√

0⟩ = 0.999025 1 ⟩−0.044155 2 ⟩∣∣ ∣∣ σ2 ∣∣ σ2

(22.6.7.93)

(22.6.7.94)

(22.6.7.95)

0⟩ = 0.99845123 1 ⟩−0.05563439 2 ⟩∣∣ ∣∣ σ2 ∣∣ σ2 (22.6.7.96)

2nd

E (2) = − = −
|g2211|

2

2( − )ε2 ε1

0.1261702

2(−0.228938 +1.656258)

= −0.005576 au 

(22.6.7.97)

(22.6.7.98)

STO total energy: 

STO3G total energy 

 3-21G total energy 

−2.8435283

−2.8340561

−2.8864405

(22.6.7.99)

(22.6.7.100)

(22.6.7.101)

HeH+ H2
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1.0 -2.812787056 -1.071953297

1.2 -2.870357513 -1.113775015

1.4 -2.886440516 -1.122933507

1.6 -2.886063576 -1.115567684

1.8 -2.880080938 -1.099872589

2.0 -2.872805595 -1.080269098

2.5 -2.856760263 -1.026927710

10.0 -2.835679293 -0.7361705303

Plotting total energy vs. geometry for  

 
Plotting total energy vs. geometry for  

 
For  at R = 10.0 au, the eigenvalues of the converged Fock matrix and the corresponding converged MO-AO coefficients are: 
 

 
 
Notice that this indicates that orbital 1 is a combination of the s functions on He only (dissociating properly to ). 
 
For  au, the eigenvalues of the converged Fock matrix and the corresponding converged MO-AO coefficients are: 
 

He :H+

:H2

HeH+

−0.1003571E+01

0.4579189E+00

0.6572777E+00

−0.1415438E−05

0.1112778

−0.4961988E+00

−0.8245406E−05

−0.4580946E−05

0.3734069E+00

0.71732444E+00

0.5864846E+00

0.1532163E−04

−0.6822942E−05

0.1255539E+01

−0.1096019E01

0.1981702E+01

0.1157140E+01

−0.1056716E+01

−0.1669342E−04

0.2031348E−04

(22.6.7.102)

(22.6.7.103)

(22.6.7.104)

(22.6.7.105)

(22.6.7.106)

He+H+

 at R = 10.0H2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/85564?pdf


22.6.7.13 https://chem.libretexts.org/@go/page/85564

 
 
Notice that this indicates that the orbital 1 is a combination of the s functions on both H atoms (dissociating improperly; equal probabilities of  dissociating to two neutral atoms or
to a proton plus hydride ion). 

1. The  CI result" 

R

1.0 -1.074970 -0.5323429 -0.3997412 0.3841676

1.2 -1.118442 -0.6450778 -0.4898805 0.1763018

1.4 -1.129904 -0.7221781 -0.5440346 0.0151913

1.6 -1.125582 -0.7787328 -0.5784428 -0.1140074

1.8 -1.113702 -0.8221166 -0.6013855 -0.2190144

2.0 -1.098676 -0.8562555 -0.6172761 -0.3044956

2.5 -1.060052 -0.9141968 -0.6384557 -0.4530645

5.0 -0.9835886 -0.9790545 -0.5879662 -0.5802447

7.5 -0.9806238 -0.9805795 -0.5247415 -0.5246646

10.0 -0.989598 -0.9805982 -0.4914058 -0.4913532

 
For  at R = 1.4 au, the eigenvalues of the Hamiltonian matrix and the corresponding determinant amplitudes are:
 

determinant -1.129904 -0.722178 -0.544035 0.015191

0.99695 0.00000 0.00000 0.07802

0.00000 0.70711 0.70711 0.00000

0.00000 0.70711 -0.70711 0.00000

-0.07802 0.00000 0.00000 0.99695

 
This shows, as expected, the mixing of the first  determinants, the  

 

−0.2458041E+00

0.1977649E+00

0.56325666E+00

0.1976312E+00

0.5629326E+00

−0.1456223E+00

−0.1978204E+00

−0.5628273E+00

0.1979216E+00

0.5631776E+00

0.1137235E+01

0.1006458E+01

−0.8179120E+00

0.7902887E+00

−0.6421731E+00

0.1137825E+01

−0.7903225E+00

0.6424941E+00

0.1006491E+01

−0.6421731E+00 −0.8181460E+00

(22.6.7.107)

(22.6.7.108)

(22.6.7.109)

(22.6.7.110)

(22.6.7.111)

H2

H2

1∑+
g

3∑+
u

1∑+
u

1∑+
g

H2

1 α1 β∣∣ σg σg ∣∣

1 β1 α∣∣ σg σu ∣∣

1 α1 β∣∣ σg σu ∣∣

α1 β∣∣σu σu ∣∣

+(1 (1 )1 ∑g σ2
g  and the 2nd  1 ∑+

g σ2
u

=( ( 1 β1 α + 1 α1 β )) ,3∑
u

+
1

2
–

√
∣∣ σg σu ∣∣ ∣∣ σg σu ∣∣

=( ( 1 β1 α − 1 α1 β )) .and the 1∑
u

+
1

2
–

√
∣∣ σg σu ∣∣ ∣∣ σg σu ∣∣
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Also notice that the  state is the bonding (0.99695 - 0.07802) combination (note specifically the + - combination) and the second  state is the antibonding combination

(note specifically the + + combination). The + + combination always gives a higher energy than the + - combination. Also notice that the 1st and 2nd states  are

dissociating to proton/anion combinations. The difference in these energies is the ionization potential of H minus the electron affinity of H.

This page titled 22.6.7: vi. Problem Solutions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons via source content that was edited to the style and standards
of the LibreTexts platform; a detailed edit history is available upon request.
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