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Come forth into the light of things,
Let Nature be your teacher.

William Wordsworth
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Preface

The first edition of Molecular Spectroscopy was coaxed from a pile of lecture notes that I had written for my 
graduate spectroscopy class at the University of Idaho, Moscow, Idaho. At the time it was published in 1999, 
there were many books about traditional high-resolution spectroscopy of small molecules in the gas phase. 
Influenced—or, perhaps, biased—by my own research interests, I felt that the topic of condensed phase spec-
troscopy was not being adequately covered. It became my pleasure and burden to try to provide this coverage, 
thus spreading my bias as well as my enthusiasm and modest expertise for the study of the interaction of light 
and matter. Since the publication of the first edition, spectroscopic applications in fields such as materials 
science, biology, solar energy conversion, and environmental science have intensified the need for a textbook 
that prepares researchers to handle systems far more complex than isolated gas phase molecules. The second 
edition of Molecular Spectroscopy benefits from many years of vetting of the first edition by students and 
instructors, whose feedback is gratefully acknowledged. As in the first edition, this book aims to present the 
theoretical foundations of traditional and modern spectroscopy methods and provide a bridge from theory to 
experimental applications. Emphasis continues to be placed on the use of time-dependent theory to link the 
spectral response in the frequency domain to the behavior of molecules in the time domain. This link is made 
stronger by the addition of two new chapters: Chapter 13 on nonlinear optical spectroscopy and Chapter 14 
on time-resolved spectroscopy, both of which go beyond the linear spectroscopy regime that is the subject 
of the first 12 chapters. Chapter 13 provides the quantum mechanical basis for nonlinear spectroscopy from 
several different theoretical vantage points, whereas Chapter 14 enters the realm of real time to uncover the 
dynamics concealed in spectral lineshapes.

In addition to correcting pedagogical speedbumps and other glitches discovered by readers over the years, 
I have added new material that I hope will smooth the transition from the linear (Chapters 1 through 12) to 
the nonlinear (Chapters 13 and 14) spectroscopy regime. The density matrix is now featured prominently 
in Chapter 4 and returned to in Chapters 13 and 14. A discussion of magnetic resonance has been added to 
Chapters 3 and 4 in order to illustrate how the time-dependent density matrix is manifested experimentally. 
The concepts of population relaxation and dephasing appear throughout this book. A new section on non-
radiative relaxation of polyatomic molecules has been added to Chapter 11. The discussion of electromag-
netic radiation in Chapter 2 has been augmented by the consideration of the Fresnel equations, important in 
spectroscopy of surfaces, and a discussion of widely employed Gaussian beams. A new section on surface-
enhanced Raman spectroscopy has been added to Chapter 12. The discussion of the third-order underpin-
nings of spontaneous Raman spectroscopy has been moved to Chapter 13, where it follows the discussion of 
the third-order susceptibility.

This book is intended as a resource for researchers and for use in a graduate course in spectroscopy. It 
would be difficult to cover all 14 chapters in entirety in a single semester. Like the electromagnetic spectrum, 
the topic of spectroscopy is open ended, and instructors and students can choose where to focus. Depending 
on their backgrounds, students may be able to skim Chapter 1, which reviews the material taught in a gradu-
ate quantum mechanics course. Others may be able to skip Chapter 2 (on electromagnetic radiation) and 
Chapter 3 (about electric and magnetic properties). I always urge students to read at least the first few sections 
of Chapter 5 and glean physical intuition from the idea that spectra and dynamics are Fourier-transform 
pairs. I believe Chapters 4 and 6, which make the link between quantum mechanics and the practice of 
spectroscopy, are critical to the full appreciation of subsequent chapters. As the order of the field–matter 
interaction increases, so do the information content, complexity, and number of experiments. I have strived 
to present the theory that is needed to go beyond what is presented in this book, so that readers can apply 
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spectroscopic tools to their own research interests. Particularly in the last two chapters, the examples I have 
chosen to illustrate fundamental principles are not intended to constitute an exhaustive review; rather, they 
reflect my pedagogical goals and personal interests.

There are many people to thank for helping me prepare this second edition. Colleagues who provided 
encouragement, reviewed chapters, answered questions, or generously gave permission to reprint figures 
include John Bertie, Gregory Scholes, Robert Boyd, Richard Mathies, Mark Johnson, Martin Moskovits, Eric 
Vauthey, Mark Maroncelli, Lawrence Ziegler, Nancy Levinger, Thomas Elsaesser, Haruko Hosoi, Andrew 
Hanst, Gerald Meyer, Robert Walker, Susan Dexheimer, Stephen Doorn, Andrew Shreve, Igor Adamovich, 
Michael Tauber, Erik Nibbering, Henk Fidder, V. Ara Apkarian, Andrei Tokmakoff, Charles Schmuttenmaer, 
Mary Jane Shultz, and David W. McCamant. Special thanks go to Jahan Dawlaty for his careful and very help-
ful review of the two new chapters. On behalf of students and researchers, I thank these colleagues for their 
commitment to furthering spectroscopy education. I also hold them blameless for any remaining errors, for 
which I alone am responsible.

In recent years, students in my graduate spectroscopy class and those working in my lab helped to refine 
draft chapters of this edition. These include McHale group members Christopher Leishman, Riley Rex, 
Nicholas Treat, Lyra Christianson, Candy Mercado, Greg Zweigle, Deborah Malamen, Christopher Rich, and 
Stephanie Doan. Extra special thanks are due to Christopher Leishman whose careful review of every chapter 
was enormously helpful. Graduate students Samuel Battey, Saewha Chong, Sakun Duwal, Elise Held, Adam 
Huntley, Jason Leicht, Victor Murcia, Junghune Nam, Nathan Turner, and Tiecheng Zhou, who were enrolled 
in Chem 564 at Washington State University, Pullman, Washington, provided thoughtful comments on draft 
chapters and helped to find errors.

I am pleased to acknowledge the National Science Foundation for their support of the spectroscopy 
research that my students, colleagues, and I have had the privilege to engage in. I am grateful to my edi-
tor Luna Han for her support and patience. Most of all, I thank my husband and scientific collaborator, 
Dr. Fritz Knorr. His encouragement and understanding helped to keep me on track. In addition, this book 
would literally not have been possible without him, because he drew all the figures.

Jeanne L. McHale 
Moscow, Idaho

August 2016
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Physical constants and conversion factors

PHYSICAL CONSTANTS

Constant Symbol Value

Avogadro’s number NA 6.0221 × 1023 mol−1

Bohr magneton μB 9.2740 × 10−24 J T−1

Bohr radius a0 5.2918 × 10−11 m

Boltzmann’s constant kB 1.3806 × 10−23 J K−1

Electron rest mass me 9.1094 × 10−31 kg

Nuclear magneton μN 5.0508 × 10−27 J T−1

Permeability of free space μ0 4π × 10−7 N A−2

Permittivity of free space ε0 8.8542 × 10−12 C2 N−1 m−2

Planck’s constant h 6.6261 × 10−34 J s

Proton charge e 1.6022 × 10−19 C

e′ 4.8032 × 10−10 esu (or statC)

Proton rest mass mp 1.6726 × 10−27 kg

Rydberg constant RH 1.0974 × 107 m−1

Speed of light in a vacuum c 2.9979 × 108 m s−1

ENERGY CONVERSION FACTORS

Erg J eV cm−1

erg 1 10−7 6.24150 × 1011 5.03414 × 1015

J 107 1 6.24150 × 1018 5.03414 × 1022

eV 1.60218 × 10−12 1.60218 × 10−19 1 8065.6

cm−1 1.98644 × 10−16 1.98644 × 10−23 1.23983 × 10−4 1

MISCELLANEOUS CONVERSION FACTORS

1 amu = 1.6606 × 10−27 kg

1 cal = 4.184 J

1 Debye (D) = 10−18 esu cm = 3.336 × 10−30 C m

1 Tesla (T) = 1 N s C−1 m−1 = 1 Weber m−2 = 104 Gauss
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1

1

Introduction and review

1.1 HISTORICAL PERSPECTIVE

Spectroscopy is about light and matter and how they interact with one another. The fundamental properties 
of both light and matter evade our human senses, and so there is a long history to the questions: What is light 
and what is matter? Studies of the two have often been interwoven, with spectroscopy playing an important 
role in the emergence and validation of quantum theory in the early twentieth century. Max Planck’s analysis 
of the emission spectrum of a blackbody radiator established the value of his eponymous constant, setting in 
motion a revolution that drastically altered our picture of the microscopic world. The line spectra of atoms, 
though they had been employed for chemical analysis since the late 1800s, could not be explained by classical 
physics. Why should gases in flames and discharge tubes emit only certain spectral wavelengths, while the 
emission spectrum of a heated body is a continuous distribution? Niels Bohr’s theory of the spectrum of the 
hydrogen atom recognized the results of Rutherford’s experiments, which revealed previously unexpected 
details of the atom: a dense, positively charged nucleus surrounded by the diffuse negative charge of the 
electrons. In Bohr’s atom the electrons revolve around the nucleus in precise paths like the orbits of planets 
around the sun, a picture that continues to serve as a popular cartoon representation of the atom. Though the 
picture is conceptually wrong, the theory based on it is in complete agreement with the observed absorption 
and emission wavelengths of hydrogen! Modern quantum theory smeared the sharp orbits of Bohr’s hydrogen 
atom into probability distributions, and successfully reproduced the observed spectral transition frequencies. 
Observations of electron emission by irradiated metals led to Einstein’s theory of photons as packets of light 
energy, after many hundreds of years of debate on the wave–particle nature of light. Experiments (such as 
electron diffraction by crystals) and theory (the Schrödinger equation and the Heisenberg uncertainty prin-
ciple) gave rise to the idea that matter, like light, has wave-like as well as particle-like properties. Quantum 
theory and Einstein’s concept of photons converge in our modern microscopic view of spectroscopy. Matter 
emits or absorbs light (photons) by undergoing transitions between quantized energy levels. This relatively 
recent idea rests on the foundation built by philosophers and scientists who considered the nature of light 
since ancient times. The technology of recording spectra is far older than the quantum mechanical theories 
for interpretation of spectra.

Reference [1] gives an excellent historical account of investigations that led to our present understand-
ing of electromagnetic radiation. Lenses and mirrors date back to before the common era, and the ancient 
Greeks included questions about the nature of light in their philosophical discourses. In 1666, Isaac Newton 
measured the spectrum of the sun by means of a prism. He speculated that the seven colors he observed (red, 
orange, yellow, green, blue, indigo, and violet) were somehow analogous to the seven notes of the musical 
scale. It is interesting that the frequency of violet light is a little less than twice that of red, so we see just 
less than an octave of this spectrum. We now know that the human eye can discern millions of colors [2] 
and that the wavelengths spanned by electromagnetic radiation extend indefinitely beyond the boundar-
ies of vision. Newton was a proponent of the corpuscular view of light, a theory that held that light was a 
stream of particles bombarding the viewer. His contemporary, Christian Huygens, proposed a wave theory 
and showed how the concept could account for refraction and reflection. Newton had considerable influ-
ence, and the corpuscular theory dominated the scene for a long time after his death. (Its proponents may 
have been more zealous then Newton himself had been.) Just a few years after the discovery of the infrared 
and ultraviolet ranges of the spectrum, Thomas Young in 1802 made the connection between wavelength 
and color. Young also investigated the phenomenon that is now known as polarization. A. J. Fresnel made 
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contributions to the emerging wave theory as well, and equations describing the polarization dependence of 
reflection at a boundary bear his name [1].

The nineteenth century saw many developments in the analysis of spectral lines. Fraunhofer repeated 
Newton’s measurement of the solar spectrum in 1814, using a narrow slit rather than a circular aperture to 
admit the light onto the prism. The resolution of this experiment was sufficient to reveal a number of dark 
lines, wavelengths where the solar emission was missing. Numerous “Fraunhofer lines” are now assigned, 
thanks to the work of Bunsen, Ångström, and others. They originate from the reabsorption of sunlight by 
cooler atoms and ions in the outer atmosphere of the sun and that of the earth. In 1859, Kirchhoff demon-
strated that two of these dark lines occur at the wavelengths of the yellow emission of hot sodium atoms. This 
helped to establish the notion that absorption and emission wavelengths of atoms coincide. Fraunhofer made 
further contributions by fabricating the first diffraction gratings, by wrapping fine silver wires around two 
parallel screws, and later by etching glass with diamond. By 1885 it was firmly established that elements have 
characteristic spectral wavelengths. The very discovery of the element helium in 1868 was made by analyzing 
the wavelengths of the solar spectrum.

The wave theory of light attracted many proponents in the nineteenth century, but it posed problems 
when light waves were compared to waves in matter, such as sound, which require a medium for support. 
How could light travel in a vacuum? The luminiferous ether was proposed, and efforts to detect it motivated 
some historic experiments, such as the accurate measurement of the speed of light by Michelson and Morley 
in 1887. (Michelson had earlier invented the interferometer while still in his twenties.) Their careful work 
resulted in rapid evaporation of the ether theory and in the recognition that light propagates in free space. The 
idea of a transverse wave, where the disturbance is perpendicular to the direction of propagation, was an elusive 
part of the picture, though it had been appreciated by Young. It took James Clerk Maxwell, whose equa-
tions we examine in Chapter 2, to refine the picture of light as a transverse electromagnetic wave. Maxwell’s 
equations were fertilized by a large body of existing work on electricity and magnetism, particularly that of 
Michael Faraday. The crown jewel of Maxwell’s theoretical accomplishment was the derivation of the speed of 
light in terms of two known experimental quantities: the permittivity and permeability of free space. These 
properties and their interrelation are further discussed in Chapters 2 and 3. The point to be made here is that 
the result was in agreement with experiment.

Thus the wave theory of light would seem to have been on pretty firm ground as we entered the twentieth 
century. So too was the idea that matter was composed of particles, although little was known about atomic 
structure. The quantum upheaval rattled the complacency of classical physics and built the stage on which the 
field of spectroscopy continues to perform. Looking at things through quantum mechanical goggles, one eye 
sees the wave and the other the particle. We have to keep both eyes open.

1.2 DEFINITIONS, DERIVATIONS, AND DISCOVERY

As the study of the interaction of light and matter, spectroscopy embraces a wide range of physical and chemi-
cal behavior. There is a certain reciprocity in the light–matter interaction. It is often natural to consider an 
experimental effect to be the result of matter exerting an influence on light (refraction, scattering, absorp-
tion, etc.). In other experiments, we may prefer to consider the effect of light on matter (photochemistry, 
photobleaching, optical trapping, etc.). The range of experimental situations encompassed by this definition 
is vast, especially considering that by “light” we mean electromagnetic radiation of any frequency, not just the 
narrow visible region of the spectrum. The emphasis in this book is on spectroscopy as a tool for studying the 
structure and dynamics of molecules. In Chapters 1 through 12, the experiments to be discussed fall within 
the range of linear spectroscopy, in which the material response is directly proportional to the amplitude of 
the electric field vector of the radiation. A typical spectrum consists of the intensity of a certain response, such 
as absorption of light, as a function of frequency of the light. We shall see that the intensity is a measure of 
the rate at which molecules make transitions from one energy level to another, while the frequency is directly 
related to the difference in the initial and final energies of the molecule. In Chapters 13 and 14 we consider 
spectroscopic effects that come into play with more intense, typically pulsed, sources of electromagnetic 
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radiation. These chapters will delve into nonlinear and time-resolved optical spectroscopy, and the material 
response will be expressed as a power series expansion in the amplitude of the electric field.

In either the linear or nonlinear regime, we shall take a perturbative approach, in which the zeroth order 
states are the quantized energy levels of the molecules in the absence of light. These are the stationary states 
found by solving the time-independent Schrödinger equation. The radiation does not perturb the energy levels 
themselves; rather, it induces transitions between them. We shall see that the radiation creates a superposition 
state in which the basis states are those of the system in the dark. In a sense, spectroscopy is applied quantum 
mechanics: a bridge between experiment and theory. Though in principle the Schrödinger equation permits the 
energy levels of a molecule to be determined theoretically, exact solutions to chemically interesting problems 
cannot be attained. Quantum chemists deal with this by developing sophisticated approximation methods to 
calculate energy levels and wavefunctions. Spectroscopists do their part by using light to discover these energy 
levels. The two groups keep each other honest, and working together they accomplish more than they could on 
their own.

Practical applications of spectroscopy routinely deal with large collections of molecules. The interactions 
among molecules can exert considerable influence on the response of a bulk sample to incident radiation. For 
example, spectra of isolated (gas phase) molecules reveal numerous spectroscopic transitions in the form of 
sharp, well-separated lines. Plunk these molecules into a solution, and the lines may broaden or even blur 
together into a continuous spectrum. How is the Schrödinger equation to help us if we cannot resolve the 
quantum states? This question begs for a theoretical approach that avoids the need to know molecular eigen-
states. The time-dependent theory for interpretation of spectra, introduced in Chapters 5 and 12, will provide 
such an eigenstate-free approach. Before we can consider this theory, however, we need to understand how 
isolated molecules respond to light and then see how microscopic physical properties, such as polarizability 
or dipole moment, sum to give physical properties of matter in bulk. These electric and magnetic properties 
of molecules and bulk matter are discussed in Chapter 3.

In this chapter, we review some of the basic quantum mechanical principles that enable us to character-
ize the translational, rotational, vibrational, and electronic energy states of molecules. The topic of statistical 
mechanics will then be summarized briefly, in order to discuss the behavior of large collections of molecules 
on the basis of the quantized states of individual molecules.

A note about derivations in the study of spectroscopy is in order. These derivations, which constitute a 
large part of this book, provide the foundation for getting microscopic information from spectra. Certainly, 
one can employ a formula or theoretical concept correctly without having derived it, and there are times 
when we do this. But having gone through a derivation conveys the scientist with additional insight and 
power. Knowing the theoretical foundations implies knowing the limits and assumptions behind the equa-
tions, so one may avoid incorrect application of a model or theory. Skill and familiarity with derivations 
enable the practicing spectroscopist to make predictions and perhaps extend the current state of knowledge. 
Whenever possible, spectroscopic formulas are derived from first principles and the reader is urged to follow 
along with pencil and scratch paper. Occasionally, it will be necessary to simply say “It turns out that… ,” and 
the reader will know that the proof of the statement is outside the scope of this book or is just too complex to 
be worthwhile. When this happens, it is hoped that interested readers will be motivated to consult the refer-
ences cited at the end of the chapter.

This chapter is an exception in that no derivations will be presented, except in Section 1.3.3, where raising 
and lowering operators are discussed. It is assumed that the reader has had some previous exposure to quan-
tum mechanics and statistical mechanics. The intent of Section 1.3 is to provide a review and establish some 
notation and terms that will be employed throughout this book.

1.3 REVIEW OF QUANTUM MECHANICS

Quantum mechanics postulates the existence of a well-behaved wavefunction ψ that describes the state of 
the system. This function depends on the spatial coordinates of the system, for example, ψ(x, y, z) for a 
single particle in three dimensions. The wavefunction is not a physical observable; i.e., it cannot be measured 
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experimentally, and it can be a complex function. However, its complex square, ψ *ψ ≡ |ψ|2, which is real, is 
interpreted as the probability density and is in principle experimentally observable. In a three-dimensional 
system, for example, ψ *ψdxdydz is the probability of finding the particle in the infinitesimal volume dxdydz. 
It is convenient to use the symbol dτ as a generic volume element, in order to write down general expressions 
that do not depend on the dimension or coordinate system. One condition on the wavefunction is that it be 
normalizable. A normalized wavefunction gives a total probability of unity when integrated over all space: 

 ψ ψ τ∗ =∫ d 1  (1.1)

The wavefunction must also be single-valued and continuous.
The wavefunction is found by solving the time-independent Schrödinger equation Ĥ Eψ ψ=  and applying 

the appropriate boundary conditions. The Hamiltonian ˆ ˆ ˆH T V= +  is the operator for the energy of the sys-
tem: the sum of the operators for kinetic energy ( )�T  and potential energy ( )�V . It is the latter that makes things 
interesting, in that it decides whether we are dealing with, say, a harmonic oscillator or a hydrogen atom. For 
a single particle in three dimensions, the kinetic energy operator is 

 T̂
m x y z
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− ∂
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 (1.2)

The symbol ħ represents h/2π, where h is Planck’s constant, and m is the particle mass.
Quantum numbers arise when boundary conditions are applied. The result is that only certain wavefunc-

tions and energies satisfy the time-independent Schrödinger equation. 

 Ĥ En n nψ ψ=  (1.3)

The index n in Equation 1.3 represents a quantum number or set of quantum numbers. Equation 1.3 is an 
eigenvalue equation. The allowed states of the system are specified by the solutions ψn (the eigenfunctions) 
and the energy of a system in a specific state is the eigenvalue En. If two different states correspond to different 
energy levels they must be orthogonal: 

 ψ ψ τn m n md E E∗∫ = ≠0 if  (1.4)

Spectroscopy experiments probe differences in these energy levels. The Bohr frequency condition, to be 
derived in Chapter 4, states that the energy of the photon, hν, must match the energy level difference of the 
initial and final states: 

 ν =
−E E

h
2 1  (1.5)

Equation 1.5 is just one condition that must be met for the transition between states 1 and 2 to be allowed. 
Not all transitions are permitted, even when the frequency of the light ν satisfies Equation 1.5. We will derive 
selection rules throughout the book, which enable the allowed transitions to be predicted.

Equation 1.3 is actually a special case that results when the potential energy operator is not a function 
of time. More generally, we need the time-dependent Schrödinger equation to be discussed in Chapter 4. In 
later developments, we will account for the time dependence of the applied electromagnetic field. For now, we 
consider Equation 1.3 to represent the system in the dark.

If the eigenfunctions of Equation 1.3 can be found, then other physical properties can be predicted. It is 
one of the postulates of quantum mechanics that physical properties are associated with Hermitian opera-
tors. For example, the momentum operator in the x direction is 

 p̂ i
x

x = −
∂
∂
�  (1.6)
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The position operator is just x̂ x= . Since the potential energy is a function only of position, the quantum 
mechanical operator V̂  looks just like the classical expression for the system’s potential energy. A Hermitian 
operator Â obeys the turn-over rule, which states that, for any two well-behaved functions f and g, 

 f Ag d Af d∗ ∗= ∫∫ ( ) ( )� �τ τg  (1.7)

It can be shown that an operator that obeys Equation 1.7 corresponds to a real physical property.
A physical property may be calculated in one of two ways. If the system happens to be in a state that is 

an eigenfunction of the operator corresponding to physical property Â, then the only allowed values of the 
property are the eigenvalues an of the operator: 

 �A an n nψ ψ=  (1.8)

The an’s are constants and are real. Now, an eigenvalue equation is a special case. What if the system is in a 
state for which Â nψ  is not equal to a constant times ψn? In this case we cannot specify the exact value of the 
physical property; we must resort to calculating the expectation value: 

 A A dn n= ∗∫ψ ψ τ�  (1.9)

〈A〉 is the average value of the physical property when the system is in state n. It is often convenient to use 
Dirac notation in expressions such as 1.9. The wavefunction ψn is represented by the ket vector |ψn〉 or |n〉, 
and its complex conjugate ψ n

∗ is the bra vector 〈ψn| or 〈n|. Putting the two together to form a bra-ket (bracket) 
represents integration over the coordinates of the system. For example, normalization and orthogonality can 
be summarized by the inner product: 

 δnm n m= 〈 〉|  (1.10)

where the Kronecker delta function δ nm is equal to 1 if n = m and 0 if n ≠ m. The expectation value in Dirac 
notation is 

 A n A n Ann= ≡ˆ
 (1.11)

In many problems we are interested in matrix elements of the operator Â connecting two different states: 
A n A mnm ≡ ˆ . We will also have need for the outer product |m〉 〈n|. This outer product is just the product of 
ψm and ψ n

∗. Unlike the inner product, no integration is implied. The outer product is “waiting” to meet up with 
a bra from the left or a ket from the right.

So the good news of quantum mechanics is that we can solve the Schrödinger equation and know all 
there is to know about a system. The bad news is that this equation can be solved exactly for only a handful 
of model systems! Fortunately, these exactly solvable models are reasonable approximations to some very 
relevant chemical problems, and have much to teach us about quantum mechanical systems in general. Let 
us review the model problems that help us to understand translational, rotational, vibrational and electronic 
energies of molecules.

1.3.1  The parTicle in a box: a model for TranslaTional 
energies

This model assumes that a particle is confined to a region of space by a potential energy that rises to infinity 
at the walls of the container. The problem may seem very simple and perhaps artificial, but it illustrates some 
general principles that apply to more realistic quantum mechanical systems. Furthermore, it provides the 
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basis for the analysis of translational energies of ideal gases using statistical thermodynamics. Let us consider 
the three-dimensional system, in which a particle is considered to occupy a volume V = abc, where a, b, and 
c are the edge lengths of the box along the x, y, and z directions. The picture behind this model is shown in 
Figure 1.1. The potential energy is zero within the confines of the box and infinite outside the box. This dis-
continuity in the potential amounts to an infinite force on the particles at the walls of the box, and thus there 
is no leakage of the probability, that is, no tunneling. The wavefunction must go to zero at the boundaries, as 
there is no probability of finding the particle outside the box. Since there are three dimensions, there are three 
quantum numbers: nx, ny, and nz, one for each boundary condition. The wavefunctions are 

 ψ π π π
n n n

x y z
x y z

abc

n x

a

n y

b

n z

c
= 
























8
sin sin sin  (1.12)

where each of the three quantum numbers ranges independently over the nonzero positive integers. The pos-
sibility that any of them could be zero is excluded because this would result in the wavefunction vanishing 
everywhere. If there is a particle in the box, ψ n n nx y z  cannot be zero! This has an important consequence, which 
is revealed by the expression for the quantized energy: 
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 (1.13)

The lowest possible (ground state) energy for this particle is attained when (nxnynz) is equal to (111), and it is 
evident that E111 ≠ 0. This existence of zero-point energy (nonzero energy in the ground state) is required by 
the uncertainty principle: 

 ∆ ∆x px ≥ �/2 (1.14)

which states that the product of the uncertainties in the position and momentum of the particle cannot be less 
than ħ/2. Uncertainty principles such as that of Equation 1.14 result whenever two operators do not commute. 
In this case, the commutator, defined by [ , ]� � � � � �x p x p p xx x x= − , is equal to iħ. Inside the box the potential energy 
is zero, so the energy is entirely kinetic: T p m p p p mx y z= = + +2 2 2 22 2/ ( )/ . If the energy could be zero, then the 
momentum would be precisely known to be zero, in violation of Equation 1.14.

The uncertainty in a quantum mechanical property is defined as 

 ∆A A A= −2 2  (1.15)

Equation 1.15 says that the uncertainty in physical property A is the square root of the difference in two expec-
tation values: The first is the average of the square of the operator, and the second is the square of the average. 
These two expectation values are different unless the state of the system is an eigenfunction of Â. Equation 1.15 
is really just the standard deviation of the physical property A, since the wavefunction-squared is a probability 
distribution. Equation 1.14 springs from the general expression 

z
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V = ∞
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c

x

a

Figure 1.1 The potential energy function for a particle in a three-dimensional box.
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 ∆ ∆A B A B≥ 





1

2
ˆ , ˆ  (1.16)

In other words, the product of two uncertainties can be no less than one-half the expectation value of the 
commutator of the operators for the properties. Equation 1.14 follows directly from 1.16.

The three-dimensional particle in a box illustrates degenerate energy levels. When two or more states 
(represented by wavefunctions, e.g., Equation 1.12) share the same energy level, they are said to be degen-
erate. Suppose that the box is a cube: a = b = c. The ground state, with nx = ny = nz = 1, is nondegenerate 
with energy 3h2/8ma2. The first excited state, however, is triply degenerate, because the energy 6h2/8ma2 
can be achieved by three different combinations of the quantum numbers (nxnynz): (211), (121), and 
(112). These represent three distinct states since they differ in the position of the nodal plane: ψ211 has 
a nodal plane at x = a/2, ψ121 has one at y = a/2, and ψ112 has one at z = a/2. Degeneracy is a consequence 
of symmetry, and if we start with the cubic box and distort it, the degeneracy is lifted and the levels split 
apart. We can see this effect in molecules; e.g., a degenerate electronic state of a symmetric molecule such 
as benzene may be split by substitution, which perturbs the sixfold rotation symmetry. An octahedral 
transition metal complex may tend to distort to a less symmetric form if in doing so it can put electrons 
in lower energy levels.

Note also the general feature that states of increasing energy have more and more nodes. These nodes, 
where the wavefunction and thus the probability goes to zero, are one of the many strange aspects of 
quantum mechanics that would not be expected from the classical analogy to the problem. It is evident 
that nodes are required in order for two states to be orthogonal to one another. Another lesson is that 
the energy levels are farther apart for smaller boxes. Conversely, as the box size increases the energy 
levels get closer together, merging into a continuum in the classical limit. This trend, in which the 
separation of adjacent energy levels decreases with increasing size, is also seen in atoms, molecules, and 
nanoparticles.

The particle in a box model is useful for modeling translational energies of molecules in the gas phase. 
The model is consistent with the ideal gas approximation, in that it neglects intermolecular interactions. As 
you will show in one of the homework problems, the typical energy level spacings of particles in macroscopic 
boxes are much smaller than thermal energy at normal temperatures. This means that translational energy 
levels are essentially continuous and can be treated classically. Translational motion leads to Doppler broad-
ening of gas phase spectra and to light scattering by fluids.

1.3.2  The rigid roTor: a model for roTaTional moTion 
of diaTomics

The rigid rotor model is an approximation to the problem of a freely rotating molecule. For a molecule to qualify 
as a free rotor, there can be no torques, or equivalently, no angular dependence of the potential energy. As such, 
the model is applicable to the analysis of gas phase samples where the intermolecular interactions are negligible. 
Angular momentum is a key concept in many quantum mechanical problems, including the topic of electron 
spin to be discussed in Chapter 3. The simplest example of rotational motion is a diatomic molecule having a 
rigid bond (Figure 1.2). This model obviously ignores the vibrational motion of the molecule, but it is a good 
first approximation to the problem if the vibrational energy is not too high. (We shall improve on this picture 
in Chapters 8 and 9 by accounting for the coupling of vibration and rotation.) In the present model, we picture 
a dumbbell-like object in which two masses m1 and m2 are connected by a rigid (and massless) rod of length R. 
In this section, we consider angular motion of this body relative to a fixed center of mass. We postpone until 

R
m m

Figure 1.2 The rigid rotor model.
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Chapter 8 the discussion of how this internal motion (relative to a coordinate system fixed in the molecule) may 
be separated from the external motion (the translational motion of the center of mass). The reader is referred to 
the coordinate system shown in Figure 1.3.

In spherical polar coordinates, the distance r is equal to (x2 + y2 + z2)1/2, and the vector 
�
r  makes an angle θ 

with respect to the positive z-axis. The angle ϕ is the angle of rotation about the z-axis, as defined in 
Figure 1.3. For the present problem, we consider the origin of the coordinate system to be fixed at the center 
of mass of the molecule. The orientation of the coordinate system is arbitrary, but it must remain stationary 
for our analysis. Since the bond distance R is constant, the angles θ and ϕ are the only coordinates on which 
the wavefunctions depend. Thus we expect two quantum numbers.

The moment of inertia I of a diatomic is 

 I R= µ 2  (1.17)

where μ is the reduced mass:

 µ =
+

m m

m m
1 2

1 2

 (1.18)

The potential energy is independent of angle and may be set equal to zero everywhere. The Hamiltonian then 
consists only of the operator for kinetic energy: 

 ˆ
ˆ

H
L

I
=

2

2
 (1.19)

where L̂ is the operator for angular momentum. The form of the L̂2 operator will be presented in Chapter 8. 
(The square of an operator means to operate twice with the same operator.) Recall that angular momentum 
is a vector. The classical expression is 

� � �
L r p= × , the cross-product of the position and momentum  vectors, 

where r is the distance from the axis of rotation (see Appendix A for a review of vector  operations). The 
angular momentum vector of a diatomic spinning in a plane is perpendicular to the plane. It points up 
or down according to whether the rotation is clockwise or counterclockwise (Figure 1.4), in accordance 
with the right-hand rule for the cross-product. So the direction of 

�
L depends on the orientation of the 

rotational motion.
Let us consider the commutation properties of the operators for the x, y, and z components of angular 

momentum L̂x, L̂y, and L̂z . It turns out that these operators do not commute with one another: 

 

ˆ , ˆ

ˆ , ˆ

ˆ , ˆ

L L i L

L L i L

L L i L

x y z

y z x

z x y





 =





 =





 =

�

�

�

 (1.20)

z

y

x = r sinθ cosϕ
y = r sinθ sinϕ
z = r cosθ

ϕ
x

θ
r

Figure 1.3 Spherical polar coordinates.
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Thus, we cannot simultaneously specify all three components of 
�
L. The L̂2 operator, however, commutes with 

each of the three components of angular momentum: 

 
ˆ , ˆ ˆ , ˆ ˆ , ˆL L L L L Lx y z

2 2 2 0



 = 



 = 



 =

 
(1.21)

Equation 1.21 would seem to imply that we can know the magnitude of the angular momentum and each of 
the three components, but that would violate the uncertainty required by Equation 1.20. The result is that we 
may simultaneously specify the magnitude and one component of the angular momentum. When two opera-
tors commute, they share a set of common eigenfunctions. The form of the L̂z  operator is particularly simple, 

 
L̂ iz = −

∂
∂
�

ϕ  
(1.22)

It is therefore convenient to find the eigenfunctions shared by L̂z  and L̂2. These are the spherical harmonics 
Ylm(θ,ϕ) (see Appendix A). These functions are tabulated in many books, and they will crop up again in many 
later chapters. (In the hydrogen atom problem, the shapes of these functions determine the angular depen-
dence of atomic orbitals.) Here, we are interested in their eigenvalues: 

 

ˆ ( ) , , ,

ˆ , , ,

L Y l l Y l

L Y m Y m

lm lm

z lm lm

2 21 0 1 2

0 1

= + = …

= = ± ±

�

�

where

where 22,…± l 
(1.23)

The implications of Equation 1.23 are of considerable importance. The angular momentum vector of a mol-
ecule in a particular state has the magnitude 

 | | ( )
�

�L l l= + 1  (1.24)

For any value of the angular momentum quantum number l, there are 2l + 1 possible orientations corre-
sponding to the allowed values of Lz = mħ. Since the x and y components of angular momentum are unspeci-
fied, the vector 

�
L can be considered to lie anywhere on a cone making an angle θ with respect to the z-axis, as 

shown in Figure 1.5. The permissible angles are given by 

 cos
( )

θ =
+

m

l l 1
 (1.25)

The angular momentum vector cannot coincide with the z direction, as that would mean Lx = Ly = 0, in viola-
tion of the uncertainty required by Equation 1.20.

The coordinate frame xyz has an arbitrary orientation in the laboratory. Now, there is nothing special 
about the z-axis as far as a molecule is concerned, unless there happens to be an electric or magnetic field that 
makes one direction unique. If so, then it is convenient to call the direction of the field the z direction, since Lz 
is quantized. Pictures such as Figure 1.5 have an interesting resemblance to a classical mechanical situation: 

L

L

Figure 1.4 Angular momentum vectors: 
� � �
L r p= × .
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that of a magnetic moment in a magnetic field. There is a magnetic dipole moment associated with electronic 
orbital or spin angular momentum, or nuclear spin. (All these examples result in angular momentum equa-
tions like Equation 1.23, except that different symbols are used for different types of angular momentum.) The 
torque on a magnetic dipole in a magnetic field causes the dipole to precess about the field direction, sweeping 
out a cone like one of those in Figure 1.5.

Returning to the rotating diatomic molecule, the eigenfunctions of Equation 1.19 are readily obtained 
once we have Equation 1.23, since the inertia I is a constant. It is conventional to use the symbols J and M for 
the quantum numbers when discussing rotational states of molecules. The wavefunctions are the spherical 
harmonics YJM and the energy levels are given by 

 E
I

J JJ = +
�2

2
1( ) (1.26)

Note that the energy is independent of the quantum number M, since in the absence of a field the energy of a rotat-
ing molecule does not depend on its orientation in space. This leads to degeneracy of 2J + 1, the number of different 
values of M for a given J. The symbol g is commonly used to denote degeneracy. In this context, we have gJ = 2J + 1. 
The degeneracy of rotational energy levels is taken into account when calculating the equilibrium populations, and 
it will be seen that these populations contribute to the intensity patterns observed in rotational spectra.

The rigid rotor has no zero-point energy; the ground state has E = 0. That might seem like a violation of 
the uncertainty principle, but it is not. Equation 1.14 does not apply to this problem, but similar uncertainty 
principles interrelating the components and magnitude of 

�
L can be derived using Equation 1.16. Does it vio-

late an uncertainty principle if all three components of the angular momentum are zero?

1.3.3 The harmonic oscillaTor: VibraTional moTion

1.3.3.1 CLASSICAL MECHANICS OF HARMONIC MOTION

Imagine the situation pictured in Figure 1.6: a mass m connected to a stationary wall (or something of infinite 
mass) by a spring that obeys Hooke’s law. This law says that the force on the spring is directly proportional to 
the displacement: 

 F kx= −  (1.27)

The equilibrium position of the mass is defined to be x = 0. The minus sign in Equation 1.27 indicates that F 
is a restoring force; it acts in a direction opposite to the displacement. k is called the force constant, and it is 
a measure of the stiffness of the spring. The force is also equal to the negative slope of the potential energy: 
F = −dV/dx. Thus the potential energy is 

 V kx=
1

2
2 (1.28)

x

z
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1

–1

–2

0

Figure 1.5 Quantized angular momenta for the case l = 2.
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This is the equation of a parabola. We refer to V as a harmonic potential. It is clearly an approximation to a 
real-world spring, as it assumes that compressing the spring a certain distance has the same effect as extend-
ing it the same amount. (Think about this. Does it make sense to allow x to go to positive infinity, or to 
negative infinity?) But if we promise to use this model only when the displacements are small, it will be a fine 
approximation. We can justify the harmonic approximation by expanding the potential energy in a Taylor 
series about x = 0, as will be discussed in later chapters.

It is worthwhile to consider the classical situation first, and then see how the quantum mechanical 
problem compares. In classical mechanics, we can find the trajectory of the particle by solving the equa-
tions of motion. Alternatively, let us do the following thought experiment. Imagine that the mass rests in 
the middle of a roll of chart paper, and has a pen stuck in it, as shown in Figure 1.6. We can pull (or push) 
the mass a certain amount and set it in motion. Meanwhile, let the chart paper roll and the pen will make 
a graph of position versus time. This graph will be a cosine wave, or a sine wave, since the origin of time is 
arbitrary. The initial conditions determine the amplitude (maximum displacement) x0 of the oscillation. 
Choosing the cosine function (letting x = x0 at t = 0), the function drawn on the chart paper is x = x0cosω 0t, 
where ω 0 is the angular frequency. Every time ω 0t increases by 2π, the mass returns to the same position. 
Thus the period of the motion is 2π/ω 0 = 1/ν0, where ν0 is the frequency in cycles per second (or just plain 
s−1). You can think of ω 0 = 2πν 0 as the frequency in radians per second, but the units are still just s−1. The 
subscript 0 is used here to denote the natural frequency of the oscillator, which you will show in one of the 
homework problems to be 

 
ω πν0 02= =

k

m  
(1.29)

This relation predicts that stiffer springs and lighter masses result in higher frequency motion.
Once we set the oscillator in motion, it will maintain a constant energy, since there are no fric-

tional losses in the model. It is readily seen that the kinetic and potential energies are both periodic 
functions: 

 
T m

dx

dt

kx
t= 






 =

1

2 2

2
0
2

2
0sin ω

 
(1.30)
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(1.31)

The total energy is constant and decided by the amplitude: E T V kx= + = 0
2 2/ . An important punchline is 

the following: A classical harmonic oscillator can have any amplitude, and thus any energy. This is in stark 
 contrast to the quantum mechanical harmonic oscillator.

m

Figure 1.6 Thought experiment for harmonic motion.
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1.3.3.2 THE QUANTUM MECHANICAL HARMONIC OSCILLATOR

Let us base the quantum mechanical problem on a picture that is just slightly different from the mass and 
spring used previously. Consider two masses (two atoms) m1 and m2, connected by a Hooke’s law spring as in 
Figure 1.7. We take x = R − Re to be the displacement of the bond length R from its equilibrium position Re. 
The Hamiltonian for this system is 

 Ĥ
d

dx
kx=

−
+

�2 2

2
2

2

1

2µ
 (1.32)

Note the appearance of the reduced mass μ ≡ m1m2/(m1 + m2) in the kinetic energy operator. (We will see 
where this comes from in Chapter 8.) The eigenvalues of this Hamiltonian are the harmonic oscillator energy 
levels: 

 E hv v= +







1

2
0ν  (1.33)

where the quantum number v can be 0, 1, 2, …, ∞. Note that there is only one quantum number for this one-
dimensional problem, and the energy levels are nondegenerate. The natural frequency is 

 ν
π µ0
1

2
=

k
 (1.34)

Once again, the position–momentum uncertainty principle results in zero-point energy: E0 = hν0/2. The 
eigenfunctions of Equation 1.32 are sketched in Figure 1.8. The energy levels of Equation 1.33 are represented 
by horizontal lines in the figure, and each wavefunction is graphed using the energy line as the x-axis. The 
fact that the wavefunctions extend to infinity is significant, as it leads to the concept of tunneling. Tunneling 
means that the quantum mechanical system has some probability of being found in a classically forbidden 
region. In the regions where the tails of the wavefunctions extend outside the parabolic potential well, the 
potential energy exceeds the total energy. Applying the notion that E = T + V, this leads to the disturbing idea 
that the kinetic energy is negative in the tunneling region! This would never occur for the classical harmonic 
oscillator, which always turns around at the points ±x0 (the “turning points”) where the total energy and the 
potential energy are equal. Once again, the quantum mechanical problem gives rise to a weird effect that has 
no comparison in the classical mechanical world.

m m

Figure 1.7 The harmonic approximation for a diatomic molecule.

v = 0
1
2
3
4
5
6
7

Figure 1.8 Eigenfunctions and energies of a quantum mechanical harmonic oscillator.
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1.3.3.3 HARMONIC OSCILLATOR RAISING AND LOWERING OPERATORS

The harmonic oscillator (HO) raising and lowering operators, a+ and a, provide an elegant way to approach 
many problems in spectroscopy. The use of these operators and the HO eigenkets can greatly simplify the 
calculation of expectation values and matrix elements in vibrational problems. In Chapter 2, we will use 
 formally identical operators to describe the Hamiltonian for the quantized radiation field.

The non-Hermitian operators a+ and a are defined in terms of the operators for position q̂  and momentum p̂: 

 
a q

ip+ ≡ 





 −











µω
µω

0
1 2

02�

/

�
�

 
(1.35)

 
a q

ip
≡ 






 +











µω
µω

0
1 2

02�

/

�
�

 
(1.36)

These equations are definitions. It will now be shown how the effect of the raising and lowering operators on 
the HO eigenfunctions follows from their commutation properties. We first rewrite the position and momen-
tum operators in terms of a+ and a: 

 
ˆ ( )

/

q a a=








 + +�

2 0

1 2

µω  
(1.37)

 
ˆ ( )

/

p i a a= − 





 − +µ ω� 0

1 2

2  
(1.38)

When these expressions are substituted into the Hamiltonian, ˆ ˆ / ˆ /H p qvib = +2
0
2 22 2µ µω , the result is 

 
ˆ ( )H aa a avib = ++ +1

2
0�ω  

(1.39)

A more convenient form of Equation 1.39 is obtained by making use of the commutation relation [a, a+] = 1, 
which follows from [ , ]q p i� � = � : 

 
Ĥ a avib = +








+�ω0
1

2  
(1.40)

With our prior knowledge of the eigenfunctions and eigenvalues of the Hamiltonian, this expression leads 
us to postulate a set of functions |v〉 that are eigenfunctions of a number operator defined as N̂ a a≡ + ; that is, 
ˆ .N v v v=  From the conventional differential equation solution to the HO problem, we know that the spec-

trum of eigenvalues of the number operator is the set of all positive integers, including zero. Using operator 
algebra, we can demonstrate the basis for calling a+ and a raising and lowering operators. Assume that we can 
operate on the eigenket |v〉 with a to generate the new vector |f 〉 = a|v〉. Let us find the result of applying the 
number operator to this new function: 

 

ˆ ( )

( )

( ˆ ) ( )

Na a aa aa a

aa a a

a N a

v v v

v

v v v

= = −

= −

= − = −

+ +

+

1

1 1

 (1.41)

Equation 1.41 shows that |f 〉 = a|v〉 is an eigenfunction of N̂  with eigenvalue v − 1; the operator a has low-
ered the eigenvalue by one. The ket |f 〉 must therefore be proportional to the ket |v − 1〉; |f 〉 = a|v〉 = C|v − 1〉. 
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The proportionality constant C can be chosen by taking the eigenvectors |v〉 and |v − 1〉 to be normalized. 
Since 〈v|a+ = (a|v〉)*, 

 f f a a v C C= =+ ∗v  (1.42)

Using 〈v|a+a|v〉 = v〈v|v〉 = v, and choosing the constant C to be real, we get 

 a v v v= − 1  (1.43)

Notice that Equation 1.43 ensures the lower bound of 0 on the eigenvalues v, since applying the lowering 
operator to the ket |0〉 returns the value zero, and no negative values of v can be obtained.

Using the same approach on the vector |f 〉 = a+|v〉, one can show that 

 a + = + +v v v1 1  (1.44)

Thus a+ converts an eigenket |v〉 into a new eigenket having its eigenvalue increased by one. As an example of 
the utility of this formalism, consider using these operators to derive the following recursion formula for the 
HO eigenfunctions: 

 q v v 1 v v v
0

=








 + + + −





�
2

1 1

1 2

µω

/

 (1.45)

Equation 1.45 is obtained by using the position operator q as given in Equation 1.37. It will be useful in future 
chapters when we consider selection rules for vibrational transitions.

1.3.4 The hydrogen aTom

As a one-electron atom, the hydrogen atom lacks the pairwise inter-electronic repulsion that prevents an 
exact solution of the Schrödinger equation in the case of many-electron atoms. By examining the quantum 
mechanical treatment of one-electron atoms, we obtain some general physical concepts and indeed the basis 
for approximate treatments of the electronic structure of many-electron atoms and molecules. Hydrogen-like 
(that is, one-electron) atoms require a set of four quantum numbers to fully specify the wavefunction, and 
only one to define the energy. The number of quantum numbers is consistent with the electron having three 
spatial and one spin degree of freedom. The variational principle, on which self-consistent field calculations 
are based, permits us to build approximate wavefunctions for many-electron atoms which assign individual 
electrons to hydrogenic orbitals with definite spatial and spin quantum numbers, as will be considered in 
Chapter 7.

The hydrogen atom wavefunctions (which apply to all one-electron atoms or ions by appropriate choice 
of the atomic number Z) depend on the spatial variables r, θ, and ϕ and an abstract spin coordinate often 
called σ. The spatial coordinates are the spherical polar coordinates which allow the Schrödinger equation 
to be solved using separation of variables. They define the position of the electron relative to the center of 
mass of the atom, which is quite close to the position of the more massive nucleus. The polar coordinates r, 
θ, ϕ (see Figure 1.3) are related to the Cartesian coordinates x, y, z as follows: 

 x r= sin cosθ ϕ  (1.46)

 y r= sin sinθ ϕ (1.47)

 z r= cosθ  (1.48)
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The spin coordinate, on the other hand, is a conceptual device to keep track of the two possible states of elec-
tron spin, designated α for spin-up and β for spin-down. The wavefunctions for the one-electron atom are 
represented as follows: 

 Ψnlm m nl lml s lr R r Y, , , ,θ ϕ σ θ ϕ
α
β

( ) = ( ) ( )






 (1.49)

where Rnl(r) is the radial wavefunction and Ylml θ ϕ,( ) the angular one. The angular wavefunctions are the 
same spherical harmonics that pertain to the rigid rotator problem. Both are cases of two particles rotating 
in a coordinate system for which the origin is the center of mass. The two angular variables can be further 
separated as follows: 

 Y P elm lm
im

l l
lθ ϕ ∝ θ ϕ, cos( ) ( )  (1.50)

The associated Legendre polynomials Plml ( )x  (Appendix A) are tabulated in various books [3,4] and can 
be generated by a recursion formula. For one-electron atoms we designate the angular momentum quan-
tum numbers with the letters l, ml corresponding to the eigenvalues of L̂2 and L̂z  respectively (using Dirac 
notation): 

 L̂ Y l l Ylm lml l

2 21= +( )�  (1.51)

 L̂ Y m Yz lm l lml l= �  (1.52)

Thus the magnitude of the orbital angular momentum vector is l l +( )1 �, and its projection onto the z direc-
tion is ml�.

The one-electron energy levels are given by 

 E
Z e

n a

Z

n
n =

−
( )

=
−

×
2 2

0
2

0

2

24 2
13 6

πε
. eV (1.53)

where n = 1, 2, 3, …∞ is the principal quantum number and a0 = 0.529 Å is the Bohr radius:

 a
ee

0
0

2

2

4
=

πε
µ
�  (1.54)

The quantity μe = memN/(me + mN) is the reduced mass computed from the mass of the electron me and that of 
the nucleus mN. Because mN is much larger than me, μe is approximately equal to me. The degeneracy of each 
energy level specified by the principal quantum number n is gn = 2n2, consistent with the number of values of 
l, ml, and ms that are permitted for each value of n, namely: 

 l n= … −0 1 1, , ,  (1.55)

 m l l l ll = − − + … … −, , , , , ,1 0 1  (1.56)

 
ms = ±

1

2  (1.57)
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The states having orbital quantum number l = 0, 1, 2, 3, 4… are referred to by the letters s, p, d, f, g…, etc. 
This quantum number is also called the azimuthal quantum number. The reader may wish to verify that 
g l nn l

n= + ==
−∑2 2 1 2

0

1 2( )  by evaluating the summation. The allowed values for these quantum numbers derive 
from the boundary conditions on the Schrödinger equation. The spin quantum number s is always equal to 
1/2 for any electron, so it does not need to be specified for a one-electron atom. It pertains to the length of 
the spin angular momentum vector the same way that the quantum number l determines the magnitude 
of orbital angular momentum, as shown in the eigenvalue relations given below. Just as the quantum number 
ml, which decides the z component of orbital angular momentum, ranges from −l to l in steps of one, so too 
does the quantum number ms range from −s to s, or from −1/2 to 1/2.

In the case of spin angular momentum, we may use the abstract spin eigenfunctions |α〉 and |β 〉 to write: 

 Ŝ2 2 21

2

1

2
1

3

4
α α α= +






 =� �  (1.58)

 Ŝ2 2 21

2

1

2
1

3

4
β β β= +






 =� �  (1.59)

 Ŝz α α=
1

2
�  (1.60)

 Ŝz β β=
−1

2
�  (1.61)

An essential difference between the physical angular momentum of a rotating two-particle system and spin 
angular momentum is the occurrence of half-integral quantum numbers for the latter. Since the operators 
for the x, y, and z components of angular momentum (orbital or spin) do not commute with one another, we 
cannot specify the x and y components along with the z component. This leads to the sort of pictures shown 
in Figure 1.9, where the angular momentum vector is considered to lie on the surface of a cone of revolution 
about the z-axis.

The radial wavefunctions Rnl(r) of the hydrogen atom determine the extent of the probabilistic electron 
cloud that is often visualized as the “size” of the atom. These take the form of a product of a polynomial and an 
exponential function, with the latter serving to enforce the boundary condition that the probability of finding 
the electron at a distance r from the nucleus decay asymptotically to zero: 

 R r N c c r c r r enl n l
n l l Zr na( ) = + + +( )− −

− − −
0 1 1

1 0� /  (1.62)
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Figure 1.9 Angular momentum vectors for l = 1 and s = ½.
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The coefficients cn of each term rn obey a recursion formula which can be found in most quantum chemistry 
texts [3,4]. As will be shown in Chapter 7, the allowed transitions between energy levels of the hydrogen atom 
result in absorption and emission frequencies 

 �ν = −







R

n n
H

1 1

1
2

2
2

 (1.63)

The Rydberg constant is RH = 109,737 cm−1 and n1 < n2. RH can be found using Equations 1.53 and 1.5: 

 R
e

h c
H

e=
2

4

2 4

0
2 3

π µ
πε( )

 (1.64)

Equation 1.64 introduces the wavenumber unit �ν , or cm−1, where �ν  is the reciprocal of the wavelength of light 
in cm. �ν  = ν/c is equivalent to the frequency of light ν in s−1 divided by the speed of light c = 2.99792 × 1010 cm/s. 
Wavenumbers are convenient frequency units in spectroscopy.

1.3.5  general aspecTs of angular momenTum 
in quanTum mechanics

Angular momentum of charged particles leads to magnetic properties as discussed further in Chapter 3. In 
addition to the orbital l and spin s angular momenta of an electron in a hydrogen atom, it will be seen in Chapter 7 
that many-electron atoms possess orbital L and spin S angular momenta which can couple further to give a total 
angular momentum J. The use of upper case letters for these quantum numbers is to distinguish them from 
their single electron counterparts. Many nuclei also possess angular momentum as designated by the quantum 
number I, which can take on nonnegative integer or half-integer values depending on the atomic number and 
isotope. Despite the variety of symbols for the various angular momentum quantum numbers, s, l, S, J, L, I, etc., 
their quantum mechanical properties, i.e., commutator relations and eigenvalue expressions, are similar. Owing 
to the former, the magnitude of the angular momentum and its z-component are quantized while the x and 
y components are uncertain. We state these generalities here in terms of a generic angular moment quantum 
number j which can be integral (as in the case of orbital angular momentum) or half-integral (as in the case 
of s = ½ for an electron). The value of j determines the magnitude of the angular momentum vector, referred 
to here as 

�
�J j j= +( )1 . A second quantum number m j  ranges from j to –j in integral steps and specifies the 

z-component of the angular momentum: J mz j= �. There are 2j + 1 values of m j . We can specify the eigenfunc-
tions by using Dirac notation and indexing the quantum  numbers: j m j, . For example, when this notation is 
applied to the case of electron spin, the eigenfunctions are expressed as α = 1 2 1 2/ , /  and β = −1 2 1 2/ , / . We 
can then write generic eigenvalue relations for any kind of quantized angular momentum as follows: 

 
ˆ , ( ) ,

ˆ , ,

J j m j j j m

J j m m j m

j j

z j j j

2 21= +

=

�

�
 (1.65)

It is useful to define ladder operators for angular momentum as follows: 

 
ˆ ˆ ˆ

ˆ ˆ ˆ

J J iJ

J J iJ

x y

x y

+

−

= +

= −
 (1.66)

The j m j,  are not eigenfunctions of these ladder operators. As shown in most quantum mechanics texts, Ĵ + and 
Ĵ − act as raising and lowering operators, respectively: 

 
ˆ , [ ( ) ( )] ,

ˆ , [ ( ) (

/J j m j j m m j m

J j m j j m m

j j j j

j j j

+

−

= + − + +

= + − −

1 1 1

1 1

1 2�

))] ,/1 2 1� j m j −
 (1.67)
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The raising operator has the effect of converting an eigenfunction of Ĵ z with eigenvalue m j� into a new 
 eigenfunction with eigenvalue ( )m j +1 �, with no effect on the eigenvalue of Ĵ 2. Similarly, Ĵ − lowers the eigen-
value of Ĵ z to ( )m j −1 �. Notice that if m j  has the maximum value of j, then ˆ ,J j j+ = 0, e.g. it is impossible to 
raise the eigenvalue of Ĵ z any further. Similarly, ˆ ,J j j− − = 0 .

Ladder operators are useful for finding matrix elements of the operators for the x and y components of 
angular momentum, using the following: 

 

ˆ ( ˆ ˆ )

ˆ ( ˆ ˆ )

J J J

J
i

J J

x

y

= +

= −

+ −

+ −

1

2

1

2

 (1.68)

To illustrate this using the spin angular momentum operators (using the letter S in place of J for the relevant 
operators), it is straightforward to demonstrate the following: 
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2

2

2

 (1.69)

It is seen that the x and y components of the spin operators connect the α and β spin functions, in contrast to 
Ŝz which is a diagonal operator.

1.4  APPROXIMATE SOLUTIONS TO THE SCHRÖDINGER 
EQUATION: VARIATION AND PERTURBATION THEORY

We have now reviewed the exactly solvable quantum mechanical problems. (A fifth example, the hydrogen 
molecule ion H2

+, can only be solved “exactly” if one makes the Born–Oppenheimer approximation, dis-
cussed in Chapter 9.) What of the many problems for which Ĥ Eψ ψ=  cannot be solved exactly? For example, 
in atoms and molecules with two or more electrons, the interelectronic repulsions make exact solutions to the 
Schrödinger equation impossible. In other situations, we might need to find the energy for a problem that is 
close to one for which we already know the solution. Two methods are commonly employed to address these 
problems. The variation theorem, which states that there is a lower bound on the energy calculated with an 
approximate wavefunction, is of great utility in electronic structure calculations. Another approach is per-
turbation theory, which is useful whenever the true Hamiltonian is slightly different from one for which the 
energies and wavefunctions are known.

1.4.1 VariaTion meThod

In this approach, one uses an approximate wavefunction ϕ which has to obey the appropriate boundary con-
ditions. The variation theorem states that the energy expectation value calculated using this trial function 
cannot be any lower than the true ground-state energy E0: 

 E
H

E= ≥
ϕ ϕ

ϕ ϕ

ˆ
0 (1.70)
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Note that Ĥ  has to be the exact Hamiltonian operator and ϕ has to be a well-behaved function which satisfies 
the boundary conditions. The denominator in 1.70 is present in case the trial function ϕ is not normalized. 
Equation 1.70 says that the lower the energy calculated with some function ϕ, the closer it is to the exact 
energy. This suggests that a good way to proceed is to build some flexibility into the trial functions, some 
adjustable parameters that can be varied to obtain the lowest possible energy with that functional form. One 
way to do this is to use linear variation theory, in which the trial function is taken to be a linear combination 
of basis functions, say, f1, f2, …, fn. Then we have 

 ϕ = + + +c f c f c fn n1 1 2 2 �  (1.71)

The ci,s are coefficients (just plain numbers) to be determined by minimizing the energy. The basis functions 
may be any functions appropriate to the boundary conditions. In the calculation of electronic energy levels of 
molecules, for example, they may be hydrogen-like wavefunctions localized on the atoms. This is the basis for 
the LCAO-MO (linear combination of atomic orbitals to get molecular orbitals) method, which will be reviewed 
in Chapter 11.

Equation 1.71 can be used in Equation 1.70 to get an expression for the energy that depends on the coef-
ficients. Then, to get the lowest possible energy with the given basis set, we set d〈E〉/dci = 0 for each of the n 
coefficients. This leads to a set of simultaneous linear equations: 

 

H E H ES H ES

H ES H E H ES

H ES H

n n

n n

n n n

11 12 12 1 1

21 21 22 2 2

1 1

− − −
− − −

−

�
�

� � � �

22 2

1

2

0

0

0

0− −





































=









ES H E

c

c

cn nn n�
�












 (1.72)

where H f H f Hij i j ji= = ∗
˘

 and S f f Sij i j ji= = ∗ (Note that, in general, an element of the square matrix on the 
left-hand side is Hij − ESij, but the overlaps Sii are unity for normalized basis functions. We have dropped 
the angle brackets around the energy E.) The methods for solving Equation 1.72 are well established (see 
Appendix A). A solution exists only if the determinant of the matrix of Hij − ESij is zero: 
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 (1.73)

Expanding this determinant results in a polynomial of degree n in the energy: thus there are n roots for the 
energy. We can arrange these in order of increasing energy: E E E En0 ≤ ≤ ≤  1 2� . Each root in this sequence is 
a lower bound to the true energy; that is, E0 is no lower than the true ground state energy, E1 is no lower than 
the energy of the first excited state, etc. For each solution Ek, there is a particular set of coefficients to describe 
the corresponding wavefunction: ϕk kii ic f= ∑ . (We have to use an additional subscript on the coefficients to 
keep track of the n different linear combinations.) The cki,s for a particular root are found by substituting the 
energy Ek into the matrix Equation 1.72 and solving. When this is done, one finds that the coefficients can only 
be determined to within a multiplicative constant, so it is customary to impose normalization of each ϕk to fix 
the values of the cki,s.

Linear variation methods are frequently used in electronic structure calculations, and the idea of combin-
ing wavefunctions (basis states) to get new wavefunctions (trial functions like ϕ) is a recurring theme. The 
number of calculated energy levels and states is always equal to the number of basis states combined.

1.4.2 perTurbaTion Theory

We are often interested in molecules which are subject to weak perturbations, such as an external electric 
or magnetic field. In the study of spectroscopy, we deal with the perturbation resulting from the application 
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of a time-dependent electromagnetic field (that of light), and the theory required for that problem is pre-
sented in Chapter 4. Here, we are concerned with perturbations that do not vary in time, such as static fields. 
Sometimes, the perturbing field is intrinsic to the molecule, as in spin-orbit coupling where the orbital motion 
of the electrons presents a magnetic field with which the electron spin interacts. (We will have more to say 
about this in later chapters.) In general, the Hamiltonian is taken to be 

 
ˆ ˆ ˆ( )H H H= + ′0 λ  (1.74)

where we assume that we know the zero-order eigenfunctions and energies: 

 
ˆ ( ) ( ) ( ) ( )H Ei i i

0 0 0 0ψ ψ=  (1.75)

The extra term is the perturbation Ĥ ′ and λ is just a number that we can use to turn the perturbation on (λ = 1) 
and off (λ = 0). In derivations of the working equations for perturbation theory, λ is a convenient tag for keeping 
track of the order of the correction. The perturbed wavefunction is written as 

 ψ ψ λψ λ ψi i i i= + + +( ) ( ) ( )0 1 2 2 � (1.76)

We say that ψ i
( )1  is the first-order correction to the wavefunction, and so forth. Similarly, the perturbed energy 

is a series: 

 E E E Ei i i i= + + +( ) ( ) ( )0 1 2 2λ λ � (1.77)

In order for the perturbation approach to be useful, the series expansions of the wavefunction and energy 
must converge. The zero-order energy should be larger than the first-order correction, which should be larger 
than the second-order correction, and so forth.* So the approach is a good one when the perturbation results 
in small changes in the energies compared to the original (zero-order) values.

The working equations for perturbation theory are derived by substituting Equations 1.76 and 1.77 into 
the Schrödinger equation and equating like powers of λ (see Ref. [3] or [4] for a complete discussion). These 
equations depend on whether the zero-order state of interest is degenerate. In the case that ψ i

( )0  is not degener-
ate, the following first-order corrections are obtained: 
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The first-order correction to the energy can be found knowing only the zero-order wavefunctions. The 
first-order correction to the wavefunction is a linear combination of the zero-order wavefunctions: 
ψ ψi jij i jc( ) ( ).1 0= ≠∑  The form of the coefficients (Equation 1.79) results in important considerations as to which 
zero-order states make significant contributions to the perturbed wavefunctions. In order for state j to con-
tribute to perturbed state i, it is required that the matrix element of the perturbation operator connecting 
them not vanish: ′ ≠H ji 0. If the perturbation is totally symmetric, then according to group theoretical con-
siderations, ′H ji  vanishes if the two zero-order wavefunctions are of different symmetry (see Appendix C). 
It is also apparent that the energy difference in the denominator of Equation 1.79 is important. If two zero-
order states of the same symmetry are close in energy, then they will mix strongly when the perturbation is 
turned on. This is a recurring theme in quantum chemistry and spectroscopy: two nearby states of the same 

* It sometimes happens that a lower order correction vanishes due to symmetry, in which case the higher order correction 
is larger.
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symmetry mix together to give two perturbed states with shifted energies. (Fermi resonance of vibrational 
states, discussed in Chapter 10, is one such example.)

Equations 1.78 and 1.79 are not valid when the perturbation is applied to a degenerate set of zero-order 
states. Consider an energy level that is n-fold degenerate. The problem is that the zero-order wavefunctions 
ψ ψ ψ1

0
2

0 0( ) ( ) ( ), , ,… n  are not unique. Whenever two or more eigenfunctions share a set of common eigenvalues, 
then any linear combination of these functions also has the same eigenvalue. In the zero-order problem, we 
are free to choose any linear combinations that we like (for example, the real versus complex p orbitals.) In 
a perturbation calculation, however, we need to find what are called the correct zero-order wavefunctions: 

 ϕ ψj k

k

n

kc=
=

∑
1

0( ) (1.80)

The ϕj,s are still zero-order wavefunctions; the superscript (0) has just been omitted for clarity. The linear 
combinations of Equation 1.80 (there are n different combinations) are said to be the correct linear combi-
nations if the perturbed wavefunctions ψj go to ϕj in the limit λ → 0. Imposing this condition leads to a set 
of simultaneous linear equations for the coefficients. The first-order energy correction is found by solving a 
matrix equation that bears much resemblance to Equation 1.72: 
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Equation 1.81 is based on starting wavefunctions ψk
( )0  that are orthogonal. This is not a problem, because we 

can always find linear combinations that satisfy orthogonality. The n roots for the first-order energy are found 
by setting the determinant of the square matrix in Equation 1.81 equal to zero. For each of the resulting values 
of E(1), there is a correct zero-order combination found from solving the coefficients. If all the energy roots 
are different, then the perturbation completely lifts the degeneracy. This does not always happen, and much 
depends on the symmetry of the problem.

1.5 STATISTICAL MECHANICS

Statistical mechanics provides the link between the quantum mechanical properties of individual molecules 
and the thermodynamic states of collections of molecules. Elementary quantum mechanical problems are 
usually concerned with isolated molecules, yet most spectroscopy experiments are done on samples contain-
ing large numbers of molecules. Quantum mechanics alone does not address the question of how molecules 
distribute themselves among the quantum states—we need statistical mechanics. Spectral transitions from 
some initial level i to final level f are only possible if level i is occupied and there is “room” in level f, and the 
strength of the response depends on the number of molecules in each level. In this section, we use the letter 
ε to denote single-molecule quantized energies, reserving the uppercase E for the total average energy of the 
collection. We must be careful to distinguish between levels (specified by energies) and states (specified by 
wavefunctions). If a level is degenerate, then we cannot resolve the transitions originating in different states. 
However, the degeneracy of the level, as we shall see, influences the probability that the level is occupied. The 
number of molecules ni in a particular level εi is called the occupation number.

The formulas of statistical mechanics are based on the concept of the ensemble average. The average of a 
physical property could conceivably be obtained by making a large number of repeated measurements on the 
same molecule at different times. Alternatively, we could measure the property for a large number of identical 
molecules and average that result. These two types of averages are hypothesized to be the same (the ergodic 
hypothesis). The ensemble average carries this idea a little further, and imagines a very large number of copies 
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of a system, each consistent with a set of thermodynamic properties. In the commonly employed canonical 
ensemble, the number of molecules N, the volume V, and the temperature T of all systems are fixed. Each 
system may be found in any microstate (collection of quantum states of the individual molecules), consistent 
with the values of N, V, and T. The volume of the system determines the spectrum of translational energies. 
The principle of equal a priori probabilities is applied, in which it is assumed that all possible microstates are 
equally probable. As shown, for example, in [5,6], this results in the well-known Boltzmann distribution 
being the most probable one. And, due to the large number of molecules (or systems), this most probable 
distribution is essentially the only one that is ever observed! The Boltzmann distribution is presented here 
without derivation.

Consider an ideal gas, where we can neglect the interactions between molecules, and let us suppose we 
know the quantized energy levels available to each molecule: ε0, ε1, ε2,…, etc. There are numerous ways that a 
large number N of molecules can be distributed among these levels. The Boltzmann distribution is the set of 
occupation numbers that is most probable for a system in equilibrium at the temperature T. According to this 
distribution, the ratio of the populations of a pair of states 1 and 2 is given by 
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where kB is Boltzmann’s constant, 1.3806488… × 10−23 J/K, and gi is the degeneracy of state i. In expressions 
such as Equation 1.82, it is common to use the following definition to save writing: 

 
β =

1

k TB  
(1.83)

We see that the population of a level i is proportional to gi exp(−βεi). With a little effort, we can be more spe-
cific and find the number ni by requiring the populations to sum to the total number of molecules: n Nii∑ = . 
This results in a normalized probability distribution: 
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where pi is the probability that level i is occupied. Introducing the concept of a partition function z, 
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the probability is given by 
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(1.86)

The partition function is a measure of the number of thermally available states. This can be appreciated by 
taking the ground state energy to be zero, so that z g g g= + − + − +0 1 1 2 2exp( ) exp( )βε βε �. In the limit of 
low temperature (large β), the partition function goes to g0, and only the ground state is available. As the 
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temperature is increased, the exponential terms contribute with greater weight as higher energy states 
become available, and z increases with temperature. Once the partition function is known, thermodynamic 
properties, such as energy, entropy, and pressure, may be calculated.

Equation 1.85 is written in terms of a sum over levels. It is sometimes desirable to express the partition 
function as a sum over states, in which case the degeneracy factor does not appear: 

 z
n

n= −∑ exp( )
states

βε  (1.87)

z is the molecular partition function; it represents the number of states available to one molecule. Later, we 
will find the partition function for a collection of identical molecules.

Here is one example of how to calculate a thermodynamic property from the partition function. Suppose 
that we want to know the average energy per molecule ε  and thus the total energy E N= ε . The average energy is 

 ε ε=∑pi

i

i  (1.88)

Using Equation 1.86 in 1.88, it is straightforward to prove the following: 
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The quantum mechanical averaging process, that is, the calculation of expectation values, can be incorpo-
rated into the statistical mechanical picture. If we want to know the average value of a property correspond-
ing to operator Â, we take an ensemble average of the expectation values: 
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The bar over A represents an ensemble average, and Ann is the expectation value in quantum state n. Equation 
1.90 can be restated more elegantly as follows: 
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The exponential operator in Equation 1.91 may seem odd, but it is not hard to show that, if Ĥ n nn= ε , then 

 〈 − = 〈 −n nH n|exp( ) |exp( )β βε�  (1.92)

Of course, the complex conjugate of Equation 1.92 is also true: 

 exp( ) exp( )− = −β βε�H n nn  (1.93)

The density operator in Equation 1.91 is defined as 

 ˆ exp( ˆ )ρ β= − H

z  (1.94)

and the trace (Tr) is the sum of the diagonal elements of the matrix representation of the operator, in this case 
� �ρA. In this notation, the partition function can be written as the trace of the density matrix: 

 z e H= −Tr( )β �  (1.95)
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The value of using Equation 1.91 instead of 1.90 or Equation 1.95 instead of 1.87, is that there is a particularly 
important property of the trace: It is independent of representation. In the language of linear algebra, we 
say that the trace of a matrix is preserved by a unitary transformation. In the present context, a change of 
representation is a change of basis functions. Any convenient orthonormal set of wavefunctions that obey the 
appropriate boundary conditions can be used to calculate the trace.

Equation 1.94 gives the equilibrium density operator. In nonequilibrium situations, the Hamiltonian 
depends on time and so does the density operator. The time evolution of the density operator will be consid-
ered briefly in Chapter 4 and in more detail in Chapter 13.

In order to apply the methods of this section, we need to be more specific about the form of the energy 
levels. A great deal of simplification results when the energy of a molecule can be expressed as the sum of 
translational, rotational, vibrational, and electronic contributions: 

 ε ε ε ε ε= + + +tr rot vib el  (1.96)

When Equation 1.96 holds, the partition function z can be factored: 

 z z z z z= tr rot vib el (1.97)

The energy contributions on the right-hand side of Equation 1.96 are listed in order of increasing separa-
tion of the quantum levels, ranging from the essentially continuous translational levels to the widely spaced 
electronic levels. The electronic partition function is usually very easy to calculate. Since excited electronic 
states are usually much higher than thermal energy kBT at ordinary temperatures, zel is equal to the ground 
state degeneracy. (The exceptions to this occur when molecules have low-lying excited electronic states.) The 
translational, rotational, and vibrational partition functions can be found using the models discussed in the 
previous section. For example, the particle in a box model is used to get the translational energies. These are 
so closely spaced that the sum over nx, ny, and nz can be replaced by an integral. The result is 
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Note that the mass m is that of a single molecule. The molecular structure is immaterial since translation just 
involves motion of the center of mass.

We can use the rigid-rotor model to find zrot for a diatomic molecule. The rotational energy-level spacings 
for many diatomics (and polyatomics, not considered here) are often, but not always, small enough compared 
to thermal energy that the sum in zrot can be replaced by an integral. In this limit, we find 
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π
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 (1.99)

The symmetry number σ is one for heteronuclear and two for homonuclear diatomics. As will be shown in 
Chapter 8, the latter have only even or odd J states, but not both, resulting in half as many energy levels as for 
heteronuclear molecules. Equation 1.99 is valid when h2/8π2IkB is much smaller than T, in other words, when 
the number of thermally available states is large. When this is not the case, then we have to roll up our sleeves 
and find the partition function by direct summation.

Using the harmonic oscillator model, the vibrational partition function of a diatomic molecule can also be 
found. The partition function for vibration is 
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 (1.100)

where ν0 is the vibrational frequency. Equation 1.100 is readily extended to polyatomic molecules, in which case 
the total vibrational partition function is a product of terms like 1.100, one for each normal mode frequency. 
Normal modes will be considered in Chapter 10.
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The partition functions discussed so far are for individual molecules, and we would like to know the 
partition function for a collection of molecules. If the intermolecular interactions can be neglected, then it 
is straightforward to find the partition function Z for N molecules from the molecular partition function z. 
The simplification results from the fact that the total energy E is the sum of the energies of the individual 
molecules. The total partition function derives from a sum over all possible N molecule states: 
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n= −( )∑ exp
states

β  (1.101)

where En is the total energy for a particular set of molecular quantum states. Using i, j, k, … to label the 
molecular quantum states and a, b, c, … to index the molecules, we have

 En i a j b k c= + + +ε ε ε, , , � (1.102)

Inserting Equation 1.102 in 1.101 and separating the exponentials, Z is found to be 
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Equation 1.103 derives from the fact that the particles are all the same, so each sum over molecular states 
gives the same result. However, there is a limitation to this expression. It only applies to distinguish-
able particles. For example, in a crystal we can distinguish particles by the positions in the lattice, and 
Equation 1.103 is applicable. But for the ideal gas on which we are focusing in this section, Equation 1.103 
overestimates the number of states. The reason is that Equation 1.103 counts as distinct microstates those 
which differ only in the way that the particles are labeled. For example, if we have the microstate where the 
total energy is ε ε ε7 3 4, , ,a b c+ + +�, it is really the same state as, say, ε ε ε4 3 7, , ,a b c+ + +� if the particles a, b, 
c, … are indistinguishable. It might seem like keeping track of all possible permutations presents a horrible 
bookkeeping problem! Fortunately, there an aspect of the problem that makes it easy to correct for over-
counting the states. The simplification results from the fact that the number of states greatly exceeds the 
number of molecules (thanks to the translational energy contribution), so it is highly unlikely that more 
than one molecule is assigned to the same quantum state. Once we settle on a particular combination of 
molecular energies, ε ε εi a j b k c, , ,+ + +�, there are N! ways to permute the molecule labels. So we know we 
have overcounted by N! and the partition function should be 

 Z
z

N

N

=
!

( )indistinguishable particles  (1.104)

Another condition on the validity of Equation 1.104 is that there be no overlap of the wavefunctions on 
different molecules. If this condition is met, as we expect for the case of an ideal gas, then the molecules 
adhere to “Boltzmann statistics.” On the other hand, if the wavefunctions overlap, we must account for the 
indistinguishability of particles quantum mechanically by placing a restriction on the total wavefunction for 
the N particle system. If we write a total wavefunction for N particles, it is a function of the coordinates of 
all N particles: Ψ(1, 2, 3, …, N). Since the probability distribution in terms of the square of the wavefunction 
cannot depend on the particle labels, we have to be able to exchange any two coordinates and obtain the same 
probability, for example, 

 Ψ Ψ( , , , , ) ( , , , , )1 2 3 2 1 3
2 2… = …N N  (1.105)
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This leaves two choices for the effect of swapping two coordinates on the wavefunction itself. It may either 
stay the same or change sign: 

 Ψ Ψ( , , , , ) ( , , , , )1 2 3 2 1 3… = ± …N N  (1.106)

It turns out that there are two kinds of particles in nature. Bosons, which have integral spin quantum numbers, 
have wavefunctions that stay the same when any two particles are exchanged (the plus sign in Equation 1.106). 
They are said to adhere to Bose–Einstein (BE) statistics. Fermions, on the other hand, have half-integral spins 
and wavefunctions that change sign when the labels for two particles are switched. They follow Fermi–Dirac 
(FD) statistics. The consequences of this difference are dramatic. Bosons can share quantum states, but fermions 
cannot. Electrons are fermions, and the familiar Pauli exclusion principle is a result of FD statistics. Photons 
have spin 1 (as will be discussed in Chapter 2) and are bosons. There is no limit to the number of photons that 
can occupy a given quantum state.

The molecular partition function derived here does not apply to systems of particles having overlapping 
wavefunctions. There are, however, expressions for the occupation numbers of states that obey BE and FD 
statistics. In the limit of high temperature or large volume, the BE and FD occupation numbers go over to 
the same result as obtained using Boltzmann statistics. For our ideal gas, Boltzmann statistics are just fine. 
In many spectroscopy experiments, however, the symmetry requirements of Equation 1.106 on the molecular 
wavefunction lead to observable experimental features. We shall examine this in Chapter 8, where rotational 
spectra are considered.

1.6 SUMMARY

In this chapter, we have reviewed the quantum mechanical and statistical mechanical preliminaries on which 
much of this book is based. Four simple models provide the basis for approximating the translational, rota-
tional, vibrational, and electronic energies of molecules. The corresponding particle-in-a-box, rigid-rotor, 
harmonic-oscillator, and hydrogen atom problems provide starting points (“zero-order” approximations) for 
more sophisticated quantum mechanical treatments of molecular energies. In addition, these models illustrate 
general quantum mechanical principles, such as degeneracy, symmetry, and the uncertainty principle. The 
stationary states and their energies will provide the basis for understanding spectroscopic transitions, using 
the time-dependent perturbation theory to be presented in Chapter 4. The rigid-rotor and harmonic-oscillator 
models will serve as a point of departure for the analysis of rotational and vibrational spectra. The hydrogenic 
wavefunctions provide a basis for approximating the electronic wavefunctions of many electron atoms and 
molecules, and give us the familiar chemical concept of orbitals. The techniques of variation theory and per-
turbation theory are tools for interpreting molecular properties that are revealed in a myriad of spectroscopy 
experiments.

The solutions to the Schrödinger equation provide a spectrum of energies that serves as input to the cal-
culation of ensemble average properties, following the prescriptions of statistical mechanics. This averaging 
procedure is fundamental to the understanding of the spectra of collections of molecules. We have intro-
duced the concept of the density matrix as a component of the ensemble average calculation. In Chapters 4 
and 13, this density matrix will be generalized to allow for time dependence, as we will be concerned with the 
time evolution of the system undergoing a spectroscopic transition.

PROBLEMS
 1. Find the difference between the ground- and first excited-state translational energies of a helium atom 

in a 1 mm3 cubic box. Compare this to room temperature energy kBT at 300 K.
 2. Find all the possible angles with respect to the z-axis for an angular momentum vector of magnitude 

6�.
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 3. Show that the uncertainty as defined in Equation 1.15 vanishes when ψ is an eigenfunction of the opera-
tor Â.

 4. The classical harmonic oscillator obeys the equation of motion: F = −kx = md2x/dt2. Use this equation to 
verify Equation 1.29.

 5. Can a harmonic oscillator ever be dissociated?
 6. The vibrational frequency of 1H35Cl is ν0 = 8.97 × 1013 s−1. Find the force constant for the H–Cl bond.
 7. Derive Equation 1.89.
 8. Show that if |n〉 is an eigenfunction of the operator Â with eigenvalue an, then e n e nA an

ˆ
= . (Hint: 

Expand the exponential in a series: e x kx k
k

= =
∞∑ 0

/ !.)
 9. Calculate the fraction of molecules in each of the first ten rotational levels of CO at 300 K, assuming 

that it is a rigid rotor with a bond length of 1.13 Å.
 10. Calculate the translational partition function for a mole of N2 at 1 atm and 300 K. Verify that the effec-

tive number of available states greatly exceeds the number of molecules.
 11. Use the partition functions in Equations 1.98, 1.99, and 1.100 to find the translational, rotational, and 

vibrational contributions to the average energy of a diatomic molecule. Compare each result to the 
prediction of the equipartition theorem, which states that in the classical limit each degree of freedom 
contributes 1 2( )k TB  to the average energy.

 12. Hydrides typically have rotational energies that are too widely spaced to be able to use Equation 1.99 
at room temperature. Find zrot for HF at 300 K by summing the energies directly. Try to obtain a value 
that is accurate to three significant figures. Compare the numerical result to the value obtained using 
Equation 1.99. (Use 0.92 Å for the bond length.)
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2

The nature of electromagnetic radiation

2.1 INTRODUCTION

In order to use spectroscopy to study matter through its interaction with electromagnetic radiation, we first 
have to understand radiation. The electromagnetic spectrum spans a frequency range that varies by many 
orders of magnitude, as shown in Figure 2.1. We broadly refer to this radiation as light, even though only a 
very small portion of the spectrum is visible to the human eye. The frequency ν and the wavelength λ of light 
are inversely proportional to one another: c = λν is the speed of light in a vacuum, 2.9979 × 108 m/s. The spec-
trum ranges from the low-energy radiofrequency region, where the frequencies are in the MHz to kHz range 
(Hz = Hertz, a unit of frequency equivalent to cycles per second or s−1), to the high frequency gamma-ray 
region, characterized by frequencies as high as 1022 Hz. The corresponding wavelengths go from thousands 
of kilometers down to less than 10−15 m. The wavelengths of visible light, which span only a tiny fraction of 
an essentially limitless spectrum, range from about 400 to 700 nm, on going from violet to red. These wave-
lengths correspond to frequencies from 7.5 × 1014 Hz (violet) to 4.3 × 1014 Hz (red), or in wavenumber units, 
from about 25,000 cm−1 to 14,000 cm−1.

In this chapter we consider the properties of electromagnetic radiation in free space and, briefly, the 
propagation of light in matter. Further discussion of the latter will be postponed until after we have consid-
ered the electromagnetic properties of matter itself (Chapter 3). Our point of view will acknowledge both the 
wave (classical) and particle (quantum mechanical) nature of light. We will rely more on the classical picture 
of light to describe the radiation itself, yet we will view spectroscopic transitions in terms of absorption and 
emission of photons of energy E = hν. The idea of light having dual wave–particle nature, like that of matter, is 
a mere artifact of our anthropocentric attempt to apply macroscopic concepts to microscopic phenomena. It 
is the experiment or act of observation that imposes upon light its wave or particle nature. We like to think of 
waves when considering interference phenomena, but we tend to think of photons when we consider proper-
ties such as the photoelectric effect. There is a quantum mechanical theory to describe all the properties of 
light, whether wave-like or particle-like, called quantum electrodynamics (QED). The interested reader can 
consult [1] to learn more about QED, while [2] is a good source for the classical description of light. For the 
spectroscopy experiments considered in this book, we will usually take the semiclassical approach: the light 
will be treated classically and the matter quantum mechanically.

The classical description of radiation will often suffice for several reasons. The first is due to the cor-
respondence principle, which states that for large quantum numbers the quantum mechanical picture 
coincides with the predictions of classical mechanics. The intensity of light used in ordinary spectroscopy 
experiments is high enough to correspond to a very large number of photons (or quanta). In the classical 
picture, the intensity of light is related to the square of the amplitude of the wave, rather than the number of 
photons. Another reason that light may be treated classically is that the wavelengths of interest are generally 
large compared to the size of the spectroscopically active atom or molecule. This statement bears numerical 
justification, as it is one way to arrive at a number that has long been a source of fascination to physicists: 
the fine structure constant.* As the name implies, the fine structure constant, α ≈ 1/137, arises in problems 
related to the splitting of spectral lines caused by electron spin. Here, we find it when we consider the ratio 
of the size of the hydrogen atom to the smallest wavelength capable of causing spectral transitions between 
bound electronic states. This minimum wavelength corresponds to the energy required to ionize a ground 
state hydrogen atom. Hence,

* Physicists’ interest in this number has perhaps been a source of fascination to many chemists!
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where the ionization energy is
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and e is the charge on the electron in Coulombs, a0 = 0.0529 nm is the Bohr radius, and ε0 is the permittivity 
of free space, equal to 8.854 × 10−12 C2 m−1 J−1.* Equation 2.2 is just the negative of the energy of the ground 
state hydrogen atom. Using 4πa0 to represent the size (it is twice the circumference) of the atom, the ratio 
we obtain is
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Even at the shortest wavelengths of interest, the wavelength of radiation exceeds the size of the particle by a 
factor of about 137. This allows the particle (quantum) nature of light to be neglected and the wave picture 
to be used. There are exceptions to this conclusion; for example, the delocalized wavefunctions of electronic 
bands in metals represent systems that are not small in size compared to optical wavelengths, so the quantum 
picture of radiation is needed to describe their transitions. In the next section, we look at how to describe light 
as an electromagnetic wave.

2.2  THE CLASSICAL DESCRIPTION OF ELECTROMAGNETIC 
RADIATION

2.2.1 Maxwell’s equations

Figure 2.2 displays a snapshot of a linearly polarized ray of light viewed as oscillating electric ( )
�
E  and mag-

netic ( )
�
B  fields perpendicular to the propagation direction. While this linearly polarized ray is just one 

solution to Maxwell’s equations, Equations 2.5–2.8 below, we shall see that the transverse nature of elec-
tromagnetic radiation is a general property. The frequently invoked concept of an infinite plane wave is a 
bundle of identical parallel rays such as those in Figure 2.2. The electric and magnetic fields are in phase 

* In the MKS units that we are using, you can think of ε0 as a conversion factor. More will be said about the physical mean-
ing of permittivity in Chapter 3.
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Figure 2.1 The electromagnetic spectrum.
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and mutually perpendicular as a consequence of Maxwell’s equations. Physically, electric fields result from 
electric charges or from time-dependent magnetic fields, while magnetic fields result from electric currents 
or time- dependent electric fields. The discussion of fields due to static charges and steady currents is the 
subject of the Chapter 3, where the electric and magnetic properties of matter are discussed. In this section, 
we concentrate on the interdependent time-varying electric and magnetic fields that propagate through space 
in the absence of matter. Maxwell’s equations reflect this symmetry in nature through the way that they treat 
the two related fields.

James Clerk Maxwell (1831–1879) developed the theoretical treatment of light as electromagnetic waves 
during the time in history when the wave and particle pictures of light were still dueling. The set of funda-
mental equations presented below, Maxwell’s equations, can be manipulated to give classical wave equations 
for the time and space dependence of the electric and magnetic fields. A significant achievement of this wave 
picture was the connection derived between the speed of light and the product of the electric permittivity and 
magnetic permeability of free space:

 c 2
0 0

1= ( )−µ ε  (2.4)

The magnetic permeability of free space is defined to be μ0 = 4π × 10−7 N/amp2. The calculated value of the 
speed of light based on the known values of μ0 and ε0 was found to be in excellent agreement with the value 
measured in 1859 by Fizeau, using light aimed through a rotating toothed wheel. Thus the wave picture of 
light was assured a place in history that would not be invalidated by later developments in the quantum 
picture of radiation.

Let us take the point of view that the following relationships, known as Maxwell’s equations, are postulates, 
and see what they have to predict about the physical properties of light. In free space, they are* 

 ∇ =·
�
E 0 (2.5)

 ∇ =·
�
B 0 (2.6)

 ∇ × =
−� �

E
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∂
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 (2.7)

 ∇ × =
� �
B

E

t
µ ε ∂

∂0 0  (2.8)

The above expressions apply in vacuum. In the presence of a charge density ρ, Equation 2.5 is rewritten 
as ∇ =· /

�
E ρ ε0, and to the right-hand side of Equation 2.8 we would add a term proportional to the current 

density. ∇·
�
B always equals zero because there are no known magnetic monopoles. The “del-dot” operator is 

sometimes referred to as “divergence,” thus Equation 2.5 can also be written div
�
E = 0 (the divergence of the 

field is zero), and similarly for Equation 2.6. The vector operation ∇ ×
�
E  reads curl

�
E . For a review of these 

kinds of vector operations, see Appendix A. For example, Equations 2.6 and 2.7 can also be expressed as 

* The magnetic field 
�
B  is actually the magnetic induction or the magnetic flux density. In free space, it is related to the 

magnetic field 
�
H  through 

� �
B H= µ0 . The relationship between 

�
H  and 

�
B  is discussed further in Chapter 3.

x
→

→z

y

E(y,t)

B(y,t)

Figure 2.2 Linearly polarized electromagnetic radiation.
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Maxwell’s equations are mathematical expressions of the statement that a time-dependent magnetic field 
gives rise to a spatially varying electric field perpendicular to the magnetic field, and vice versa. After some 
manipulation, which we skip (see, for example, [3]), Maxwell’s equations can be recast in the following form:

 ∇ =2
0 0

2

2

� �
E

E

t
ε µ ∂

∂
 (2.13)

 ∇ =
∂
∂

2
0 0

2

2

� �
B

B

t
ε µ  (2.14)

These expressions are significant because they are in the form of the classical wave equation, provided we 
identify the speed of the light as c = (μ0ε0)−1/2. The various forms of light that we can envision, such as spheri-
cal or plane waves, linear or circular polarization, are just solutions to these equations subject to different 
boundary conditions.

Equations 2.5–2.8 point out the symmetrical relationship between the magnetic and electric fields. 
It turns out that there are two quantities, the scalar potential ϕ and the vector potential 

�
A, from which both �

E  and 
�
B  can be derived:

 
� �
E

A

t
= − ∇ −

∂
∂

ϕ  (2.15)

 
� �
B A= ∇ ×  (2.16)

Note that in free space, where there are no charges to present a change in scalar potential, we can put ∇ϕ = 0. 
Since for any vector function 

�
X , ∇ ∇ × =·

�
X 0, Equation 2.16 also satisfies 2.6. The vector and scalar potentials 

are not unique. Any function of time could be added to ϕ, and the gradient of any function of r could be added 
to 
�
A, without changing 

�
E  or 

�
B . In the frequently used Coulomb gauge, the choice ∇ =·

�
A 0  is made. The vector 

and scalar potentials are convenient because they allow the complete specification of the electromagnetic radia-
tion in terms of four quantities, the scalar potential and three components of the vector potential, rather than 
six quantities, three components each for the magnetic and electric fields. We are also interested in 

�
A because it 

appears in the Hamiltonian for a charged particle in a field, to be discussed in Section 2.3.3. It is straightforward 
to show that the vector potential also obeys the classical wave equation:

 ∇ =
∂
∂

2
2

2

2

1� �
A

c

A

t
 (2.17)

Any function of the form 
� � �
A f k r t= ⋅ −( )ω  will satisfy Equation 2.17, where 

�
k  is the propagation vector, some-

times called the wave vector, having magnitude k = 2π/λ = ω/c, where ω = 2πν is the angular frequency in 
radians per second, s−1. One particular solution is

 � � �
A A e k r t= −0 ˆ cos( · )ω  (2.18)
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where ê  is a unit vector and A0 is the amplitude of the vector potential. It is often convenient to write expres-
sions like Equation 2.18 in the form

 
� � �
A A e i k r t= ( ) −



0 ˆ exp · ω  (2.19)

where it is understood that the real part of Equation 2.19 is to be taken. The electric field obtained using 
Equations 2.15 and 2.18 is then

 
� � � �
E

A

t
A e k r t= −

∂
∂

= − ⋅ −( )ω ω0 ˆ sin  (2.20)

So the electric field oscillates in the same direction as the vector potential. Since ∇ =·
�
A 0 ,

 
� � �
k eA k r t⋅ ⋅ −( ) =ˆ sin0 0ω  (2.21)

Equation 2.21 requires that the propagation vector be perpendicular to the vector potential, and thus also to 
�
E . 

From 
� �
B A= ∇ × , we get the magnetic field:

 
� �

�
� �

B A k e k r t= − × ⋅ −( )0( )sin ω  (2.22)

from which we conclude that the field 
�
B  is perpendicular to both the propagation vector and the field 

�
E . Also, 

it is apparent that the electric and magnetic fields are in phase and have the same frequency.
From Equations 2.20 and 2.22 we can find the amplitudes of the electric and magnetic fields in terms of 

the vector potential:

 E A0 0= −ω  (2.23)

 B
A

c
0

0=
−ω  (2.24)

More generally, E0 = cB0 is true for all electromagnetic waves. The energy density of the radiation field is 
proportional to the square of the amplitude of either the electric or the magnetic field. In units of J/m3, the 
electric and magnetic field energy densities, which are equal, are given by

 u EE =
1

2
0

2ε  (2.25)

 u BB =
1

2 0

2

µ
 (2.26)

and the total energy density, also equal to the radiation pressure, is given by u = uE + uB = ε0E2.
Since the fields are rapidly varying functions of time, so is the energy density. Devices for measuring this 

energy typically respond much more slowly than the fields vary, so it is valid to average E2 and B2 over a cycle 
of radiation: < > =E E2

0
221 . Thus we write the total average energy density as

 u E=
1

2
0 0

2ε  (2.27)

We could also have chosen to write the total energy density in terms of the square of the magnetic field, or 
the product of E and B.



34 The nature of electromagnetic radiation

A quantity of great interest in spectroscopy is the intensity, also called the irradiance, of light. It is the 
energy per unit time per unit area:

 I uc cE= =
1

2
0 0

2ε  (2.28)

The Poynting vector 
�
S  is defined to point in the direction of propagation and have a magnitude equal to the 

power per unit area I. Thus
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Equation 2.29 can be averaged to obtain

 S I c E= =
1

2
0 0

2ε  (2.30)

Let us examine Figure 2.2 with Maxwell’s equations in mind. We can write the fields as
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The minus sign within the parentheses indicates that the wave is moving to the right, in the direction of the 
positive y-axis. We could also include an arbitrary phase angle within the square brackets, if we wanted to. If 
we imagine the existence of a time-dependent electric field in the z direction, Maxwell’s equations require the 
presence of the B field in the x direction, since Equation 2.7 reduces to
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= −
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Similarly, Equation 2.8 reduces to
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∂
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Thus if the only component of the electric field is in the z direction, the only component of the magnetic field is 
in the x direction. Both Ez and Bx are functions only of time and the direction y, in which the light propagates.

The radiation depicted in Figure 2.2 is said to be polarized in the z direction. (This terminology reflects 
our tendency to emphasize the electric rather than the magnetic field, since the former interacts with matter 
more strongly, as we shall see in the next chapter.) It is also monochromatic, having only a single frequency. 
Neither of these properties is characteristic of ordinary light sources, such as the sun or an incandescent light 
bulb. Fortunately, light waves obey the principle of superposition, so we can describe more complex types of 
radiation by adding together the fields due to the component waves.

2.2.2 Polarization ProPerties of light

We can use the principle of superposition to describe various polarization states of light. For example, sup-
pose that we add a second electric field, of the same frequency but in a perpendicular direction, to the one 
described by Equation 2.31:

 E E t
y

c
x x= −






 +











0 cos ω θ  (2.35)
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If the amplitudes of the two added waves are the same, E Ex z
0 0= , and if the phase shift θ is 90°, the net electric 

field vector will spiral about the y-axis as the wave propagates, in what is known as circular polarization. 
When viewed along the y-axis, looking toward the source, the electric field vector would appear to rotate 
in a clockwise direction, and the light is called right circularly polarized. Alternatively, a counterclockwise 
rotation of the field vector is called left circularly polarized. If the amplitudes of the two added waves are not 
equal, the resulting radiation is elliptically polarized. On the other hand, if there is no phase shift in the two 
orthogonal fields, the resulting radiation is linearly polarized in a direction that depends on the relative 
amplitudes of the two added fields. An electric field vector polarized in any direction can be resolved into two 
orthogonal linearly polarized fields. And a linearly polarized beam can be resolved into two counter-rotating 
circularly polarized beams. These circularly polarized components correspond to the angular momentum 
states of light. Quantum mechanically, photons are described as having angular momentum of ±ħ, meaning 
the spin quantum number of a photon is one.* In our wave picture, these two states correspond to angular 
momentum vectors aligned parallel or antiparallel to the propagation vector. This property of light is of 
interest in the consideration of selection rules for absorption and emission of photons, where conservation 
of angular momentum imposes restrictions on spectroscopic transitions. A one-photon transition cannot 
change the angular momentum state of an atom or molecule by more than one unit of ħ. We will see in 
future chapters that this restriction holds for the most common type of spectroscopic transition, that which 
is caused by the interaction of the electric dipole with the electric field.

The polarization properties of light are of great interest in a number of spectroscopic techniques, and 
it would be interesting to discuss here how one could start with a source of natural light and produce 
polarized light. Although this subject requires some knowledge of how light travels through matter and 
in this chapter we consider only light traveling in a vacuum, it is worth mentioning briefly how polar-
ized light is obtained. Materials that are dichroic or birefringent are capable of polarizing light. Dichroic 
materials, as the name suggests, absorb one component of polarization more strongly than the other. 
The common Polaroid sheets used in the laboratory and in sunglasses contain aligned polyvinyl alcohol 
molecules onto which iodine molecules, I2, have been adsorbed. The component of the electric field that 
is parallel to the alignment axis is strongly absorbed by the I2 chromophores, but the perpendicular com-
ponent is transmitted. The effect is naturally wavelength dependent because it depends on the absorption 
properties of the material. Dichroic crystals such as tourmaline transmit different colors depending on 
the direction of viewing. Birefringent materials, such as crystalline calcite (CaCO3) and quartz, have two 
different indices of refraction for light polarized parallel or perpendicular to the optic axis, and are thus 
capable of splitting an unpolarized beam into two perpendicularly polarized rays. If light impinges on the 
face of a crystal which is parallel to the optic axis and at normal incidence, the resulting ray is not split 
but the parallel and perpendicular polarized components travel with different speeds. If the thickness of 
the crystal and the difference in refractive index are such that the phase shift is 90°, then the crystal acts 
as a “quarter-wave plate.” When linearly polarized light having an electric field vector at 45° to the optic 
axis impinges on a quarter-wave plate, the emerging light is circularly polarized, and vice versa. For more 
information on these optical effects and some simple experiments that demonstrate them, the reader is 
encouraged to consult [2] for a very readable account.

2.2.3 electric diPole radiation

Unlike material waves such as sound, light needs no medium to support it, not even the “luminiferous ether” 
sought by early physicists to explain the propagation of light in a vacuum. The laws of physics dictate that 
accelerating charges broadcast electromagnetic radiation. And our studies of spectroscopy teach us that 
light interacts with matter through setting charges in motion. The charges responsible for radiation must 
come from somewhere, so we are faced with a chicken-and-egg sort of question inherent in the symmetrical 

* It may be surprising that the spin quantum number s = 1 leads to two (ms = 1,−1) rather than three (ms = 1,0,−1) 
 orientations of the angular momentum. The missing component would correspond to angular momentum perpendicu-
lar to the propagation direction, which is forbidden.
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properties of nature. Which comes first; the oscillating charges or the radiation associated with them? The 
electric dipole moment plays a hugely important role in optical spectroscopy, thus we get ahead of ourselves 
a bit to bring up a topic more carefully treated in the next chapter, the field due to an electric dipole. A dipole 
μ = qd is a pair of equal and opposite charges, ±q, separated by a distance d. If such a dipole oscillates with 
angular frequency ω, it will emit radiation of the same frequency. The mathematics of this system are very 
messy, but the pictures in Figure 2.3 provide a visualization. According to the principles of electrostatics 
discussed in Appendix B, the electric field of a static dipole can be represented by lines of force such as those 
drawn in Figure 2.3a. The curved arrows there represent the direction of the force on a unit positive charge, 
and their density represents the magnitude of the electric field (the force per unit charge). As you will show 
in Chapter 3, the field due to a static dipole is zero when viewed along the direction of the dipole axis, as is 
apparent in Figure 2.3. Now consider that the charges that comprise the initially static dipole of Figure 2.3a 
begin to approach one another, resulting in the changes in the field loops shown in Figure 2.3b, and when the 
charges are superimposed as in Figure 2.3c, the field lines close on themselves. Upon reversal of the dipole 
direction, Figure 2.3d, two blobs of field lines are pinched off and a new set of field lines forms, terminat-
ing once again on the charges but directed in the opposite sense from the original lines. In the “near-field” 
region, there is no particular wavelength and no radiation propagates. However, at distances large compared 
to the size of the dipole, simple expressions for the electric and magnetic fields are obtained. If the dipole 
oscillates harmonically, qd = qd0cosωt, then the electric field in the radiation zone, where r >> d, is

 E r t
qd k

r
kr t( , )

sin
cos( )= −0

2

04

θ
πε

ω  (2.36)

The magnitude of the magnetic field is B = E/c. The angle θ is the angle between the vector 
�
r , which points 

from the center of the dipole to the observation point, and the dipole direction, and qd0 is the amplitude of 
the dipole moment. The direction of B is that of 

� �
r d× , and it is everywhere perpendicular to E. Notice that 

the electric field falls off as 1/r, as it does for a spherical wave. This is a consequence of conservation of energy, 
since the total energy traversing the surface of a sphere of radius r must remain constant. Solving for the 
intensity using Equation 2.28, and substituting k = ω/c, we get
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 (2.37)

This is an important result, which we will refer to later in this book. Notice that the intensity is proportional 
to the fourth power of the frequency (a very strong dependence) and the square of the dipole moment. It is 
noteworthy that no radiation is emitted in a direction parallel to the dipole. This consideration will be impor-
tant in later chapters when we consider the polarization of scattered light.

(a) (b) (c) (d)

Figure 2.3 Electric dipole radiation, showing the field lines during successive stages of oscillation, and the 
formation of electromagnetic waves propagating away from the dipole. (Adapted from E. Hecht, and A. Zajac, 
Optics, 1974.)
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2.2.4 gaussian beaMs

The concept of collimated, plane polarized light is an idealization that simplifies the mathematics of electro-
magnetic radiation and allows for easily drawn pictures such as Figure 2.2. However, the prevalence of laser 
sources and focusing optics in spectroscopy experiments makes it important to consider Gaussian beams. 
A perfectly collimated, monochromatic beam would consist of rays that all have the same propagation vector �
k , but our Gaussian beam, though generally propagating along the z-direction, will have a spread in the 
direction of the k-vectors as they emerge from the focus. The Gaussian nature of such a beam indicates that 
the electric field amplitude decays as e r w− 2 2/  in the direction transverse to the propagation direction, where 
r x y2 2 2= +  and w is the distance at which the electric field amplitude has decayed to 1/e of its on-axis value. 
The electric field is written in the form

 
� � � �
E r z t A r e A r e A r ei kz t i kz t i kz t( , , ) ( ) ( ) ( )( ) ( ) ( )= + = +− − ∗ − − −ω ω ω cc c. .  (2.38)

where c.c. stands for complex conjugate. In addition to allowing the amplitude of the field to depend on r, 
the notation above is a little different from what we have seen so far. We are using the symbol A for electric 
field amplitude (it is not the vector potential here), and given that cos( ) ( ) ( )kz t e ei kz t i kz t− = +( )− − −ω ω ω1 2 , we 
see that A is really one-half of the electric field amplitude. These concerns are not important to the physics 
of the problem; they just keep our notation in sync with standard treatments in books such as [4]. In the 
approximation that the wave propagates generally along the z-direction (paraxial ray) and that the ampli-
tude of the electric field varies on a length scale that is large compared to the wavelength (the slowly-varying 
envelope approximation), the wave equation for a Gaussian beam [5] is found to be

 A r z A
w

w z

r

w z

ikr

R z
i z( , )

( )
exp

( )
exp

( )
exp (=

−









−







0

0
2

2

2

2
ϕ ))( ) (2.39)

In the above, w0 designates the beam waist at the focus (z = 0), R(z) is the radius of the spherical wave fronts, 
w(z) is the 1/e extent of the beam at z, and ϕ(z) is the phase of the wave front. The z-dependent quantities are 
function of the Rayleigh range zR, as follows:
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The Rayleigh range represents the distance at which the size of the beam has increased from 2w0, the value 
at the focus, to 2(2)1/2w0. n in Equation 2.43 is the refractive index. Figure 2.4 illustrates a Gaussian beam, 
with the bold lines defining the beam radius and dashed lines representing wave fronts (contours of constant 
phase) at selected values along the propagation direction.
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2.3 PROPAGATION OF LIGHT IN MATTER

2.3.1 refraction and reflection

Let us briefly describe common properties of light traversing a dielectric (nonconducting) medium within the 
context of the electromagnetic theory. In the absence of net charge or current density, Maxwell’s equations 
can be modified simply by replacing the electric permittivity ε0 and magnetic permeability μ0 of the vacuum 
by their values in the material, ε and μ. These determine the speed of light in matter, ν as*

 v = 1

εμ  (2.44)

This change in the speed of light from its value of c in the vacuum is associated with the phenomenon of 
refraction. The refractive index n is the ratio c/ν, so it is given by

 n = εμ
ε μ0 0

 (2.45)

For most materials, which are not magnetic, the magnetic permeability is little different from the value in 
free space, so the refractive index can be expressed as n r= =ε ε ε/ 0 , where the ratio of the permittivity in 
the material to that of free space is defined as the relative permittivity, εr. The relative permittivity determines 
the response of a dielectric material to an applied electric field, and we will consider it further in Chapter 3. 
For now, we concentrate on the refractive index and note that it is a frequency-dependent quantity; that is, 
it undergoes dispersion. Furthermore, the frequency-dependent n(ν) is a complex quantity, the real part of 
which is responsible for the physical phenomenon of refraction and the imaginary part for absorption and 
emission. The dispersion of the real part is greatest in the vicinity of an absorption band, as illustrated in 
Figure 2.5. The connection between refraction and absorption will be examined in Chapter 3.

The refraction of light when it encounters a boundary between materials of two different refractive indices 
can be viewed in terms of the effect of the medium on the phase of the secondary waves in the medium. The 
incident (or primary) wave drives the electrons in matter with a frequency given by that of the incident light, 
which in turn causes them to reradiate light with the same frequency but with a different phase. The phase 
difference depends on whether the frequency is below or above the resonance frequency (absorption peak) 
of the material. Below resonance, the phase of the secondary radiation lags behind that of the primary radia-
tion, and refractive index increases with frequency. This is called normal dispersion. The familiar effect of 
a glass prism on white light corresponds to this situation, where blue light is refracted more than red, since 
the frequency of visible light is below the absorption band of glass in the ultraviolet region. The effect of a 

* Be careful not to confuse the similar-looking symbols used for frequency ν (a Greek letter nu) and speed of light in a 
medium ν, a script v.
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Figure 2.4 A Gaussian beam. The bold lines span 2w(z) and the dashed lines are wave fronts.
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phase lag is to cause the velocity of light, the phase velocity, to be less than the value in free space. Above 
resonance, the phase of the secondary wave is ahead of the primary wave, refractive index decreases as fre-
quency increases, and the phenomenon is called anomalous dispersion, for historical reasons. In either case, 
the frequency of light remains unchanged, it is the speed and the wavelength that are altered by the medium, 
ν = c/n and λ = λ0/n.

We postpone until Chapter 3 a discussion of the microscopic basis for the refractive index, which 
depends on the response of the constituent charges within matter to the driving field of the incident light. 
The macroscopic manifestation of refraction is straightforward: the bending of a ray of light when it strikes 
the boundary between materials, as shown in Figure 2.6. The meaning of a ray of light, while intuitively 
familiar to the artist or poet, can be made more precise within the wave picture of radiation. A light ray sim-
ply points in the direction of energy propagation, so it coincides with 

�
k . Figure 2.6 defines the angles of inci-

dence θi and reflectance θr as the angles that the propagation vectors of the incident and reflected k-vectors 
make with respect to the surface normal, and similarly θt is the angle of the transmitted (refracted) ray. The 
idealized linear rays drawn in pictures like this are perfectly collimated, an ideal that can be approached 
using lenses, and thus the wave fronts are plane surfaces perpendicular to the propagation direction (like the 
wave fronts far from the focus of a Gaussian beam or a point source of emission.) The phase lag of the light 
striking the more dense medium is associated with bending of the ray. Boundary conditions on the electric 
field at the interface lead to specular reflection, θi = θr. The angles that the incident and transmitted rays 
make with respect to the normal to the surface are given by Snell’s law, n ni i t tsin sinθ θ= . When light is inci-
dent from a more dense phase, such that n ni t> , there exists a critical angle θc for which θt is 90°, when the 
angle of incidence satisfies sin /θc t in n= . For the air-glass interface, where n ni t/ .≈  1 5, this angle is about 42°. 

Refractive index, Re(n)

Absorption coefficient, Im(n)

Frequency, ν

Figure 2.5 Real and imaginary parts of the refractive index.
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Figure 2.6 Refraction and reflection of light at a boundary.
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Above the critical angle, all the incident light undergoes total internal reflection; i.e., there is no light trans-
mitted through the less dense medium. Total internal reflection is a useful technique for the spectroscopy of 
interfaces, and one can see that incident angles near the critical angle result in probing the interface rather 
than the bulk.

Any light not transmitted by the material must be reflected, scattered, or absorbed. In transparent mate-
rials, we can account for all the light in terms of reflection and transmission. The relationships between the 
amplitudes of reflected and transmitted light are known as the Fresnel equations. The relative intensity of 
reflected light compared to incident light is a function of the angle of incidence, the refractive indices, and the 
polarization of the incident light with respect to the plane of incidence, defined by the incident and reflected 
rays. We define light as s-polarized if the electric field vector is perpendicular to the plane of incidence, and 
p-polarized if it is parallel to the plane. (The terms derive from German words for parallel and perpendicular, 
so it may be helpful to remember that the electric field vector for s-polarized light “sticks” out of the plane.) The 
ratio of reflected (ref) to incident (inc) light intensity for the two polarizations, in the case of dielectric media,
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See [2] for a derivation of the above expressions. For the transparent medium considered here, the incident 
light intensity must match the sum of the transmitted and reflected intensities. We define the ratio of trans-
mitted to incident light intensity as
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Thus we have R T R Ts s p p+ = + = 1. Figure 2.7 shows the dependence of Rs and Rp on the angle of incidence 
for the case nt/ni = 1.5, i.e., for light incident from air striking glass. There are several aspects of this figure 
with spectroscopic consequences. One sees that for small angle of incidence R Rs p≈   (s and p polarizations 
are indistinguishable for normal incidence, θi = 0), but at that larger angles there is a preference for reflecting 
s-polarized over p-polarized light. Thus in nature and in the spectroscopy lab, reflection can be a source of 
polarization even when the incident light is not polarized. Another practical consequence of these expressions 
is the rule of thumb that for light striking glass at normal incidence, about 4% of the intensity is reflected. 
At Brewster’s angle, θp, p-polarized light is completely transmitted. Brewster’s angle satisfies the equation:
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Figure 2.7 Reflection of s- and p-polarized light at a boundary, with nt/ni = 1.5.



2.3 Propagation of light in matter 41

 tanθp
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This equation is satisfied when the angle of incidence is θp = 90° − θt. As will be seen in Chapter 7, optical 
elements oriented at this special angle with respect to a laser beam are used to produce coherent polarized 
radiation.

The value of the refractive index in a medium has consequences for the intensity of light. We have seen 
that in a vacuum, the intensity I is related to the amplitude of the electric field E0 according to Equation 2.28, 
I c E= ε0 0

2 2 . In a medium with refractive index, n, the speed of light is reduced to c/n. In addition, we have 
to replace ε0 in Equation 2.27 by the permittivity of the medium, ε = ε0n2. As a result, the intensity of light in 
a medium is altered to

 I cn E=
1

2
0 0

2ε  (2.50)

2.3.2 absorPtion and eMission of light

As previously mentioned, dispersion in the refractive index is always associated with an absorption band. The 
details of the absorption of light will be developed at length in this book. The effect reveals itself as a reduction 
in the intensity of light as it traverses the absorbing medium. This is called attenuation, and it is an exponen-
tial function of the path traveled through the absorbing medium:

 I I e x= −
0

γ
 (2.51)

where γ is the absorption coefficient of the medium and x is the distance traversed by the light.
The absorption of light promotes an atom or molecule to an excited state, and there is a tendency to restore 

the populations to their equilibrium values. An excited-state molecule can return to a lower energy state by 
means of either a nonradiative or a radiative transition. In the former, the energy is ultimately dissipated into 
heat by being transferred to degrees of freedom of lower-energy quanta. In the latter, the energy is reemit-
ted as light in the form of luminescence. (Alternatively, the absorbed photon energy could be consumed by 
a photochemical reaction, but this will not be covered in this book.) Emission of light is either stimulated or 
spontaneous, the latter being much more common, at least at visible wavelengths, and the former being char-
acteristic of laser emission. Ordinary fluorescence (emission involving states of the same spin  multiplicity) 
and phosphorescence (emission involving states of different spin multiplicity) are forms of spontaneous emis-
sion. While stimulated emission requires an incident photon, in addition to the one that may have created the 
initially excited state, spontaneous emission takes place in the absence of stimulating photons. This presents 
a problem for the classical picture of light, but it can be dealt with phenomenologically in a way proposed by 
Einstein and presented in Chapter 6.

The emphasis in Chapters 1 through 12 of this book is on linear spectroscopic techniques, which do 
not significantly perturb the Boltzmann populations of molecules. It may seem odd that light is ever 
absorbed or emitted at all if the Boltzmann populations remain unchanged. In fact, the intensities of 
absorption and emission are related to the rate at which upward and downward transitions take place, so 
it is possible to maintain a steady state of level populations and still observe absorption and emission of 
light. In nonlinear spectroscopy experiments, the equilibrium populations may be significantly altered by 
the radiation. For example, in photobleaching experiments the populations of ground and excited states 
are made equal, and net absorption and emission cease. In nonlinear spectroscopy experiments, it is 
often the case that the  radiation–matter interaction alters the properties of the incident light, as in second 
harmonic generation, also called frequency doubling. These types of experiments will be considered in 
Chapters 13 and 14.
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2.3.3  effect of an electroMagnetic field on charged 
Particles

The classical expression for the force experienced by a charged particle in an electromagnetic field is known 
as the Lorentz law:

 
� � � �
F q E v B= + ×( ) (2.52)

where q is the charge and 
�
v  its velocity. Classical mechanics provides us with prescriptions for expressing the 

momenta of particles in terms of the classical Hamiltonian or Lagrangian, both of which are functions of 
the kinetic energy T and potential energy V of the particle. In the absence of a field, the classical Hamiltonian 
for a single particle is given by

 H T V
p

m
V= + = +

2

2
 (2.53)

where p is the momentum, m is the mass and the potential energy V is a function of the position. The Hamiltonian 
expressed above does not correspond to the Lorentz force. It is possible to show (see for example [6]) that the 
substitution 

� � �
p p eA→ −  results in a Hamiltonian that is consistent with the force given by Equation 2.52. So, in 

the presence of an electromagnetic field, the Hamiltonian should be written as

 H
m

p eA V= − +
1

2
2( )

� �
 (2.54)

This expression is for a single electron, but it can be generalized by summing over a collection of charges. The 
classical Hamiltonian is converted to a quantum mechanical operator simply by replacing the momentum 

�
p 

by the operator p̂ i= − ∇� . The Hamiltonian operator is thus

 ˆ ( )H
m

i eA V= − ∇ − +
1

2
2�
�

 (2.55)

Performing the square, this is equivalent to

 ˆ ( · · ) ·H
m

V
i e

m
A A

e

m
A A=

−
∇ + + ∇ + ∇ +

� � � � � �2
2

2

2 2 2
 (2.56)

In the linear spectroscopy regime, we can consider the electromagnetic field to be weak compared 
to the internal fields due to the charges that comprise the molecule. This allows us to neglect the 

� �
A A·  

term compared to the term in parentheses. The term in parentheses can be cleaned up by noting that 
∇ + ∇ = ∇·( ) ·( ) ·( )
� � �
A A Aψ ψ ψ2 . Finally, we recast the ∇ operator in terms of the particle momentum and write 

the Hamiltonian as the sum of a field-free zero-order term Ĥ0 and a field-dependent perturbation operator 
Ĥ ′, ˆ ˆ ˆH H H= + ′0 , where

 Ĥ
m

V0

2
2

2
=

−
∇ +

�  (2.57)

 ˆ ·H
e

m
A p′ = − � �

 (2.58)
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These expressions form the basis for the time-dependent perturbation theory to be considered in Chapter 4. 
The point of Equation 2.58 is that the fundamental basis for spectroscopic transitions is the interaction 
of the momenta of charged particles with the vector potential of radiation. We shall see in Chapter 4 how, in 
the long-wavelength limit, this leads to a picture in which the most common spectroscopic transitions are the 
electric dipole allowed transitions.

2.4 QUANTUM MECHANICAL ASPECTS OF LIGHT

2.4.1 quantization of the radiation field

Although many ordinary techniques in spectroscopy can be understood without treating the light quan-
tum mechanically, we will introduce this topic in order to be able to look at effects for which the classical 
treatment fails. In the quantum mechanical picture, the energy levels of photons are the same as those of a 
harmonic oscillator, and photons, like phonons, obey Bose–Einstein statistics. This means that the occupa-
tion number of a particular state can take on any integral value: i.e., photons, unlike electrons, do not mind 
sharing quantum states. The classical limit of the wave picture of light is a consequence of this, since the 
number of photons in a given state can be large. The superposition principle, which allows us to add waves 
of the same frequency, polarization, and propagation vector, also follows from the ability of photons to share 
quantum states.

In Equation 2.18, the vector potential 
�
A was expressed for a monochromatic, plane polarized wave. Here, 

we take the vector potential to be the superposition of a number of allowed cavity modes. These cavity modes 
are subject to boundary conditions that limit the allowed wavelengths, and thus the frequencies, the same 
way that the length of a violin string decides the pitch of the note. The allowed cavity modes will be indexed 
by k, the magnitude of the propagation vector, and they are distinguished by their frequencies ωk = 2πνk and 
polarizations êk . The superposition form of 

�
A is

 
�

�A r t
V

q t rk

k

k( , ) ( ) ( )= ∑1

0ε
u  (2.59)

The summation in Equation 2.59 also runs over two allowed polarization directions for each allowed propaga-
tion vector 

�
k , but the polarization index has been suppressed for notational convenience. Each term in the sum, 

Equation 2.59, is the product of a time-dependent amplitude qk(t) = |qk|exp(iωkt) and a position-dependent 
term ˆ ( ) ˆ exp( · )uk kr e ik r=

� �
. The variable |qk| is related to the amplitude of the vector potential; the notation is cho-

sen to anticipate the result given below. The factor in front of the summation sign is a convenient normalization 
term. A classical Hamiltonian H = T + V is obtained by averaging the energy density (see Equations 2.25 and 
2.26) over the volume of the cavity. Thus the radiation Hamiltonian is

 H E c B drrad = +( )∫ε0 2 2 2

2

�
 (2.60)

By writing the electric and magnetic fields in Equation 2.60 in terms of the vector potential given by 
Equation 2.59, the Hamiltonian for the radiation field is found to be

 H q q p qk k k

k

k k k

k

rad = +( ) = +( )∑ ∑1

2

1

2
2 2 2 2 2 2� ω ω  (2.61)

Equation 2.61 is derived in one of the problems. (See [6] for more details.) Except for the absence of an explicit 
mass term, Equation 2.61 is identical to the Hamiltonian for a classical harmonic oscillator, and defines the 
conjugate “position” (qk) and “momentum” ( )/p q dq dtk k k= =�  operators by analogy to the harmonic oscil-
lator problem. We need not worry about the physical meaning of the position or momentum, as it is the 
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mathematical analogy that concerns us here. The form of Equation 2.61 prompts us to express the quantum 
mechanical Hamiltonian for the radiation field in terms of the raising ( )bk

+  and lowering (bk) operators (also 
called creation and annihilation operators) for mode k:

 b q ipk
k

k k k
+ = −( )1

2�ω
ω  (2.62)

 b q ipk
k

k k k= +( )1

2�ω
ω  (2.63)

Except for the absence of a mass term, these operators are the same as those discussed in Section 1.3.3 for the 
harmonic oscillator. The commutation relations for the raising and lowering operators follow from those for 
position and momentum, q p ik k k k, ,′ ′ = �δ . They are

 b bk k k k, ,′
+

′  = δ  (2.64)

 b b b bk k k k, ,′
+

′
+[ ] =   = 0  (2.65)

These commutator relationships can be used to derive the equations given next, which describe the action of 
bk
+ and bk on a particular eigenstate. Let us say that a state having nk photons in mode k is designated by |nk〉. 

The effect of applying a creation or annihilation operator is

 b n n nk k k k
+ = + +1 1  (2.66)

 b n n nk k k k= − 1  (2.67)

The effect of the raising operator bk
+ is to increase the number of photons by one, and that of the lowering 

operator bk is to decrease the number of photons by one. This means that the raising operator is associated 
with emission, and the lowering operator with absorption of photons.

The full state of the system must specify the number of quanta in each of the allowed cavity modes. 
Formally, this is represented as a product wavefunction of the form Ψ = …n nk k1 2, , . The quantum 
mechanical Hamiltonian for the radiation field can be expressed in terms of the creation and annihila-
tion operators:

 Ĥ b b nrad

k

k k k

k

k k= +





= +



∑ ∑+� �ω ω1

2

1

2  (2.68)

where we have defined the occupation number operator b b nk k k
+ = . The eigenvalues of this operator are the 

integers 0, 1, 2,…, ∞. The allowed energy levels of the field are quantized exactly like those of a harmonic 
oscillator. An important aspect of Equation 2.68 is the zero-point energy associated with the vacuum state, 
where all nk = 0. The virtual photons associated with the zero-point state can be considered to be responsible 
for spontaneous emission, as will be discussed in Chapter 4.

The form of the energy-level expression for photons, along with the universal concept of energy conserva-
tion, leads naturally to the Bohr frequency condition ΔE = nhν. This relation simply states that energy jumps 
ΔE due to emission or absorption of light by molecules must correspond to the energy gained or lost by the 
field; that is, the creation or annihilation of an integral number of photons of energy hν. In the linear regime, 
only one photon transitions are permitted, so that ΔE = hν. Although the time–energy uncertainty principle 
to be derived in Chapter 4 will qualify the Bohr condition somewhat, it is of central importance to the under-
standing of spectroscopy.
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2.4.2  blackbody radiation and the Planck distribution law

The entire discussion of the previous section would be unnecessary if Planck’s constant h were equal to zero. 
The fact that it is indeed quite small, making it possible to neglect it sometimes, may explain why it took so 
long for it to be noticed! The story of the derivation of Planck’s constant is interesting because it explains how 
the theory of quantum mechanics emerged in order to resolve paradoxes that classical theories were power-
less to explain. In addition, the blackbody radiation model teaches us something about matter in equilibrium 
with radiation, so it is relevant to many interesting spectroscopic situations.

There is of course no such thing as a perfect blackbody, but here is how we imagine constructing one in 
a gedanken or “thought” experiment. Take a material that absorbs all of the light that impinges upon it and 
fashion it into a hollow body with a small orifice. Shine light on the orifice and it will be absorbed by the 
internal walls of the cavity and reemitted. Alternatively, heat the cavity and observe the small portion of the 
energy emitted through the orifice. When equilibrium is achieved, the rate of energy absorbed must equal 
that of energy emitted. The distribution of radiant energy will depend on temperature, and we expect that the 
higher the temperature the brighter will be the glow from the cavity. What is the spectrum of light emitted 
by this body?

Common experience leads us to expect that the higher the temperature the higher will be the average fre-
quency of emitted light. This is in fact realized experimentally, as is shown in Figure 2.8. The problem is that 
this is not at all what classical physics predicted. To see why not, let us look at the problem through the eyes 
of a nineteenth-century physicist.

The wave theory of light restricts the wavelengths of cavity modes within the blackbody. These are modes 
whose wavelengths correspond to standing waves having nodes at the walls of the cavity. The quantum theory 
has no problem with the idea of allowed modes, but the classical description goes on to apply the equipartition 
theorem to each cavity mode. Equipartition theorem assigns the energy 1 2 k TB , where kB is Boltzmann’s con-
stant and T the absolute temperature, to each degree of freedom of the system. Now, each mode of the blackbody 
resonator is associated with two degrees of freedom, one for the electric and one for the magnetic field. The 
number of modes (allowed wavelengths) in the interval dλ increases rapidly as the frequency of the radiation 
increases. In the classical theory, each mode is associated with kBT of energy, so the intensity or energy density 
of emitted light should increase rapidly with frequency. This effect was referred to as the ultraviolet catastrophe, 
and it is illustrated in Figure 2.8 along with experimentally observed distributions for various temperatures.

In order to calculate an energy spectrum of the form shown in Figure 2.8, Planck had to make a radical 
assumption: that the atoms comprising the blackbody could absorb and emit radiation in integral multiples of 
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the energy hν. Note that this idea predates the quantum mechanical idea of photons, and indeed it makes no 
mention of the idea of quantized radiation energy. Planck’s picture introduced the idea of quantized energy 
levels of matter, and he himself was uncomfortable with it. Nevertheless, by adjusting the value of the con-
stant h to get a calculated energy distribution consistent with experiment, Planck’s constant emerged and 
there was no turning back.

The problem may be examined quantitatively. Since the emission from a macroscopic body does not depend 
on its shape, we can simplify things by imagining the blackbody to be a cubic box with sides of length L. 
From the boundary conditions, the three components of the allowed k-vectors are 

 k
n

L
k

m

L
k

l

L
x y z= = =

2 2 2π π π  (2.69)

where n, m, and l are integers. Equation 2.69 derives from the condition that, in each dimension, a half-integral 
number of wavelengths should fit into the length L. As k = 2π/λ, this would seem to imply that the allowed 
k-values are k Lx = π  rather than k n Lx = 2π , and similarly for the y and z components. As explained in [7], 
the factor of two in Equation 2.69 reduces the mode density by a factor of one-half, since each permitted cavity 
mode is actually a standing wave, which is a superposition of right- and left-moving waves.

We are interested in an expression for the energy density ρ = du/dν, that is, the energy per unit volume per 
unit frequency interval. We can arrive at a mode density by taking the “volume” in k-space, 4 3 3πk  , and divid-
ing by the “volume” per mode, (2π/L)3, to get the number of modes Nk having propagation vectors less than or 
equal to k:
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The factor of two comes from the two polarization states. The number of allowed frequencies Nν that corre-
spond to Nk is obtained by making the substitution k = 2πν/c. This gives

 N
L

c
ν

πν
=

8

3

3 3

3
 (2.71)

The mode density is defined as the number of modes per unit volume per unit frequency interval. Dividing 
Equation 2.71 by the volume V = L3 and taking the derivative with respect to ν, we get

 d N V

d c

( / )ν

ν
πν

=
8 2

3
 (2.72)

It is the energy density ρ(ν) that is depicted in Figure 2.8. The energy density is the mode density in 
Equation 2.72 times the average energy per oscillator. The classical approach was to multiply Equation 2.72 
by kBT to get the curve representing the ultraviolet catastrophe in Figure 2.8. All the energy should have 
gone into the high-frequency modes, instead of falling off at high frequencies as observed. The essential 
difference between the classical prediction and Planck’s approach is in the calculation of the average 
energy per oscillator.

Planck proposed that the atoms of the blackbody could absorb and emit energy only in integral multiples 
of hν. The energy levels available to the blackbody are thus En = nhν. The probability pn of the nth energy level 
being occupied is given by Boltzmann’s law: p en

nh k TB∝ − ν / . The normalized probability is
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The average energy of a blackbody oscillator is given by E E pnn n= ∑ , thus *
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Taking this average energy per mode and multiplying by the mode density given previously, we get Planck’s 
distribution law for the blackbody energy density:

 ρ ν π ν
ν( )

/
=

−
8 1

1

3

3

h

c eh k TB
 (2.75)

The exponential function of frequency in this expression pulls the energy density down to zero as the 
 frequency goes to infinity, or as the temperature goes to zero. Physically, this results from the unavailability 
of higher-energy states when hν >> kBT. The equipartition theorem prediction is obtained from Planck’s equa-
tion in the limit hν << kBT, so it coincides with the experimental results at low frequencies.

2.4.3 the Photoelectric effect and the discovery of Photons

The photoelectric effect was an important experiment that could not be explained using the wave picture of 
radiation, a situation that led Einstein to postulate the existence of photons. Einstein went one step farther 
than Planck and hypothesized that the energy of light was quantized. We review the historical development 
of the theory and experiment in order to point out some essential differences between the wave and particle 
pictures.

The experiment was to shine light on a photoemissive material, such as potassium, functioning as a 
cathode, and measure the resulting current. The magnitude of the current was observed to be proportional 
to the intensity of the light, which the wave picture relates to the square of the amplitude of the field. The 
maximum kinetic energy of ejected electrons, determined from the magnitude of the potential required to 
prevent the flow of photocurrent, was found to be proportional to the frequency of the incident light. This 
fact was at odds with the wave theory of light, since the energy of the electrons should have been related 
to the intensity of the light. In fact, brighter light increased the number of electrons, but not their energy. 
Also, light of frequency less than some threshold frequency, which depended on the metal, was incapable of 
ejecting any photoelectrons at all, no matter how bright the light. It should have been possible for electrons 
in the metal to eventually acquire enough energy to escape the surface, even if low intensity light of any 
frequency were used.

The picture proposed by Einstein in 1905 provided a way out of this predicament. He suggested that light 
energy was quantized in packets of energy, E = hν, called photons. One photon was capable of ejecting one 
electron provided the photon energy was at least as great as the binding energy of the metal. The ionization 
energy of surface metal atoms is called the work function w. Thus the threshold frequency ν0 is related to the 
work function: w = hν0. The energy of the photon in excess of the binding energy is converted into the kinetic 
energy of the ejected electron, thus the maximum kinetic energy is

 T h wmax = −ν  (2.76)

Equation 2.76 had the exact form of the experimental results for maximum kinetic energy as a function of 
frequency. It remained only to adjust the slope of the calculated line, Tmax versus ν, to agree with experiment. 
The resulting value of h was found to agree with the constant obtained by Planck, and so the idea of quantiza-
tion of energy of matter and light was firmly established.

* Equation 2.74 can be derived with the help of the following summation formulas, which hold for x < 1: x xn

n=

∞∑ = −
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1 1( )  
and nx x x

n
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∞∑ = −
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2.5 SUMMARY

We have now examined two approaches for understanding the nature of light, classical and quantum mechani-
cal. In the classical picture, electromagnetic radiation is considered to be a transverse wave in which the oscil-
lating electric and magnetic fields and the propagation direction are mutually perpendicular. The intensity of 
the light is proportional to the square of the electric or magnetic field amplitude. The quantum mechanical 
treatment of electromagnetic radiation leads to a Hamiltonian that is strikingly similar to that for a harmonic 
oscillator. The quantum numbers associated with the radiation Hamiltonian are interpreted to be the numbers 
of photons in the various allowed cavity modes. A cavity mode is a particular wave vector 

�
k , of magnitude 

2π/λ, that satisfies the boundary conditions, and for each wave vector there are two possible polarizations. The 
intensity of light is proportional to the number of photons. Throughout this book, we will find it necessary to 
refer to both of these descriptions of light. While it will often be desirable to use the classical (wave) picture, 
based on Maxwell’s equations, we still consider spectroscopic transitions to result from absorption, emission 
and scattering of photons. In addition, there will be some experimental scenarios, such a spontaneous emis-
sion, that cannot be understood without a quantum mechanical treatment of light. We will make frequent 
reference to the intensity I and the energy density, ρ(ν) = du/dν in future chapters, as the rates of spectroscopic 
transitions are dependent on these quantities. Further discussion of many of the concepts in this chapter can 
be found in References [8−10]. 

PROBLEMS
 1. The total intensity of sunlight, for all visible wavelengths striking the planet, is about 1000 W/m2. In a 

wavelength interval of about 1 nm in the visible range, the intensity is on the order of 2 W/m2. Using 
a wavelength of 500 nm, find the electric field amplitude and photon flux (number of photons per unit 
area per unit time) that corresponds to this intensity.

 2. Convert the limits of the visible spectrum, 400–700 nm, to kJ/mol, eV, and cm−1.
 3. The momentum of a photon is given by the de Broglie relation: p = h/λ = ħk. Suppose that a flat surface 

1.00 m2 in area completely absorbs 1000 W of 400 nm light. Calculate the radiation pressure.
 4. The blackbody energy density given in Equation 2.75 is the energy density per unit frequency interval. 

In other words, du = ρ(ν)dν is the energy per unit volume between ν and ν + dν. Convert the frequency-
dependent ρ(ν) to a wavelength-dependent function ρ(λ) such that du = ρ(ν)dν = ρ(λ)dλ.

 5. Given that the temperature of the sun is about 5700 K, use your result from Problem 4 to estimate the 
wavelength of the maximum in the solar emission spectrum.

 6. Show that the classical Hamiltonian in Equation 2.54 is consistent with the Lorentz force 
F q E B= + ×( )

� � �
ν . To proceed, calculate the force in the x direction, F mxx = ��, with the help of the follow-

ing expressions from classical mechanics:

  

∂
∂

= −
∂
∂

=
H

x
p

H

p
xx

x

� �and

  A dot over a quantity indicates a derivative with respect to time, and two dots represents the 
 second derivative. The y and z components of the force can be obtained by cyclic permutation.
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 7. Use the formula for the vector potential of the quantized radiation field
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  to derive the radiation Hamiltonian:
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H q qk k k

k

= +( )∑1

2
2 2 2� ω

  See Section 2.4.1 for an outline of the necessary steps.
 8. The work function of Cs is 2.14 eV. Find the maximum kinetic energy of electrons ejected by light of 

wavelength 400 nm.
 9. An argon ion laser emits green light at 514.5 nm with a power of 1 W concentrated in a beam of  cross 

section 0.01 cm2. Calculate (a) the electric field amplitude and (b) the photon flux.

REFERENCES
 1. W. Heitler, Quantum Theory of Radiation, 3rd ed. (Oxford University Press, London, 1954).
 2. E. Hecht, and A. Zajac, Optics (Addison-Wesley, Reading, MA, 1974).
 3. W. S. Struve, Fundamentals of Molecular Spectroscopy (Wiley, New York, 1989).
 4. Boyd, R. W. Nonlinear Optics, 3rd ed. (Academic Press, Amsterdam, 2008).
 5. Yariv, A. Quantum Electronics, 2nd ed. (John Wiley & Sons, New York, 1975).
 6. G. C. Schatz, and M. A. Ratner, Quantum Mechanics in Chemistry (Prentice Hall, Englewood Cliffs, 

NJ, 1993).
 7. R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. III (Addison-

Wesley, Reading, MA, 1965).
 8. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962).
 9. A. Yariv, Quantum Optics (Wiley, New York, 1967).
 10. R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lecture in Physics, Vol. II, Ch. 21 (Addison-

Wesley, Reading MA, 1964).



http://taylorandfrancis.com


51

3

Electric and magnetic properties 
of molecules and bulk matter

3.1 INTRODUCTION

The charge distribution of an atom or molecule provides a handle by which electromagnetic radiation  interacts 
with matter and causes spectroscopic transitions. As discussed in the previous chapter, light consists of oscil-
lating electric and magnetic fields. These fields can exert torques on the electric and magnetic multipoles of 
molecules, causing energy to be absorbed by matter. Conversely, oscillations in the charge distribution of a 
molecule result in the emission of electromagnetic radiation. The reciprocity of these two physical phenom-
ena, oscillating charge distributions and electromagnetic radiation, is an elegant example of symmetry in the 
laws of nature.

Most of the spectroscopic tools presented in this book fall within the realm of linear response. This enables 
us to treat the incident light as a first-order perturbation, and the reaction of the molecules to this pertur-
bation depends on physical properties of the unperturbed system. This is the essence of the fluctuation- 
dissipation theorem, to which we will turn in Chapter 5. Of course, many spectroscopy experiments employ 
intense radiation fields that do more than just tickle the molecules, and the nonlinear response of the system 
then requires higher order perturbation corrections, as discussed in Chapters 13 and 14.

The overwhelming majority of strong spectroscopic transitions, whether absorption, emission, or 
scattering, result from the interaction of the electric dipole moment with the time-varying electric 
field of light. (In magnetic resonance experiments it is the magnetic dipole moment that carries the 
transition strength. We will not consider these at length in this book.) As will be seen later, it is actually 
the quantum mechanical transition moment, a matrix element of the electric dipole moment operator 
connecting two quantum states, that makes spectroscopic jumps possible. In order to discuss physical 
observables of interest to spectroscopists, such as polarization, permittivity, and refraction, we start 
with a discussion of the electromagnetic properties of individual molecules. The microscopic and mac-
roscopic electromagnetic properties of matter are strongly linked to the theory and practice, respec-
tively, of spectroscopy. Theoretical tools provided by quantum mechanics provide us with our first 
expressions for determining the spectroscopic behavior of individual molecules, while practical aspects 
of interpreting the spectra of matter in bulk depend on the macroscopic electromagnetic response. We 
consider how molecular properties decide the frequency-dependent dielectric and optical properties of 
collections of molecules.

The electromagnetic properties of molecules also determine their interactions with one another. When the 
distance between a pair of molecules is large compared to the size of the electron clouds, they can be considered 
to interact via classical electrostatic forces. The charge distribution of one molecule presents a field that inter-
acts with the electric moments of another molecule. As a starting point, we consider static charge distributions 
and the fields that they produce. The concept of polarizability is introduced in order to draw a more realistic 
picture of molecules as fluctuating collections of charge. If the separation of the two molecules is larger than 
about 10 nm, the fluctuations in the charge distribution during the propagation time of the field result in inter-
actions that are not instantaneous. These retardation effects are important in systems where the interactions 
are long ranged, such as colloidal dispersions, but are not be considered here.

In addition to understanding how an external field affects an individual molecule, we want to know how 
this field is screened by bulk matter. This will enable us to consider how the intensity and frequency of a 
spectroscopic transition varies with the environment of the active molecule. This is a long-standing problem 
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often referred to as the local field effect. We will attempt to approach this nontrivial problem with due regard 
for its complexity and implications. This chapter concludes with a brief discussion of magnetic properties and 
electronic spin and orbital angular momentum.

3.2 ELECTRIC PROPERTIES OF MOLECULES

There are two ways to visualize an atom or molecule as a collection of charges. In the classical picture, the 
nuclei and surrounding electrons are discrete charges with definite positions in space at any given time. In 
the quantum view, this picture is blurred, and we can only know probability distributions for the positions 
of particles. In calculations of electric properties, summations involving discrete charges can be replaced by 
integrals over charge distributions that depend on the appropriate squared wavefunctions. This leads to a 
more correct approach to familiar quantities such as the dipole moment. Viewed through the eyes of a fresh-
man chemistry student, the dipole moment of hydrochloric acid (HCl) results from a partial positive charge 
on the hydrogen atom and a partial negative charge of the same magnitude on the chlorine. But quantum 
mechanics teaches us that there is no unique place where either partial charge resides, the electrons being 
delocalized according to the electronic wavefunction. The dipole of the HCl molecule merely behaves as if 
there were two discrete charges separated by a definite distance. (Going even further to be quantum mechani-
cally correct, the dipole moment of a gas-phase HCl molecule vanishes when averaged over its rotational 
motion! However, we can imagine aligning the dipole in an external field.) The discrete charges of the classi-
cal picture are actually the “centers of gravity” of the positive and negative charge distributions. It turns out 
that the dipole moment is a particular average over the molecular charge distribution, which results when 
a collection of charges is decomposed into a hierarchy of electric moments (monopole, dipole, quadrupole, 
etc.). We will show how this decomposition scheme results in a simple picture for the interaction of a molecule 
with the electric field, the gradient of this field, and higher-order terms.

3.2.1 Review of electRostatics

In order to review basic electrostatic principles, we begin with the idea of discrete charge distributions. 
Consider the pair of charges qa and qb arranged in the coordinate system shown in Figure 3.1. The force on 
charge b, due to charge a, is given by Coulomb’s law: 
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(3.1)

Note that r̂ab  is a unit vector pointing in the direction of 
� � �
r r rab b a= − . The vector notation ensures that the force 

will be repulsive for like charges and attractive for unlike charges. Equation 3.1 is written using MKS units, 
which is apparent from the term 4πε0, where ε0 = 8.854 × 10−12 C2 N−1 m−2 is the permittivity of free space. The 
unit of charge in this expression is the Coulomb, and the force F is in Newtons. In the cgs–esu system of units, 
the charge q would be in electrostatic units (esu or statcoulombs), and the permittivity of free space would 
be equal to 1/4π, so the factor 4πε0 would not appear. (See Appendix B for a discussion of units in formulas 
such as Equation 3.1.)
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Figure 3.1 A pair of point charges.
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The Coulombic force is pairwise additive, obeying a superposition principle: 
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This would present a great computational advantage in the consideration of intermolecular forces, were it 
possible to treat molecules as static collections of charge. But the charge distribution of a molecule is polar-
izable: it deforms in the presence of external fields, including those resulting from other molecules. The 
dispersion forces that result from the interactions of induced moments are not pairwise additive. We will 
consider polarizability in Section 3.2.5.

The concepts of force and field are important to the discussion of molecular interactions. Fundamentally, the 
electric field 

�
E  is the force per unit charge. It is more exact to say that it is the force exerted on a test charge in the 

limit that the test charge is infinitesimally small. The mathematical expression of this is given in Equation 3.3.
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Note that the direction of the field is that of the force on a positive charge: the field lines point in the direction 
that a positive charge wants to go. Combining Equations 3.2 and 3.3, the electric field experienced by a test 
charge at point ra, due to a collection of other charges, is given by 
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The electric field 
�
E  is the negative gradient of the scalar potential ϕ, introduced in Chapter 2: 

 
�
E= −∇ϕ  (3.5)

The potential at a distance r from charge q is thus 
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(3.6)

While the electric field is the force per unit charge, the potential represents the work per unit charge, such 
that the work done on a charge to move it between two points depends on the difference in potential: W1→2 = 
q(ϕ2 − ϕ1). In MKS units, the potential is expressed in volts, where 1 V is equivalent to 1 J/C.

Let us use the idea of a simple dipole, composed of two point charges, to illustrate these concepts. For two 
equal and opposite charges q separated by a distance d, the dipole moment is 

� �
μ = qd , where the dipole direc-

tion points from the negative to the positive charge.* It can be shown (see Problem 1 and Appendix B) that at 
a distance r which is large compared to dipole length d, the potential due to the dipole is given by 
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(3.7)

The dependence on the dot product of 
�
µ  and 

�
r  means that the potential in a direction normal to the dipole 

is  zero, as it must be because the contributions of the positive and negative charges would cancel. It is 

* Although many chemistry texts use the opposite convention, the one used here is consistent with the expression given 
later for the energy of a dipole in an electric field.
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important to note that the potential falls off as the square of the distance r, which is a more rapid decrease 
than the potential due to a point charge.

Taking the gradient of the potential in Equation 3.7, the electric field due to a dipole is found as follows: 
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The energy of a dipole moment in a field depends on its orientation, through the expression W E= −
� �
µ· . You 

can use Equation 3.8 to find the interaction energy* of two dipoles: 
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(3.9)

Try using this equation to determine which configuration of a pair of neighboring dipoles is more stable, 
→ → or ↑↓. The answer may surprise you!

In the next sections we will consider higher order multipole moments and their interaction with an 
 electric field.

3.2.2 electRic moments

It would be a difficult problem to calculate the electrostatic potential ϕ due to a molecule if one had to know 
all the details of its charge distribution. Fortunately, there is a way to circumvent this problem. Consider for 
the moment that there is a collection of discrete charges qi located at distances ri from an arbitrary origin. The 
potential at point 

�
R due to this collection is 
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Equation 3.10 is exact, but if we are willing to limit consideration to distances that are large compared to the 
extent of the charge distribution, that is, R >> ri, then it is acceptable to approximate Equation 3.10 by expand-
ing the inverse of the distance 

� �
R ri−  in a Taylor series: 
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(3.11)

Then the potential ϕ is given by 
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(3.12)

(The tensor contractions A·B and A:B are discussed in Appendix A, and the gradient operations involving 1/R 
are considered in Appendix B.) The above equation introduces a hierarchy of multipole moments, the charge 
(or monopole) q, the dipole moment 

�
µ , and the quadrupole moment Θ. Not shown are the higher-order terms 

containing the octupole, hexadecapole, etc., moments. The first three multipole moments are enough to con-
sider for now. They are defined as follows: 

 
q q r dri
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(3.13)

* To avoid confusing energy and electric field, the symbol W is used for energy in this chapter.
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Note that the first of these is a scalar, the dipole moment is a vector (or a first-rank tensor), and the quadru-
pole moment is a matrix (or a second-rank tensor). Equations 3.13 through 3.15 show how these quantities 
may be expressed either in terms of sums over discrete charges or integrals over continuous charge density, 
where ρ( )

�
r  is the charge per unit volume. The MKS units for dipole moment are coulomb-meters, C m, but 

the Debye unit of the cgs system, equal to 10−18 esu cm, is commonly used. The conversion from Debye to C m 
is 1 D = 3.336 × 10−30 C m. It is helpful to remember that an electron and a positron separated by a distance of 
1 Å lead to a dipole moment of 4.8 D. Equation 3.12 points out that increasingly higher order moments lead 
to potentials of increasingly shorter range.

As a vector, the dipole moment requires three components to define it in a reference frame fixed in the labo-
ratory: either three Cartesian components or the magnitude and two angles in a spherical polar coordinate sys-
tem. In a molecule-fixed coordinate system, the symmetry of a molecule dictates the form of 

�
µ . For example, 

a molecule belonging to one of the Cnv point groups has a dipole moment coincident with the n-fold rotation 
axis, and a spherical molecule, such as one belonging to the Td or Oh point group, has no dipole moment at all.

Just as a dipole is the union of two monopoles, a quadrupole is formed by joining two dipoles. Figure 3.2 
shows two ways to do this, along with pictorial representations of some of the other moments. Note that the 
octupole moment is pictured as the union of two quadrupole moments, and so on for higher order moments.

As a second rank Cartesian tensor, Θ could have nine components: Θxx, Θxy, etc. However, the tensor is 
symmetric: Θxy = Θyx. And as shown in Appendix B, if an arbitrary term is added to each diagonal element of 
Θ, there is no change in the field due to the quadrupole. We can thus choose that the quadrupole tensor have 
zero trace; that is, the sum of the diagonal elements vanishes. There are thus only five components needed to 
specify the quadrupole moment. With the convention that Θ be traceless, we have 

 
Θ = ( − )∑1

2
3 2q r r ri

i

i i i
��

I
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where I is the unit tensor. Hereafter, the definition given here will be used when referring to the quadrupole 
moment. It is always possible to find a molecule-fixed coordinate system, that is, one that rotates and trans-
lates with the molecule, known as the principal axes, which diagonalizes Θ. But since the tensor is chosen to 
be traceless, only two diagonal elements need to be specified. Since three angles are needed to orient the prin-
cipal axes of the molecule in the laboratory, there are still five components needed to specify the quadrupole 
moment in a laboratory-based coordinate system.
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Figure 3.2 Electric moments: (a) dipole, (b) quadrupole, and (c) octupole.
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When the dipole moment vanishes, the existence of a quadrupole moment is especially important. 
Consider the intermolecular interactions in liquid benzene or supercritical CO2, in which the considerable 
quadrupole moment operates to favor T-shaped relative orientations of neighboring pairs of molecules.

Problem 2 of this chapter explores the possibility that the dipole and quadrupole moments depend on the 
origin of the coordinate system. It can be shown that the dipole moment of a molecule lacking a net charge 
is independent of the choice of origin. Similarly, if the dipole moment also vanishes, then the quadrupole 
moment does not depend on the origin.

Another way to express a general multipole moment is as a spherical, rather than Cartesian, tensor. In this 
approach, the generalized multipole moment Qlm is expressed as 
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Ylm is a spherical harmonic, and Qlm is the mth component of the moment of order l. Recall that for every value 
of l there are 2l + 1 values of m, ranging from −l to l. The lowest-order moment, l = m = 0, is the monopole 
moment or total charge as defined previously. The dipole moment is represented by l = 1, for which there are 
three components (m = −1, 0, 1). The l = 2 moment is the quadrupole, for which there are five components, and so 
on. Equations 3.18 and 3.19 give some examples of how spherical and Cartesian tensors may be interconverted. 
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Using spherical tensors, the potential is written as follows: 
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Spherical tensors are advantageously employed when making transformations from one frame of reference to 
another, usually from a molecule-fixed to a space-fixed coordinate system. (See the discussion of Wigner rota-
tion matrices in Appendix A.) Physically, the multipole moments beyond the monopole, in any representa-
tion, can be interpreted as indicators of the nonspherical nature of the charge distribution. The equipotential 
surfaces surrounding a multipole of order l = 0, 1, 2,… have the same angular symmetry as the hydrogen atom 
s, p, d,… atomic orbitals.

3.2.3 Quantum mechanical calculation of multipole moments

Given the wavefunction for a molecule in a particular quantum state, the expectation value of any multipole 
moment can be calculated. The operator for the dipole moment, for example, is 
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The first summation runs over the positions of the nuclei and the second over those of the electrons. The 
charge on each nucleus is eZα, where Zα is the atomic number of nucleus α.

Following the usual quantum mechanical recipe for calculating average physical properties, the corre-
sponding operator is sandwiched between the wavefunction and its complex conjugate, and the result is 
integrated over all space: 
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(3.22)
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The wavefunction Ψk represents the total (electronic plus nuclear) state of the system, and the volume 
 element dτ indicates integration over the positions of all the electrons and nuclei. We refer to µk   as the state 
dipole moment of the molecule in state k.

Within the Born–Oppenheimer approximation, to be considered in Chapter 9, the nuclei can be consid-
ered fixed at the positions Rα, so we can treat them as discrete charges. The electrons, on the other hand, pres-
ent a charge distribution according to the electronic wavefunction ψk for state k. This leads to an expression 
containing two terms, the nuclear and electronic contributions to the total dipole moment: 
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Equation 3.23 represents the dipole moment for a fixed configuration of the nuclei, such as the equilibrium 
geometry of the molecule. For the ground electronic state, this is the permanent dipole moment that would be 
found in a handbook. In later chapters, we will go beyond the simple expression for this average moment and 
look at how the dipole moment varies as the molecule vibrates and rotates. Higher order multipole moments 
can be calculated using expressions similar to Equation 3.22, on substitution of the appropriate operator.

3.2.4 inteRaction of electRic moments with the electRic field

The multipole moments have been introduced as a convenient way to represent the electrostatic potential due 
to a collection of charges. They also present a physically appealing way to visualize the interaction of light 
with matter. For example, the energy of a collection of charges subjected to a field is given by 
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Equation 3.24 is found by taking the energy as the sum W = Σiqiϕ(ri) and using a Taylor series expansion for 
the potential. The resulting picture is that of the total charge interacting with the potential, the dipole inter-
acting with the field, the quadrupole interacting with the field gradient, etc.

An electric field, whether due to radiation or another collection of charges, can exert a force 
�
F  or torque 

�
T  

on a charge assembly. The expressions for force and torque are 
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The electric field can be expanded in a Taylor series about the point 
�
r = 0: 
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Using Equation 3.26 in Equation 3.25 leads to 
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The consequences of Equation 3.28 are pictured in Figure 3.3. A homogeneous field 
�
E0 , for which the gradient 

is zero, exists well within the space confined by two oppositely charged plates (Figure 3.3a). Clearly, such a 
field exerts a force on a point charge, but not on a dipole, quadrupole, or higher order multipole. The field 

�
E0 
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does exert a torque on the dipole; it will tend to align with the field as shown. The quadrupole moment, on the 
other hand, is not affected by a homogeneous field. The field gradient ( )∇

�
E 0 can be pictured as resulting from 

four charged wires arranged as shown in Figure 3.3b. A point charge symmetrically situated at the center of 
this arrangement would experience no net force, but the dipole would be accelerated as shown in the figure 
and indicated in Equation 3.27. Figure 3.3b reveals how the quadrupole, shown in this example as a set of 
alternating charges arranged in a square, would experience a torque; that is, it would tend to be reoriented by 
the field gradient.

What is the significance of this for the study of spectroscopy? We can view molecules as little anten-
nae that can receive or transmit electromagnetic radiation, in absorption and emission of light, respectively. 
Equation 3.24 provides a way to view the interaction between the charge distribution of a molecule and the 
electromagnetic field. For a neutral molecule, the lead term is the interaction of the dipole moment with 
the field at the molecule. The second term accounts for the interaction of the quadrupole moment with the 
field gradient. According to Equation 3.28, a static electric field exerts a torque on the dipole moment, while 
the field gradient rotates the quadrupole moment. The wavelength of light used in a typical spectroscopy 
experiment is much larger than the size of an atom or a molecule. This means that the molecule sees a time-
varying electric field, but is not very sensitive to the spatial variations (gradients) of the field. The net result, 
as we shall see, is that the spectroscopic transitions permitted by the dipole operator tend to be stronger 
than those permitted by the quadrupole moment operator. In the quantum mechanical treatment of the next 
chapter, we will account for the rate of a “dipole-allowed” spectroscopic transition by taking matrix elements 
of the operator equivalent of W E= −

� �
µ· . When this matrix element happens to vanish, the transition is said 

to be dipole forbidden, and we consider the possibility of higher order terms coming into play. Quadrupole-
allowed transitions are weaker than dipole transitions due to the small variation of the electric field over the 
extent of the molecule.

3.2.5 polaRizability and induced moments

In the presence of an external field, the flexibility of the molecular charge distribution leads to revised mul-
tipole moments. In yet another use of the ubiquitous Taylor series expansion, the dipole moment can be 
expanded in a power series in the applied field: 

 
� � � � �

�µ µ α β= + + +0
1

2
· :E EE

 
(3.29)

a) charge, dipole and quadrupole in a
homogeneous field

b) charge, dipole and quadrupole in a field
gradient

Figure 3.3 Electric moments interacting with (a) a field and (b) a field gradient.
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The lead term 
�
µ0  is the previously discussed permanent dipole moment, and subsequent terms represent 

induced moments. The linear term introduces the polarizability α, a second-rank tensor whose components, 
say the xy term, can be defined through 

 
α µ

xy
x

yE
=

∂
∂











0  
(3.30)

The zero subscript means that the derivative is evaluated at zero field. The term quadratic in the field depends 
on the hyperpolarizabilty β, a third-rank tensor with components βxxx, βxxy, etc. Lest one is tempted to think 
that Taylor series only ever have three terms, rest assured that higher-order terms involving increasingly 
higher rank tensors could be expressed, and may come into play at higher field strengths.

The polarizability of an atom or a molecule represents the tendency for an electric moment to be induced 
by an external field. We can view this polarizability in terms of the softness of the electron cloud; larger 
atoms are more polarizable because the outer shell electrons are farther from the nucleus. In an atom, or 
in a molecule with spherical symmetry such as CCl4, the induced dipole moment is necessarily in the same 
direction as the field that induces it, and the polarizability α is a scalar: 

� �
μ αind = E . But nonspherical mol-

ecules need not have induced moments which are parallel to the electric field, as expressed by Equation 3.30. 
The tendency of electrons to follow the field is influenced by the paths provided by chemical bonds. This 
necessitates expressing the polarizability as a second-rank tensor, for example, as a Cartesian tensor with 
nine components: 
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The three components of the induced moment are given by 
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(3.32)

Now each component of the induced moment can depend on all three components of the field; for example, 
μx = αxxEx + αxyEy + αxzEz.

Like the quadrupole tensor, α can be made diagonal in the principal axes of the molecule. When the 
polarizability tensor is expressed within a coordinate system embedded in the molecule, it must reflect the 
molecular symmetry. In a laboratory frame of reference, the induced moments depend on the orientation of 
the molecule. This is a topic of great importance to the subject of light scattering, and we will return to it in 
Chapters 8 and 12. For the time being, we note that the mean polarizability α  is independent of the orienta-
tion, just as the length of a dipole moment vector is invariant to orientation. The mean polarizability is one-
third the trace of the polarizability tensor: α α α α α= + +( ) =1 3 1 3xx yy zz Tr .

The total energy of the molecule can also be expanded in terms of powers of the field. It can be shown that 
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This leads to yet another fundamental expression for a particular component of the polarizability, for 
example: 
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The polarizability increases with the number of electrons in the molecule, or the volume of the charge distribu-
tion. In a classical picture, it can be shown that an atom of radius a has α ≈ 4πε0a3. (See Appendix B.) This expres-
sion emphasizes the unusual units that result when the polarizability is expressed in the MKS system: C2 m N−1. It 
is sometimes desirable to refer to the volume polarizability α/4πε0, which has units of m3. In cgs units, where 
4πε0 = 1, the units of polarizability are cm3. For example, the polarizability of CH4 is 2.6 × 10−24 cm3, while that 
of CCl4 is 11.2 × 10−24 cm3.

The induced dipoles caused by fluctuating molecular charge distributions set up fields that induce dipoles 
in neighboring molecules. The interaction is automatically attractive, and the resulting forces are called dis-
persion forces. The polarizability is actually a frequency-dependent property, as discussed in the next section.

3.2.6 fReQuency dependence of polaRizability

The perturbing field that induces a dipole moment may be time-dependent, as it is in a spectroscopy experi-
ment. The ability of the field to induce a dipole moment depends on the frequency because the molecular 
motions that respond to the field have their own natural frequencies. This is an important point to which we 
will frequently return. For the moment, we envision the induced moment to result from motion of electrons, 
ignoring but anticipating the contributions of nuclear motions. For visible and ultraviolet wavelengths, for 
example, the electrons are capable of keeping up with the driving field, but the more sluggish nuclei are not.

A classical view of the molecule and its electron cloud results in a phenomenologically correct expression 
for α(ω), which we will show is comparable to the quantum mechanical expression. The Lorentz model of 
matter was the first attempt to explain atomic spectra, and it predates the emergence of quantum mechanics. 
This classical picture rests on the idea that an electron is bound to the nucleus by a Hooke’s law force; that 
is, the restoring force is proportional to the displacement. This may seem to contradict the expression for 
Coulomb’s law given at the start of the chapter, but if the entire charge due to the electrons is considered to be 
smeared out into a continuous sphere, Gauss’ law (Appendix B) can be used to show that the force resulting 
from a displacement of this charge distribution, relative to the positive center, is indeed proportional to the 
displacement.

Picture a single electron in one dimension subject to a field E in the x direction, resulting in a displacement 
x from the center of positive charge. The induced moment is given by 

 μ αind = − =ex E  (3.35)

By analogy to the harmonic oscillator, Hooke’s law for the restoring force is 

 F kx m x= − = − ω0
2

 (3.36)

The force constant k is related to the mass m and the harmonic frequency ω 0. In the static case the Hooke’s law 
force is balanced by the electric force −eE. The net force is zero, so − =m x eEω0

2 . Solving for x and substituting 
in Equation 3.35 gives 
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(3.37)

and the polarizability is 
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(3.38)

This expression is generalized by allowing for a total of N electrons, divided into groups of fjN having har-
monic frequencies ωj: 
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f j
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3.2 Electric properties of molecules 61

The quantity fj is known as the oscillator strength; a quantum mechanical definition will be presented in 
Chapter 4. Equation 3.39 actually gives the static polarizability, valid when the external field is constant in 
time. In the case where the field E(t) is a function of time, we have to solve the equation of motion for a driven 
harmonic oscillator. Summing the forces in this case leads to 
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d x
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eE t m x t

dx

dt
= = − − −

2

2 0
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(3.40)

The three contributions to the right-hand side of Equation 3.40 are the electrical force, the Hooke’s law force, 
and a frictional force, respectively. The constant Γ is a damping factor that allows for a slowing down of the 
oscillation. The solution to this differential equation can be found with the help of physical intuition. First, 
assume a time-dependent electric field of the form E(t) = E0xexp[i(ky − ωt)]. (Here, k is the magnitude of 
the wave vector 2π/λ and not the force constant.) This represents radiation polarized in the x direction and 
traveling in the y direction. It seems logical to assume that the displacement will follow this field, so we try a 
solution of the form 

 x t x i ky t( ) exp ( )= −[ ]0 ω  (3.41)

When the time derivatives of x(t) are evaluated and plugged into Equation 3.40, the result is 
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(3.42)

The time τ = m/Γ represents a relaxation time for damping of the oscillating dipole. The definition of the 
polarizability α = −ex/E can now be introduced to produce 
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(3.43)

This equation has been generalized to allow for a collection of electrons, as in the previous expression.
The polarizability becomes large when the frequency of the driving field ω is resonant with one of the 

natural frequencies ωj. Note that clearly the polarizability has both real and imaginary parts: 

 α ω α ω α ω( ) ( ) ( )= ′ + ′′i  (3.44)

The real part α ′(ω) represents the part of the induced polarization that is in phase with the driving 
field, and the imaginary part α″(ω) pertains to that which is 90° out of phase. To justify this state-
ment, consider the function exp(iθ). Addition of ±π/2 to the angle θ amounts to multiplication of the 
original function by ±i. The real and imaginary parts of α(ω) correspond, respectively, to the disper-
sion and absorption or emission of light. Note that the out-of-phase part would vanish in the absence 
of damping.

The idea of a physical property having an imaginary part can be disconcerting when it is first introduced. 
But keep in mind that it is α ″(ω), a real quantity, that is experimentally accessible. Equation 3.44 has the form 
common to linear response functions. The real and imaginary parts of a linear response function such as 
α(ω) are related to one another through the Kramers–Kronig relations, which are 
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where P indicates the principal part of the integral. Thus, the real part depends on knowledge of the imagi-
nary part at all frequencies, and vice versa. The Kramers–Kronig relations are not limited to the polarizabil-
ity, but apply to the real and imaginary parts of other response functions as well.

3.2.7 Quantum mechanical expRession foR the polaRizability

The quantum mechanical derivation of the frequency-dependent polarizability is presented in Chapter 4. The 
result is merely quoted here in order to compare it to the classical expressions given previously: 
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(3.46)

Equation 3.46 gives the frequency-dependent polarizability of a molecule in quantum state k, expressed 
as a particular element of the Cartesian polarizability tensor. The subscripts ρ and σ designate two of 
the directions x, y, and z. The sum is over all excited electronic (more precisely, rovibronic or rotational 
plus vibrational plus electronic) states r, and the matrix elements in the numerator are transition dipole 
moments. The transition dipole moment figures heavily in the discussion of spectroscopy and will be con-
sidered further in the next chapter. For now, we note that it signifies a spectroscopic connection between 
two states.

Equation 3.46 lacks the damping term responsible for the imaginary part of the polarizability. In Chapter 4, 
we will revise the quantum mechanical expression for the polarizability to include such a damping term. It 
will be shown that this damping derives from the finite lifetime of excited states, which contribute to the 
sum-over-states form of the polarizability. Equation 3.46 shows the same resonance behavior as the classical 
expression: the polarizability becomes large when the frequency of light is tuned to match the frequency of an 
allowed electronic transition, ω ≈ ωrk, where 

 
ωrk

r kE E
≡

−
�  

(3.47)

is the frequency of the k → r transition. In the quantum mechanical point of view, it is the tendency of elec-
trons to be excited to higher-energy states that gives rise to the polarizability. The larger the atom or molecule 
the closer together these energy levels are, so increasingly accessible energy levels make for more polarizable 
molecules, in agreement with reasoning based on the size of the electron cloud.

A final point of interest is that the quantity referred to as oscillator strength in the classical expression for 
α(ω) can be compared to the product of the transition dipole moments appearing in the numerator of the 
quantum mechanical expression. The concept of oscillator strength will be further explored in Chapter 4.

3.3 ELECTRIC PROPERTIES OF BULK MATTER

3.3.1 dielectRic peRmittivity

In this section, we examine the collective response of matter to an applied field, which may be time- dependent. 
We begin by dividing all materials into two groups: conductors, which have free charges, and insulators, 
which do not. We are more concerned with the latter in this section, as we consider the effect of an electric 
field on the bound charges that make up the insulator.

When an external field is applied to a conductor, the free charges respond in such a way as to set up a field 
inside the conductor that exactly cancels the externally applied field. In an insulator subjected to an external 
field, on the other hand, the matter responds with an induced polarization that partially cancels the field due 
to outside charges. Although the charges in an insulator are not mobile, as they are in a conductor, an external 
field has the ability to displace the charges through distortion of the electron cloud, orientation of permanent 
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dipoles, and changes in the lengths of polar bonds. The resulting net dipole moment per unit volume is called 
the polarization, and in linear dielectric materials it is proportional to the electric field.

The historical approach to the concept of dielectric properties begins with the idea of a parallel plate 
capacitor, like the arrangement envisioned in Figure 3.3a depicting a homogeneous electric field. The surface 
charge density on each plate is σ = q/A, where A is the area and q the absolute value of the charge. As shown 
in Appendix B, the electric field is given by 
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= =
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(3.48)

where ẑ is a unit vector in the direction normal to the plates. The zero subscript on E signifies the field that 
would result if a vacuum existed between the plates. This field is the voltage ϕ across the plates divided by the 
distance d between them. The capacitance is defined as the ratio of the charge stored by the capacitor, q, to 
the voltage ϕ, C = q/ϕ. (The units of C are farads; one F is equal to one C/V.) Thus the capacitance depends on 
the geometry: 
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(3.49)

This expression is for an empty capacitor, and ε0 is the usual permittivity of free space. Now imagine that the 
space between the plates is filled with a dielectric material. The external field will cause the bound charges to 
be distorted such that a layer of induced negative charge resides next to the positively charged plate and vice 
versa. Microscopically, these induced charges result from induced dipoles (via the polarizability) and from 
the alignment of permanent dipoles. We refer to these as the electronic and the orientational polarization, 
respectively. While the former exists in all dielectrics, the latter requires the component molecules to possess 
permanent dipole moments. The induced polarization leads to a decrease in the field and thus an increase in 
capacitance in the presence of the dielectric. In the presence of a dielectric, the permittivity of free space ε0 is 
replaced by the permittivity of the material ε: 

 
C

A

d
=

ε
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The relative permittivity εr is the ratio of the permittivity of the material to that of the vacuum: 

 
ε ε

εr =
0  

(3.51)

The relative permittivity is often referred to as the dielectric constant. It is more precise to say that the dielec-
tric constant is the value of εr for a static field, since εr is a function of frequency. The relative permittivity is 
related to appropriate ratios of the field and capacitance, with and without dielectric: 

 ε r
E

E

C

C
= =0

0

 (3.52)

It is also the factor by which the Coulombic force between charges is reduced when they are immersed 
in a dielectric medium; hence, the ease with which many salts are dissolved in polar solvents such as 
water.

The relative permittivity of a dielectric material is always greater than unity. Some representative values 
of εr are given in Table 3.1, along with the permanent dipole moments μ0. It is clear that the more polar the 
molecules in a liquid, the larger the dielectric constant, but Table 3.1 indicates that εr does not consistently 
increase with μ0. The reason is that εr depends on the relative alignment of dipoles in the liquid. Hydrogen 
bonding in liquids like water and methanol leads to an enhancement of the permittivity over what would be 
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expected in the case of more random relative alignment of neighboring dipoles. Note that εr is greater than 
unity even if the dipole moment vanishes, due to the electronic contribution to the induced polarization.

The partial cancellation of the applied field is determined by the polarization 
�
P , defined as the net dipole 

moment per unit volume. Polarization, not to be confused with polarizability, is a vector quantity and com-
prises both induced dipole moments and aligned permanent moments. Gauss’ law (Appendix B) enables us 
to visualize a field due to the polarization as the result of bound charges induced in the layers adjacent to the 
conducting plates. This field opposes the applied field such that the net field is 

 

� � �
E E

P
= −0

0ε  
(3.53)

�
E  is called the macroscopic or average field. The polarization is proportional to this average field: 

 
� � �
P E Er e= − =ε ε χ ε0 01( )  (3.54)

Equation 3.54 introduces the electric susceptibility χe = εr − 1, where the subscript e distinguishes the electric 
susceptibility from its magnetic counterpart. In expressing the susceptibility as a scalar, we have assumed 
that the dielectric is isotropic. More generally, a crystalline material would require that χe be expressed as a 
second-rank tensor.

It is conventional to introduce a quantity referred to as the electric displacement, 
�
D, defined by � � � �

D E P E= + =ε ε0 . The displacement is related to the free charges, through Gauss’ law, the same way that 
�
E  is 

related to the net charge.
At this point, the reader might want to ponder the following dilemma. The polarization of the dielectric 

depends on the field between the plates of the capacitor, which depends in turn on the polarization of the 
medium. How are we to break out of this circular relationship and determine the molecular basis for the 
relative permittivity?

3.3.2 fReQuency dependence of peRmittivity

The external field applied to a parallel plate capacitor could be an alternating field rather than a DC field. 
With a microscopic point of view, we can see why the resulting polarization depends on frequency. At low fre-
quency, less than about 1012 s−1, both the electronic and the nuclear polarization contribute. At microwave fre-
quencies and lower, permanent dipoles respond by reorienting. At higher frequencies, into the infrared, the 
field switches so rapidly that the rotational motion of the molecules cannot keep up, but the induced dipoles 
that accompany vibrational motion still contribute. At frequencies characteristic of visible and ultraviolet 
light, 1015 to 1016 s−1, the electronic contribution to the response remains while that due to nuclear motion 
is frozen out. Thus we have spectral windows in the microwave, infrared, and visible-ultraviolet regions, 
through which we view rotational, vibrational, and electronic motions, respectively.

The relative permittivity, like the molecular properties on which it is based, is a function of frequency and 
has both real and imaginary parts: 

 ε ε εω ω ωr r ri( ) ( ) ( )= ′ + ′′  (3.55)

Table 3.1 Dielectric constants and dipole moments for some liquids at room temperature

εr μ0, D εr μ0, D

Benzene 2.28 0 Acetone 20.7 2.88

Ethyl ether 4.34 1.15 Methanol 32.7 1.70

Chloroform 4.81 1.01 Dimethylsulfoxide 46.7 3.96

Ethyl acetate 6.02 1.78 Water 80.2 1.86

Dichloromethane 8.93 1.60 Formamide 111.0 3.73
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Like the real and imaginary parts of the polarizability (Equation 3.45), ′ε ωr( ) and ′′ε ωr ( ) are related to one 
another via the Kramers–Kronig relations: 
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where ε∞ is the relative permittivity at infinite frequency.
The refractive index is also complex: 

 n n ir( ) ( ) ( )ω ω κ ω= +  (3.57)

As discussed in Chapter 2, the relative permittivity of a nonmagnetic material is the square of the complex 
refractive index, n2(ω) = εr(ω). Equating real and imaginary parts of both sides of this expression leads to 

 ′ = −ε κω ω ωr rn( ) ( ) ( )2 2

 (3.58)

 ′′ = (ε ω ω κ ωr rn( ) ) ( )2  (3.59)

Let us explore the physical significance of these expressions. The familiar refractive index, that is, the real 
part nr, is the factor by which the speed of light in a medium is reduced from its value in free space. Consider 
a plane electromagnetic wave traveling in the x direction. The electric field is given by 
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E E i kx t= ±[ ]Re 0 exp ( )ω  (3.60)

The wave vector k = 2π/λ should be corrected for the change in wavelength. If λ is the vacuum wavelength, 
then we should write 
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Thus the electric field in the medium is given by 
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This expression shows that the real part of the refractive index serves to modify the wavelength as expected, 
while the imaginary part leads to an exponential decay in the electric field as it travels through the medium, 
when κ is positive. Since the intensity is proportional to the square of the amplitude of the electric field, 
I ∝ |E|2, the intensity of light depends exponentially on the distance traveled: 
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The absorption coefficient γ has been introduced. Using Equation 3.59, we find that the absorption coef-
ficient is 

 γ ω ωε
ω

( )
( )

= ′′r

n c
 (3.64)
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It is related to the more familiar molar absorptivity εM (units of L mol−1 cm−1) by comparing Equation 3.63 to 

 I I Cx IM
CxM= − = −

0 02 303 10exp( . )ε ε  (3.65)

(Unfortunately, the symbol epsilon, ε, is widely used for both the dielectric function and molar absorptiv-
ity, so the subscript M has been added to the latter.) The absorbance A CxM= ε  is given by Beer’s law, that is, 
it is proportional to the concentration C in moles per liter, and the path length x, usually expressed in cm. 
Combining the three previous equations, we find that the imaginary part of the relative permittivity is related 
to the molar absorptivity by the expression 
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where N is the number of absorbing molecules per cm3, NA is Avogadro’s number, c is the speed of light, and 
the conversion factor between liters and cubic centimeters has been absorbed into the number 2303.

As the frequency ω approaches zero, the relative permittivity becomes purely real. The quantity com-
monly referred to as the dielectric constant is ′εr( )0 . In transparent materials, the square of the refractive 
index measured at the wavelength 586 nm (the yellow sodium D line), nD, is sometimes called the optical 
dielectric constant. More precisely, the optical dielectric constant is ′ ∞εr( ), but it is often assumed that this 
is close to the value nD

2 . The Kramers–Kronig equations connect the real and imaginary parts of the refrac-
tive index; thus nr undergoes dispersion (is frequency dependent) in the vicinity of an absorption transition 
(κ ≠ 0). (See Figure 2.5.)

3.3.3  Relationships between macRoscopic and 
micRoscopic pRopeRties

The collective response of bulk matter to an applied electric field depends upon the permittivity ε or the 
susceptibility χe, while that of an individual molecule is dictated by the polarizability α and the permanent 
dipole moment μ0. In a bulk sample, the interactions of molecules with one another result in collective 
electromagnetic properties that are not merely the sum of single molecule quantities. Thus the exact treat-
ment of the molecular basis for the screened electric field in the condensed phase is quite complicated. 
Nevertheless, we can use simple models to appreciate how the bulk permittivity derives from molecular 
properties such as dipole moment and polarizability. The simplest case will be considered first: a low-
pressure gas consisting of nonpolar molecules. We will then look at liquids composed of nonpolar and then 
polar molecules, for which the discussion leads naturally to a consideration of the local field problem to be 
discussed in Section 3.3.4.

In the following discussion, we must be careful to distinguish between the previously mentioned mac-
roscopic field and the quantity known as the local field. The local field at the site of an individual molecule 
contains the contributions of the fields due to the molecules that surround it. The induced moment of a single 
molecule is proportional to this local field. The polarization 

�
P , however, is proportional to the macroscopic 

field 
�
E , which depends on the fields due to all the molecules in the sample.

3.3.3.1 NONPOLAR MOLECULES IN THE GAS PHASE

At sufficiently low number density N/V, the macroscopic field within the sample is approximately the same 
as the local field. This amounts to neglecting the interactions between molecules. The polarization, which is 
purely electronic for nonpolar systems, is just the number density times the induced moment. Thus 
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and using εr = 1 + χe, the relative permittivity is given by 
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(3.68)

Since εr = n2 is close to unity for a low-pressure gas, the refractive index is approximated by 
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Equation 3.69 predicts the refractive index of a gas to be a linear function of density, provided the density is 
not too high.

3.3.3.2 NONPOLAR MOLECULES IN THE CONDENSED PHASE

In a condensed phase, the interactions between molecules cannot be neglected, and we must consider how 
the local field 

�
F  is different from the macroscopic field 

�
E . Imagine a spherical region within the sample which 

is large enough to be representative of the whole sample. There are several ways to arrive at the Lorentz local 
field for the region within this sphere. The resulting expressions apply to an isotropic medium, such as a cubic 
crystalline lattice. Imagine that the spherical region has a radius a, large compared to the size of a molecule. 
The field due to the matter inside a uniformly polarized sphere behaves as if it were due to a dipole given by 

 
� �
µ π

=
4

3

3a
P

 
(3.70)

This is just the volume of the sphere times the dipole moment per unit volume. The field due to the matter 
inside the sphere, let us call it 

�
Eint , is given by −

�
P/3 0ε  (see [1]). The local field 

�
F  inside the sphere is the macro-

scopic field 
�
E  less the contribution of the field due to the matter within the sphere. That is,
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Using Equation 3.54 for 
�
P , the Lorentz local field is found: 

 

� �
F Er= +( )1

3
2ε

 
(3.72)

The polarization is the number density times the polarizability times the local field. Thus
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Rearranging and eliminating 
�
E  leads to the Clausius–Mossotti equation: 
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When the relative permittivity εr in Equation 3.74 is replaced by n2, the expression is referred to as the 
Lorenz–Lorentz equation. The number density can be related to the molecular weight M and the mass density 
ρ through N V N MA= ρ  and the Lorenz–Lorentz expression cast in the following form: 
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where the molar refractivity RM has been introduced. Equation 3.75 connects the bulk property, refractive 
index, to the molecular property, polarizability. Both are functions of frequency.

3.3.3.3 POLAR MOLECULES IN CONDENSED PHASES

The polarization discussed previously is properly referred to as the electronic polarization 
�
Pe. In the case of 

collections of polar molecules, the total polarization is the sum of the electronic and orientational contribu-
tions. The latter takes into account the average component of the permanent dipole moment in the direction 
of the applied field: < >

�
µ . The alignment of the permanent moments with the field is opposed by the thermal 

motion of the molecules. The orientational polarization is the number density times the thermally averaged 
component of the dipole moment in the field direction: 
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The angle brackets indicate an equilibrium average. Let the angle between the permanent moment and the 
field direction be θ. The average needed to compute Equation 3.76 is 
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µ µ θ= 0 cos  (3.77)

The energy of the dipole in the local field is W F F= − = −
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µ µ θ0 0· cos . A Boltzmann average of cos θ is  performed 

as follows: 
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With the substitutions u = μ0F/kBT and x = cosθ, the integral can be expressed as the Langevin function, L(u): 
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The Langevin function approaches the value u/3 for small values of the argument u, and the limit of 1 when u 
is large. For moderate temperatures and typical values of the field strength and dipole moment, µ0 1F k TB << , 
so L(u) can be replaced by u/3. The orientational polarization in this limit is 
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The total polarization is given by 
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Using 
� �
P Ertot = −ε ε0 1( )  and the expression for the Lorentz local field, the Debye equation for the molar polar-

ization PM is obtained: 
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Figure 3.4 illustrates the temperature-dependent molar polarization of liquid CHCl3 plotted versus 1/T. 
Equation 3.82 suggests that the dipole moment and polarizability can be obtained from the slope and inter-
cept of such a plot, respectively. Application of the Debye equation to the data shown in Figure 3.4 yields a 
volume polarizability α/4πε0 of 1.5 × 10−23 cm3 and a dipole moment of 0.5 D, compared to literature values 
of 0.9 × 10−23 cm3 and 1.0 D, respectively. The agreement is rather poor, although there is considerable scatter 
in the data. For more insight into the limitations of the Debye equation, consider the plot of PM versus 1/T for 
liquid water, shown in Figure 3.5. The graph is clearly nonlinear, and the slope is in fact negative! Why does 
the Debye model fail for liquid water?

Equation 3.82 is based on a simple model and can be expected to yield dipole moments and polarizabilities 
in rough agreement with gas-phase quantities. There is a serious flaw in the Debye equation, however, in that 
it incorrectly predicts a temperature below which the dielectric constant becomes infinite. Were this a real 
phenomenon, it would represent permanent electrical polarization, or “ferroelectricity,” of a liquid. In the 
next section we look at why the Debye model fails.

3.3.4  the local field pRoblem: the onsageR and 
KiRKwood models

The Debye equation works better for dilute solutions of polar molecules in nonpolar solvents than for 
neat polar liquids. The reason lies in the simple approach to the local field that was used to obtain 
Equation 3.82. The Lorentz local field is the field within a volume that is large enough to represent the 
macroscopic properties of the sample. What is really needed is the field experienced by a single mol-
ecule, which takes into account the microscopic nature of the surroundings. The exact calculation of 
such a field would require knowledge of the structure of the liquid and a sufficiently accurate approach 
to calculating the intermolecular interactions. This is a daunting task; an exact solution to the local field 
problem would not be practical. One of the difficulties is the pesky long-range nature of the dipole-
dipole interaction, which leads to a troublesome dependence of the energy of a finite collection of dipoles 
on the shape of the sample.

18.0

17.8

17.6

17.4

17.2
2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4

Reciprocal Temperature, 1/T (10–3K–1)

M
ol

ar
 P

ol
ar

iz
at

io
n

P M
 (c

m
3 /m

ol
)

Figure 3.5 Molar polarization of H2O versus reciprocal temperature.
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There are, however, some approximate approaches that improve upon the Debye equation. The first of 
these, due to Onsager, replaces the macroscopically representative spherical region of the Lorentz picture 
with a spherical cavity containing a single molecule. The Kirkwood model is also based on a spherical cav-
ity, but one that contains a number of molecules. In either picture, the liquid outside the sphere is treated 
as a dielectric continuum; that is, the molecular nature of the medium is ignored. In what follows, the basic 
ideas of the two models will be presented, in order to clarify the physical picture, without going into all the 
details of the original derivations. Figure 3.6 depicts the simple concepts on which the Lorentz, Onsager, 
and Kirkwood models are based. More details on the local field problem can be found in references [2], [3], 
[4] and [5].

3.3.4.1 ONSAGER MODEL

Imagine an isotropically polarizable molecule in a spherical cavity of radius a surrounded by a dielectric 
continuum having a bulk dielectric constant εr. The short-range interactions of the molecule with the sur-
roundings are neglected. The problem is to find the total moment of the molecule, 

�
m, which is the sum of the 

permanent and induced parts: 

 
� � �

m F= +µ α0  (3.83)

The first term is the dipole moment of the isolated molecule, and the second is the induced dipole, which 
depends on the local field. The local field can be thought of as the sum of two contributions, the cavity field �
G that would be present in the empty sphere, and the reaction field 

�
R that results from the polarization of the 

surroundings due to the field of the molecule within the cavity: 

 
� � �
F G R= +  (3.84)

The cavity field is a function of the dielectric constant of the surroundings and the macroscopic field: 
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The reaction field is proportional to the dipole moment of the molecule in the cavity: 
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(3.86)

If the dipole moment in Equation 3.86 is replaced by that due to a macroscopic region of radius a and polariza-
tion 

�
P ; that is, if the substitution 

� �
m a P= ( )4 33π  is made, the Lorentz local field is obtained for 

�
F . This points 

to the error in using the Lorentz formula to obtain the Debye equation: Only the cavity field acts to exert a 
torque on the dipole, since the reaction field is always parallel to the dipole direction. Certainly, both fields 

(a) Lorentz

a

(b) Onsager (c) Kirkwood

Figure 3.6 Spherical cavities embedded in a dielectric continuum for three models of the local field: 
(a) Lorentz, (b) Onsager, and (c) Kirkwood.
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affect the value of the induced moment. Using Equations 3.85 and 3.86 in Equation 3.84 and eliminating 
�

m 
leads to the Onsager local field: 
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The total moment is given by 
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(3.88)

In order to get the polarization, Equation 3.88 needs to be averaged over the orientation of the mol-
ecule. As in the derivation of the Debye equation, we require < >= < >

�
µ µ θ0 0 cos , where θ is the angle 

between  
�
µ0 and 

�
F . When the local field 

� � �
F G R= +  is used in the Boltzmann weighting factor required for 

this average (see Equation 3.78), the contribution due to the reaction field vanishes, as reasoned earlier. 
The result is 
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The limit μ0E/3kBT << 1 has been taken. The average total moment of the molecule in the cavity is then 
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This equation still depends on the as yet undefined Onsager radius a, through the proportionality factor g. It 
can be eliminated by expressing the polarizability according to the Clausius–Mossotti formula, Equation 
3.74, taking the volume per molecule to be ( )4 3 3π a  . Then, using the constitutive relationship between dielec-
tric constant and polarization, 
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the Onsager formula is obtained: 
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(3.92)

This is an improvement over the Debye equation, but it still neglects the microscopic intermolecular interac-
tions. Experimentally, the Onsager equation has been shown to work fairly well for dilute solutions of polar 
solutes in nonpolar solvents or for not too polar liquids.

3.3.4.2 KIRKWOOD MODEL

The Kirkwood model goes beyond that of Onsager by allowing for the dipolar interactions of neighbor-
ing molecules. The analogous expression for the dielectric constant is only slightly different from the 
previous one: 
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Here, <cos γ > is the average cosine of the angle between a pair of neighboring dipoles, and z is the effective 
coordination number, e.g., the number of molecules in the first coordination sphere. If there is no preferred 
dipolar alignment, then <cos γ > vanishes and the Onsager expression results. The final quantity in paren-
theses in Equation 3.93 can be viewed as a correction factor to the squared dipole moment. It is known as the 
Kirkwood g-factor: 

 g zK = + < >1 cosγ  (3.94)

The physical meaning of this is straightforward: If neighboring molecules tend to align their dipoles in anti-
parallel fashion, then gK < 1 and the average square dipole moment is less than  µ0

2. Conversely, parallel align-
ment leads to gK > 1 and enhancement of the effective squared dipole moment.

Equation 3.93 can be arranged in a way that suggests how temperature dependent dielectric data can be 
exploited. Let us define the Kirkwood polarization PK as follows: 
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(3.95)

The polarization of water as defined in Equation 3.95 is plotted versus 1/T in Figure 3.7. The slope obtained 
from linear regression can be combined with the value of μ0 = 1.86 D to obtain a Kirkwood g-factor gK of 
about 3.7. Water is rather unusual; the Kirkwood g-factor for nonassociated polar liquids is typically very 
close to one.

3.4 MAGNETIC PROPERTIES OF MATTER

While electric fields arise from static charges, magnetic fields are the result of moving charges. Electric fields 
tend to displace charges along the field lines, whereas magnetic fields cause charges to spin or curve around 
the field. In spite of these distinctions, the beautiful symmetry displayed by the fields 

�
E  and 

�
B  in Maxwell’s 

equations points out that there are certain analogies between electric and magnetic phenomena. In general, 
magnetic forces are weaker then electrostatic ones by a factor of v/c, the ratio of the speed of the particle to 
the speed of light. We want to understand the consequences of spin and orbital angular momenta, which are 
magnetic phenomena leading to fine structure in high-resolution spectra of atoms and molecules. In addi-
tion, magnetic dipole moments of electrons and nuclei are central to electron paramagnetic resonance (EPR) 
and nuclear magnetic resonance (NMR) spectroscopy, respectively. Though neither of these techniques is 
discussed at length in this book, we wish to mention them briefly here to provide a physical picture for later 
discussions of analogous phenomena in optical spectroscopy. Before exploring the microscopic basis for the 
magnetic behavior of matter, we briefly summarize the fundamentals of magnetic fields and discuss macro-
scopic magnetic properties.
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Figure 3.7 Kirkwood polarization of H2O versus reciprocal temperature.
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3.4.1 basic pRinciples of magnetism

In Section 3.2.1, the electric field was described as the negative gradient of the scalar potential ϕ. The magnetic 
field 

�
B , on the other hand, is the curl of the vector potential 

�
A, 
� �
B A= ∇× . The MKS units for magnetic field are 

Tesla, which are related to the commonly used cgs units of Gauss through 1 T = 104 G. One Tesla is the same 
as one N/amp m or one Weber/m2. To provide some physical insight into the source of static magnetic fields, 
consider the expression for the magnetic field due to a charge q moving with velocity 

�
v : 

 

� � �
B r

q r

r
( )

( )= ×μ
π
0

34

v

 
(3.96)

The field is normal to the plane defined by the vectors �v  and 
�
r . The familiar right hand rules encountered in 

the study of magnetism are the consequence of cross-products such as the one in Equation 3.96. The constant 
μ0 (not to be confused with the electric dipole moment) is the permeability of free space, related to the permit-
tivity ε0 and the speed of light: (ε0μ0)−1 = c2. Equation 3.96 comes with the caveat that the charge q is part of a 
steady current. (Changing currents are associated with electromagnetic radiation, which we are not consid-
ering at present.) An experimentally more relevant expression would express the magnetic field in terms of 
electric current I rather than a single charge q: 
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(3.97)

where ds
�

 is an infinitesimal section of the length of the wire carrying the current, pointing in the direction 
of the flow of positive charge. Equation 3.97 is known as the law of Biot and Savart, and it is as essential to 
problems of magnetostatics as Coulomb’s law is to electrostatics.

The force on a charged particle is given by the previously introduced Lorentz law: 
� � � �
F q E B= + ×( )v . The first 

term is responsible for the fact that a charged particle follows the electric field, and the second gives rise to the 
tendency of the charge to spiral around the magnetic field lines. As an illustration of magnetic interactions, 
Equations 3.96 and 3.97 can be used to derive an expression for the force per unit length between two parallel 
wires, separated by a distance r and each carrying current I: 
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(3.98)

This force is attractive when the currents in the two wires are parallel and repulsive when they are antiparallel.
Experimental evidence, or perhaps lack of it, suggests that magnetic monopoles do not exist. (One conse-

quence of this is that, unlike the lines of force due to electric fields, those due to magnetic fields have no begin-
ning or end! The field lines due to the current in a straight line, for example, form circles around the wire.) 
The most significant magnetic moment is thus the magnetic dipole moment,  

�
μmag . To introduce it, consider 

the application of the Biot–Savart law to the case of a current loop of area A. The field far from the loop and 
along the axis is given by 
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(3.99)

where n̂  is a unit vector normal to the plane of the current loop. The similarity of this expression to that 
for the electric field due to an electric dipole, Equation 3.8, suggests that the magnetic moment be defined 
as the product of the current times the area: μmag = IA. (The more general expression for the field 

�
B  due to 

a magnetic dipole looks just like Equation 3.8, but with 1/4πε0 replaced by μ0/4π and the magnetic dipole 
moment replacing the electric dipole moment. To see the comparison of Equations 3.99 and 3.8, note that the 
dipole moment in the former is parallel to the direction of observation.) The magnetic moment has units of 
amp m2 or J/T. The classical result expressed above has spectroscopic implications: we conclude that orbiting 
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charge is associated with a magnetic dipole moment perpendicular to the plane of the orbit. Thus, as will be 
discussed in Section 3.4.3, net electronic orbital and spin angular momentum are always accompanied by 
magnetic dipole moments, and the intrinsic angular momentum of some nuclei gives rise to nuclear spin 
effects. Imagine an orbiting charge q having angular frequency ω. The current due to this motion is qω/2π, 
so the magnetic moment is 

 
� �
µ ω

π
πmag = = =IAn

q
r n

q

m
Jˆ ( )ˆ

2 2
2

 
(3.100)

where m is the mass of the spinning charge and |J| = mω r2 is its angular momentum. Like the torque associ-
ated with the interaction of an electric dipole with an electric field, that due to a magnetic dipole in a magnetic 
field is given by 

� � �
T B= ×µmag . Similarly, the energy is given by W B= − ⋅

� �
µmag . The expression for the torque leads 

to the phenomenon of precession, in which the magnetic dipole moment rotates about the magnetic field 
sweeping out a cone. Such motion leads to a torque which is always at right angles to both the dipole moment 
and the field as required by the cross-product. This classical physical picture is strikingly similar to those 
drawn to depict the quantum mechanical angular momentum vector, as in Figure 1.9.

3.4.2 magnetic pRopeRties of bulK matteR

We have seen that when an external electric field is applied to a dielectric the result is an induced polarization 
that tends to cancel the applied field. We can distinguish the field due to the free charges from that due to the 
bound charges, at least conceptually, even though the net field depends on both. The bound charges are only 
displaced by the field or, in the case of permanent moments, aligned by it. Similarly, when ordinary matter 
is placed in an external magnetic field, an induced magnetization 

�
M , the magnetic dipole moment per unit 

volume, results. Unlike the polarization 
�
P , the magnetization can either reinforce or oppose the applied field. 

This distinction will lead to the categorization of matter as diamagnetic, paramagnetic, or ferromagnetic, as 
will be discussed shortly. It turns out that there are magnetic parallels to the induced and permanent electric 
dipole moments. The bound and free charges in electric polarization are analogous to the bound and free 
currents in magnetic polarization.

First, we must introduce another magnetic field 
�

H  to which the magnetization is directly proportional. 
The distinction between 

�
H  and 

�
B  can be a source of some confusion, and indeed the relationship between the 

two even depends on the system of units! The following discussion will be given in the MKS system, where 
the defining relationship for the H field* is 

 

� � �
H

B
M= −

µ0  
(3.101)

Naturally, in free space the relationship would be 
� �
B H= µ0 . Note that the units of 

�
H  are amp/m. (In the cgs 

system of units, 
�

H  and 
�
B  are both in Gauss.) The physical significance, and reason for encumbering ourselves 

with two different magnetic fields, is related to the previously mentioned bound and free currents. It turns out 
that the field 

�
H  is a function of the latter, the currents in ordinary circuits which can be easily measured. In 

this way, the magnetic field 
�

H  is related to 
�
B  much like the electric displacement 

�
D is related to the field 

�
E . The 

bound currents are those due to the induced magnetic moments and the alignment of permanent moments, 
possessed by the atoms and molecules that comprise the sample. These determine the magnetization 

�
M , 

which is proportional to the 
�

H  field: 

 
� �

M HM= χ  (3.102)

* In some books, 
�
B is called the magnetic induction and 

�
H  is called the magnetic field. We will refer to them both as the 

magnetic field and rely on the symbol or the units to distinguish between them.
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Equation 3.102 introduces the dimensionless magnetic susceptibility χM. We are ready now to classify all 
 matter on the basis of three types of magnetic behavior: diamagnetic, paramagnetic, and ferromagnetic. Most 
matter falls into the first category. Diamagnetic substances have negative susceptibilities and are very weakly 
repelled by a magnetic field. Paramagnetic substances have positive χM and are weakly attracted by a mag-
netic field. In either case, the magnitude of the susceptibility is quite small compared to one. Ferromagnetic 
substances, for example iron and magnetite (Fe3O4), have positive χM, larger than that of a paramagnetic 
material, and are strongly attracted into a magnetic field.

It is the field B that exists inside the material. (Fortunately, the typically small values of magnetic interac-
tions enable us to consider this the same as the local magnetic field.) Using Equations 3.101 and 3.102, this is 

 
� � � �
B H M HM= + = +µ µ χ0 0 1( ) ( )  (3.103)

It still remains to examine the microscopic basis for the behavior of bulk matter. Just as all atoms and mol-
ecules are polarizable (α is never zero), all matter has a diamagnetic response to an applied magnetic field. 
The basis for this response is the tendency of the field to induce microscopic currents; that is, a circulation of 
electronic charge. These induced currents result in a magnetic field that opposes the direction of the applied 
field. The magnetic susceptibility due to this effect is proportional to the expectation value <r2> for the elec-
tronic ground state. If the constituent atoms and molecules possess net angular momentum, due to orbital 
or spin motion, the intrinsic magnetic moments will tend to align with the field and reinforce it. This is 
somewhat like the alignment of permanent electric dipoles in an electric field. This paramagnetic response is 
temperature dependent (the Curie law is approximately obeyed: χM T∝1 ) because thermal motion opposes 
this alignment. If, in addition to net spin angular momentum due to unpaired electrons, there is a tendency 
for all the spins in a microscopic neighborhood to line up in the same direction (such regions are called 
domains), then the material is ferromagnetic. The behavior of ferromagnets is beyond the scope of this book, 
but we are very interested in the concept of spin and angular momentum in general. We turn to this topic in 
the next section.

3.4.3 magnetic moments and intRinsic angulaR momenta

Just as a current loop has a magnetic dipole moment, so too does an atom or molecule having net electronic 
angular momentum. There are two types of intrinsic angular momentum due to electrons: orbital and spin. 
In atoms, where the orbital angular momentum is quantized (i.e., L is a good quantum number), atoms hav-
ing L ≠ 0 possess magnetic moments due to orbital angular momentum. Diatomic molecules can also have 
quantized orbital angular momentum, along the bond axis. Atoms and molecules having unpaired electrons 
have magnetic moments due to spin. Nuclei can also have intrinsic angular momentum, but the resulting 
magnetic moments are smaller than those due to electronic angular momentum, due to the greater mass of 
the nucleus. We will begin our discussion by considering electron spin.

Electron spin is a relativistic effect that permits us to imagine that the electron behaves as if it has intrinsic 
angular momentum and therefore a magnetic moment. The relationship between the spin magnetic dipole 
moment and the spin angular momentum vector 

�
S  is 

 
� � �
µ γmag =

−
=

g e

m
S Se

e
e

2  
(3.104)

The electronic g-factor is ge = 2.0023. The negative sign in Equation 3.104 comes from the charge −e on the 
electron. Equation 3.104 introduces the gyromagnetic ratio for the electron γe, sometimes called the magne-
togyric ratio. In general, the gyromagnetic ratio of a particle is the ratio of the magnetic dipole moment to 
the angular momentum, with units of T−1 s−1. Alternatively, the units are stated as rad T−1 s−1 to highlight the 
relationship of the gyromagnetic ratio to the (angular) Larmor precession frequency ω 0 discussed below. 
Equation 3.104 should be compared to the classical expression Equation 3.100. Is anything strange? Of course, 
it is the extra factor of approximately two that enters into the quantum mechanical picture.
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A single electron has spin quantum number s = 1/2, characterizing the length of the spin angular momen-
tum vector: s s s= + =( ) /1 3 2� �. The quantum number ms = ±1 2 determines the component of s along 
an arbitrary direction in the laboratory frame, taken to be the z direction. The z component of spin angular 
momentum is sz = ±1 2�. We can generalize to the case of a many electron atom in a state with total spin S, the 
vector sum of the individual spin angular momenta, for which the preceding expressions hold by replacing s 
by S and ms by MS. The quantum number MS ranges from S to −S in integral steps. This leads to the following 
expression for the magnitude of the spin magnetic moment: 

 

�
�µ µmag = + = +
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2
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(3.105)

We have introduced the convenient constant known as the Bohr magneton: 
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(The reader is cautioned that the Greek letter μ appears here with several different meanings, distinguished 
by the subscript.) The magnetic susceptibility due to spin is given by 
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The susceptibility of Equation 3.107 exhibits the previously mentioned Curie law temperature dependence. 
The total susceptibility should also include the diamagnetic contribution, which we have not treated quanti-
tatively (see [6] for a discussion of this part).

In the presence of atomic orbital angular momentum, the total magnetic moment is given by 
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(3.108)

The most important spectroscopic consequence of this is that magnetic fields affect the energy levels of atoms 
or molecules having net angular momentum. This comes about through a splitting due to the energy of 
interaction W B= − ⋅

� �
µmag  of a magnetic dipole and a magnetic field. We will return to this topic in Chapter 7.

For comparison, we next present analogous relations connecting magnetic dipole moments of nuclei to 
their intrinsic nuclear angular momenta 

�
I . 
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(3.109)

This equation introduces the nuclear magneton: 
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The nuclear magneton μN is smaller than the Bohr magneton μB by three orders of magnitude as a result of the 
larger proton mass mp compared to electron mass me. The gyromagnetic ratio γN is defined for nuclei possess-
ing nonzero spin quantum number I. The values of γN and I depend on the atomic number as well as the mass 
number, and both positive and negative values of the former are possible, meaning that the magnetic dipole 
may be either parallel or antiparallel to the direction of the angular momentum.

For a general type of angular momentum such as nuclear or electron spin, for example, j = I or S, 
the energy W B= − ⋅

� �
µmag  translates into the quantum mechanical expression W m Bj= −γ � . We arrive at 
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this equation easily by aligning the laboratory z direction with that of the magnetic field. This results 
in removal of the (2j + 1)-fold degeneracy of the angular momentum in the presence of a static mag-
netic field, as in magnetic resonance. An oscillating applied magnetic field can then induce transitions 
between adjacent states when the frequency of the field matches the energy level separation. Though the 
quantum mechanical basis for these spectroscopic transitions is not revealed until the next chapter, we 
wish to consider in the next section a semiclassical picture for magnetic resonance. This physical picture 
has implications in a variety of contexts within the subject of optical spectroscopy as well as magnetic 
resonance spectroscopy.

3.4.4 magnetic Resonance phenomena

Consider for illustration the case of proton magnetic resonance. The 1H nucleus has I = 1/2 and a positive 
value of the gyromagnetic ratio. The mI = ±1/2 spin states are degenerate in the absence of a magnetic field 
and thus there is no net magnetization M for a collection of these spins. When a static field B0 is turned on 
and specified to be in the z direction, the two spin states are split and have energies 
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We have introduced the Larmor precession frequency ω γ0 0≡ B , a function of the field strength. (The subscript 
on γ is omitted here, as the formal expressions could just as easily be applied to electron spin.) The spin 1/2 
state represents a magnetic dipole aligned with the field and thus lower in energy, ε1, while the higher energy 
state ε2 pertains to the spin −1/2 state for which the dipole is antiparallel to the field. Now there is a net mag-
netization in a sample of N spins that is proportional to the population difference between the two states. 
The calculation of the equilibrium magnetization M0 using statistical mechanics is particularly simple in this 
two-state case, and we obtain 

 
M N N

k TB
0

01
2 2

= =








µ γ ω

mag � �tanh
 

(3.112)

This magnetization is aligned with the laboratory z direction, while the precessional motion of the spins aver-
ages the x and y components to zero. For purposes of later comparisons to optical phenomena involving two 
states, it is stressed that the magnetization is a function of the population difference.

Next, we imagine an oscillating magnetic field in the x direction: 

 
�
B i B tx = ˆ cos2 1 ω  (3.113)

The amplitude 2B1 is weak compared to B0, so that the oscillating field is a weak perturbation. The time-
varying magnetic field induces spectroscopic transitions between the spin states when its frequency is 
resonant with the Larmor frequency. (This is the Bohr frequency condition, to be derived in the next 
Chapter.) Since the spins precess in a clockwise fashion when viewed from the positive z direction, 
it is helpful to resolve this linear field into its clockwise ( cos sin )iB t jB t� �

1 1ω ω−  and counterclockwise 
( cos sin )iB t jB t� �

1 1ω ω+  components. Only the former is able to interact with the spins. Adding the clock-
wise component of the field in the xy plane to the static field in the z direction, the total field that interacts 
with the spins is 

 
�
B iB t jB t kB= − +ˆ cos ˆ sin ˆ

1 1 0ω ω  (3.114)



78 Electric and magnetic properties of molecules and bulk matter

The time rate of change of the magnetization follows from the expression for the torque 
�
T , which is the rate 

of change of the angular momentum: 

 

� �
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(3.115)

Multiplying the average magnetic moment by the number of spins per unit volume N to get the magnetiza-
tion, we obtain 

 
dM

dt
B M

� � �
= − ×γ

 
(3.116)

We can use this equation to write the equations of motion for the x, y, and z components of 
�

M , however, this 
would ignore relaxation of the spins; i.e., interactions that damp out the precession. The Bloch equations 
consider these effects by introducing two phenomenological relaxation times T1 and T2. T1 is the so-called 
longitudinal relaxation time of the magnetization Mz in the direction of the field B0. In future chapters, 
we will see that in general T1 is the population relaxation time, consistent with the connection between Mz 
and the population difference. Hence, an alternative name for T1 in the context of magnetic resonance is 
the spin-lattice relaxation time as it represents the decay of the nonequilibrium spin population through 
energy dissipation to the surrounding “lattice.” T2 is called the transverse or spin-spin relaxation time and 
pertains to the decay of magnetization Mx and My. It represents the tendency of spins to get out of sync with 
one another as they precess about the field. Later in this book we will encounter a more general view of T2 as 
the dephasing time, pertinent to the relaxation of coherent superpositions of basis states that comprise the 
time-dependent wavefunction. For the present discussion, the inverse times 1/T1 and 1/T2 are the first order 
rate constants for relaxation of the magnetization in the longitudinal and transverse directions, respec-
tively. We will add these relaxation terms to the equations of motion, but first we make a transformation to 
a coordinate system x′, y′, and z that rotates about the z-axis in a clockwise direction with frequency ω, the 
frequency of the oscillating field, as depicted in Figure 3.8a. The components of the magnetization in this 
reference frame are 
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Figure 3.8 (a) Rotating coordinate system for magnetic resonance, showing the static field B0 and the 
clockwise-rotating component of the oscillating field B1. (b) Precession of magnetization about the effective 
 magnetic field Beff.
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The component u is the magnetization in the xy plane that is in phase with the clockwise component of B1, 
i.e., coincident with the x′-axis, while v is the component which is 90° out of phase, aligned with y′. We now 
arrive at the Bloch equations: 
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If we consider the cross-product in Equation 3.116 in this new coordinate system, we find the non-relaxing 
part of the equation of motion for the magnetization in the x′ directions is 
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In the rotating frame, there is now an effective magnetic field in the z direction which depends on the rela-
tionship of the oscillating field frequency to the Larmor frequency. As shown in Figure 3.8b, the magnetiza-
tion now precesses about an effective field direction in the x′z plane; i.e., in the rotating frame the field is 
tipped away from the z-axis toward the x′-axis. Interesting things happen on resonance, when ω = ω 0. Now 
Bz ,eff = 0 and the spins precess about the x′-axis with frequency ω 1 = γB1. This motion describes a circle in the 
y′z plane. In the absence of relaxation, this motion represents a continuous flow of energy into and out of 
the spin system as the magnetization is alternately aligned parallel and antiparallel to B0. This effect is called 
transient nutation in analogy to gyroscopic motion in which a slow precession about a perpendicular axis 
(in this case about B1, which is weak compared to B0) is superimposed on a faster precession. This motion is 
eventually damped out by T1 and T2 relaxation.

In the pulsed magnetic resonance experiment known as spin echo, a spin system equilibrated to the static 
field B0 is irradiated with a pulse of electromagnetic radiation (typically in the radiofrequency range for 
nuclear magnetic resonance), polarized perpendicular to the z direction and resonant with ω 0. By adjusting 
the duration τ and amplitude B1 of this pulse, the magnetization can be tipped by 90°. This requires that γB1τ 
satisfy π/2 (or 2πn + π/2, where n is an integer). This is known as a π/2 pulse. Immediately following this 
pulse, the spin vectors are all aligned with the y′-axis as seen in Figure 3.9a. Due to heterogeneities in the 

(a) (b)
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x´

Figure 3.9 (a) A π/2 pulse tips the magnetization from the z to the y ′ direction, and spins begin to dephase in 
the rotating frame. (b) A π pulse tips the magnetization to the −y ′ direction, and the spins begin to rephase.
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sample and the field, the spins begin to fan out in the rotating frame as some precess slower and some faster 
than γB1. This is dephasing or T2 relaxation. After some waiting time t′, a second pulse in the x′ direction is 
applied that rotates the spins by 180°, equivalent to reflecting the spin vectors through the x′z plane. Now, the 
spin vectors that were previously moving away from one another reverse course and begin to merge instead, 
as depicted in Figure 3.9b. After the same period of time t′ over which they were allowed to dephase, the spins 
have coalesced and a spin echo signal is detected a time 2t′. The reduced amplitude of this echo as a function 
of the waiting time t′ is determined by the dephasing time T2.

To understand this process better, consider an analogy where runners take off on a linear track with a 
distribution of speeds. At the start of the race, the runners are lined up as are the spins immediately fol-
lowing the π/2 pulse. During the race, i.e., during the waiting time, the runners spread out because they 
run at different speeds. The π pulse is simulated by a referee who fires a gun at time t′ signaling that the 
runners must reverse course and head back to the starting line. Faster runners get the signal to turn around 
at a greater distance from the starting line, while slower runners have the advantage of needing to cover a 
shorter distance to return. If each individual runner had a constant speed throughout the race, they would 
all return to the starting line at the same time, and the time required to return would be the same as that for 
the forward course, i.e., there will be a runner echo. However, the runners get “dephased” because they do 
not all run at constant speeds. If we assume that fluctuations in their speeds result from interactions with 
their environment (a friend cheers from the stands, a squirrel on the course causes a distraction, etc.), then 
we have a good analogy to what is called “pure dephasing”: the fluctuations in a spectroscopic frequency 
that result from interactions with the surroundings. As a result of these fluctuations, though most run-
ners return to the start at the same time, some will get there sooner and some later, resulting in a spread of 
this human pulse such that the  amplitude (number of runners who return at t′) decreases as waiting time 
increases. Worse yet, some of the runners have dropped out (T1, population relaxation), further reducing 
the amplitude of the pulse. The total dephasing rate 1/T2 depends on both population relaxation and the rate 
of pure dephasing: 
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2 1 2T T T
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Here, 1 2/ T ∗ is the pure dephasing rate.
The above ideas will be revisited in later chapters within the context of optical spectroscopy. In the next 

chapter, we will consider a quantum mechanical density matrix treatment for a two-state system that is analo-
gous to the Bloch equations found here. In later chapters we consider how the rates of population relaxation 
and dephasing can be determined experimentally with time-resolved spectroscopy. Further discussion of 
magnetic resonance phenomena can be found in [7].

3.5 SUMMARY

In this chapter, we have given much attention to the electric properties of individual molecules, such as the 
dipole and quadrupole moments. In the next chapter, we will see how the quantum mechanical matrix ele-
ments of the operators for these properties, along with that for the angular momentum, give rise to spectro-
scopic transitions. In some spectroscopy experiments, such as absorption and emission in the microwave, the 
activity of a molecule depends on the existence of a permanent dipole moment, that is, a diagonal matrix ele-
ment of the dipole operator. Spectroscopic transitions in condensed phases depend on bulk properties such as 
the permittivity, and the frequency-dependent real and imaginary parts of this response function determine 
the intensity and peak frequency of a transition. With the exception of the discussion of spin, much of the 
material in this chapter could be treated classically. In the next chapter, we present the quantum mechanical 
theory that will enable us to interpret spectroscopy experiments.
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PROBLEMS
 1. Derive Equation 3.7 for the potential ϕ far from a dipole. Then use 

�
E = −∇ϕ to derive Equation 3.8 for 

the electric field due to a dipole.
 2. Show that the dipole moment of a collection of charges is independent of origin, provided that the net 

charge is zero. Also, show that the quadrupole moment is independent of origin if the dipole moment is 
zero.

 3. Consider four charges, equal in magnitude. Two positive charges are located at (x, y) = (1,1) and (−1,−1) 
and two negative charges are at (1,−1) and (−1,1). Calculate the nonzero components of the Cartesian 
quadrupole tensor, using arbitrary units. Then find a new coordinate system for these charges that 
diagonalizes the quadrupole tensor.

 4. Estimate the polarizability of a ground state hydrogen atom from its size, in MKS and cgs units. 
Compare to the literature value, α/4πε0 = 0.667 Å3.

 5. The refractive index of CCl4 is nD = 1.4601 and the density is 1.594 g/ml. Use the Lorenz–Lorentz equa-
tion to estimate the polarizability of CCl4. Compare to the literature value α/4πε0 = 1.25 × 10−29 m3.

 6. The molar polarization PM of methanol decreases from about 36 to 33 cm3/mol on increasing the tem-
perature from 298 to 333 K. Use the Debye equation to estimate the polarizability and dipole moment of 
methanol and compare to literature values.

 7. Below what temperature does the Debye equation predict ferroelectric behavior for water? Use μ0 = 1.86 D 
and α/4πε0 = 1.5 × 10−24 cm3.

 8. The molar absorptivity of the dye rhodamine 6G is about 105 L/mol cm at 540 nm. Estimate ε″ for a 10−3 
M solution of this dye in ethanol.

 9. Consider an electron moving parallel to an electric field of 100 V/m and perpendicular to a magnetic 
field of 1 T. How fast would the electron have to travel for the electric and magnetic forces to be equal?

 10. Derive Equation 3.112 for the equilibrium magnetization M0 and find the limiting expression for 
�ω0 << k TB . Use your result to find the Curie law for the magnetic susceptibility χM, Equation 3.107. 
Given that NMR transitions are resonant in the radiofrequency range of the electromagnetic spectrum, 
justify the use of the high temperature limit.
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4

Time-dependent perturbation theory 
of spectroscopy

4.1  INTRODUCTION: TIME DEPENDENCE IN QUANTUM 
MECHANICS

In this chapter we derive the key equation of linear spectroscopy, Fermi’s Golden Rule, using time-dependent 
perturbation theory. We will use as a basis set the stationary states that are the eigenfunctions of the time-
independent Schrödinger equation. This leads naturally to the idea that the field–matter interaction induces 
transitions between states that are solutions to the time-independent Schrödinger equation. The Golden Rule 
relates the transition rate (and thus the intensity of absorption or emission) to the transition dipole moment 
and the frequency of radiation. Various formulas that spring from the Golden Rule apply to common experi-
mental situations. We shall use the Golden Rule as a starting point in Chapter 5 to derive the fundamental 
expressions for the time-dependent view of spectroscopy, which will prove to be of great utility in the descrip-
tion of condensed phase spectra.

We begin by reviewing time-dependence in quantum mechanics in general. There are two ways to view 
the time evolution of the expectation value of an operator. In the Schrödinger picture, the wavefunctions are 
considered to evolve in time, and in the Heisenberg picture, the operators evolve in time. We now show how 
these two pictures are related.

The time-independent Schrödinger equation, H E�ψ ψ= , which results when the Hamiltonian does not 
depend on time, is a special case of the more general time-dependent equation H i t� �ψ ψ= ∂ ∂( ). The formal 
solution to the time-dependent Schrödinger equation is

 ψ ψ ψS
i Ht

S
iEt

St e e( ) ( ) ( )/ /= =− −� � �0 0  (4.1)

where the second equality follows if ψ S is an eigenfunction of H� . The subscript S designates the Schrödinger 
picture. In the study of time-independent problems, the factor exp(−iEt/ħ) is but a phase factor that has no 
effect on the expectation value of an operator, so it can be dropped. But if we wish to consider how the expec-
tation value of an operator Â evolves in time, we need to use the more general form of the wavefunction in 
Equation 4.1. Using bra-ket notation for convenience:

 ψ ψS
i Ht

St e( ) ( )/= − � � 0  (4.2)

 〈 |= 〈 |ψ ψS S
iHtt e( ) ( ) /0
� �

 (4.3)

The expectation value at time t is expressed as A t A tt S S S= 〈 |ψ ψ( ) ( )� . This gives

 A e eAt S
iHt

S
iHt

S= −ψ ψ( ) ( )/ /0 0
� � � ��

 (4.4)
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The form of Equation 4.4 suggests that we could just as easily associate the exponential functions of time with 
the operator as with the wavefunctions. Considering the operator to be time-dependent leads to the definition 
of the Heisenberg representation of Â:

 ˆ ˆˆ / ˆ /A Ae eH
iHt

S
iHt≡ −� � (4.5)

Going back to the previous expression, Equation 4.4, and taking the time derivative, we have
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The Hamiltonian H�  commutes with exp( / )±i tH� � , so Equation 4.6 can be rearranged to give
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Evaluating the above expression at t = 0 and using angle brackets to represent expectation values taken with 
respect to ψS(0), we get
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Equation 4.8 is called the Heisenberg equation of motion. In the frequently encountered case that the opera-
tor does not depend explicitly on time, it reduces to
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(4.9)

The conclusion drawn from the above is that the time evolution of the expectation value is determined by the 
commutator of the Hamiltonian with the operator for that physical property. From Equation 4.9, we conclude 
that operators which commute with the Hamiltonian correspond to constants of motion; that is, physical 
properties which are constant in time, such as the energy of a stationary state. Operators such as those for 
position and momentum, which do not commute with the Hamiltonian, correspond to physical properties 
that evolve in time even though the operators themselves do not depend on time. Equation 4.9 will prove 
useful in the next chapter, where we will examine the time-domain view of spectroscopy. By taking the time 
derivative of Equation 4.9 n − 1 times, the following more general form is obtained:
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where the commutator is applied n times.
In the next section, we will see how a time-dependent perturbation can cause transitions from one station-

ary state to another. How can these stationary states persist in the presence of the perturbation? How does one 
describe the wavefunction for a molecule during a transition; that is, when it is “between states?” Let us see 
what answers to these questions can be provided by the theory.
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4.2 TIME-DEPENDENT PERTURBATION THEORY

4.2.1  First-order solution to the time-dependent 
schrödinger equation

Our goal here is to find an approximate solution to the time-dependent Schrödinger equation, in the case that 
the Hamiltonian can be expressed as the sum of a zero-order part H� 0  that does not depend on time, and a 
perturbation H� ′ that does. The Schrödinger equation then takes the form

 
H H t i

t
� � �0 + ′



 =( ) Ψ Ψ∂

∂  
(4.11)

We assume that the zero-order eigenfunctions and eigenvalues are known: H n E nn
�

0 = , and we use the 
zero-order wavefunctions ψn(0) ≡ |n〉 as a basis for expanding the perturbed wavefunction:

 
Ψ =∑ −c t e nn

n

iE tn( ) /�

 
(4.12)

Equation 4.12 presents the perturbed state as a superposition of the stationary states expressed in the 
Schrödinger representation. The phase factors exp(−iEnt/ħ) and the coefficients cn(t) convey the time depen-
dence of |Ψ〉. The coefficient cn(t) is given by the projection of the total wavefunction onto the nth basis 
state:

 c t t n en
iE tn( ) ( )| /= 〈 〉Ψ �

 (4.13)

Equation 4.13 is presented because of its conceptual value. It is not useful to us in our quest to find the coef-
ficients, because we do not know |Ψ〉. (If we did, we would not need perturbation theory!) Our next step is to 
substitute the superposition wavefunction into Equation 4.11:
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The sum runs over an infinite number of eigenstates indexed by the letter n. Let us take one of these states, 
call it state m, multiply both sides of Equation 4.14 by the complex conjugate of the wavefunction for state m, 
and then integrate over all space. The result is
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The eigenfunctions are orthonormal: 〈n|m〉 = δnm; so in the infinite sum on the right-hand side, only the term 
n = m survives. And since n H m Em nm

�
0 = δ  the first sum on the left-hand side is similarly reduced to one 

term. Thus
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This can be rearranged to give
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where V t m H t nnm( ) ( )≡ � ′  and ωnm ≡ (En − Em)/ħ = −ωmn. Equation 4.17 is exact, but disappointing. It says that 
the time dependence of any one coefficient is a function of all the other time-dependent coefficients. A way 
around this obstacle is provided by first-order perturbation theory, in which we replace all the coefficients on 
the right-hand side of Equation 4.17 by their values at time zero. This is obviously a weak perturbation limit, 
as it assumes that H� ′ is small enough that the coefficients never depart greatly from their unperturbed values. 
We imagine the perturbation to be turned on at t = 0, and we probe the state of the system at time t later. We 
assume that before the start of the perturbation the system was in a definite initial state, indexed by i. So we 
can replace the coefficients on the right-hand side of Equation 4.17 by cn(t) ≈ cn(0) = δni, eliminating all but one 
term in the summation. We will use the index f (for final state, where f ≠ i) for the state whose coefficient we 
wish to calculate. The resulting differential equation is then integrated to give
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The probability that the system is in state f at time t, given that it was in state i at time zero, is given by the 
square of the amplitude of the coefficient:
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4.2.2  perturbation due to electromagnetic radiation: 
momentum versus dipole operator

Equation 4.18 applies to any problem involving a perturbation that varies in time. We are now ready to 
 consider the case where Vfi(t) is due to a time-varying electromagnetic field. As shown in Chapter 2, the time-
dependent operator that we need is
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We write the vector potential as follows:
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(4.21)

As discussed in Chapter 3, the size of a molecule is typically much smaller than the wavelength of light used 
in spectroscopy, so we can often neglect the gradient of the field and in fact its spatial dependence altogether. 
This results in the primary mechanism for the interaction of light and matter being that due to the operator 
H t E t� � �

′ = − ⋅( ) ( )μ , corresponding to energy of a dipole in a time-varying, but spatially constant, electric field. 
We now show how this dipole operator follows from the momentum-dependent perturbation operator given 
in Equation 4.20, in the long wavelength limit. As 

� �
k r r⋅ ≈ <<2 1π λ/  over the typical dimensions of a molecule, 

the exponential function in Equation 4.21 can be expanded about 
� �
k r⋅ = 0 ,
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We shall see that the first term in this series leads to electric dipole-allowed transitions, and the second to 
magnetic dipole and electric quadrupole-allowed transitions. The electric dipole term is sufficient for most 
of the spectroscopy experiments discussed in this book. However, when the extent of the system undergo-
ing a spectroscopic transition is not small compared to the wavelength of light, as is the case for delocalized 
excitations in metals, semiconductors, and conjugated polymers, the k-dependence of the field cannot be 
neglected.

Taking the first term of Equation 4.22 gives the following form for the matrix element of Equation 4.20:
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Suppose that the vector potential points in the z direction. The relevant matrix element is then
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where we could also write
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With the help of the commutator relation [z, pz] = iħ, one can prove the following (Problem 2):
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The matrix element we need is thus
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Since the z component of the dipole moment operator is μz = −ez, the matrix element can be written

 
V t

e

m
e f A p i i e f A ifi

i t
fi

i t( ) Re Re=
− ( ) ⋅ = ( ) ⋅− −ω ωω

� � � �
0 0 µ

 
(4.28)

Switching from the vector potential to the electric field, with the relationship E0 = −ωA0, and putting 
Re[exp( )] [exp( ) exp( )]− = − +i t i t i tω ω ω1 2 , we get
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where we have abbreviated the matrix element: f E i Efi
� � � �
µ µ⋅ = ⋅0 0 . Anticipating that the frequency ω of the 

light will have to match that of the transition ωfi, Equation 4.29 clearly gives the same result that we would 
have obtained had we started with a perturbation operator of the form − ⋅

� �
µ E t( ). Transitions which are made 

possible by a nonzero value of the transition dipole, μfi ≡ 〈f |μ|i〉, are referred to as electric dipole-allowed tran-
sitions, or E1 transitions. Though we have approached this derivation with a single charged particle in mind, 
we can readily generalize the result by allowing the dipole moment operator to consist of a sum over all the 
charges, electrons and nuclei, as in Equation 3.21.
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Next, consider the second term in the expansion of exp( )ik r
� �
⋅ . This term gives rise to a contribution to 

the perturbation operator of the form ( / )( )( )( )e m e e k r Ai t i t�
� � �

2 0
ω ω− ⋅ ⋅∇− . Again, taking the light to propagate 

in the y direction with electric field (and vector potential) oscillating in the z direction, we have to find the 
matrix element f y z i∂ ∂/ . This term can be manipulated as follows:
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The first term on the righthand side of Equation 4.30 follows from the definition of the angular momentum 
operator L̂x. Since the magnetic dipole moment is proportional to the orbital angular momentum, this term 
gives magnetic dipole (M1) allowed transitions. The second term, obtained with the help of the same com-
mutator relationship used above to get the E1 term, gives electric quadrupole (E2) allowed transitions. (As 
you will show in one of the homework problems, the resolution of the identity can be used to prove that 
f y z i m f yz ifi∂ ∂ = −/ /ω � .) The relevant matrix elements are thus:
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Recalling that the ratio of the size of the atom to the smallest wavelength capable of causing transi-
tions between bound states is on the order of 1/137, the intensities of E2- and M1-allowed transitions are 
only about 10−4 as strong as those of E1 allowed transitions. Henceforth, we will emphasize E1-allowed 
transitions.

Using the matrix element given in Equation 4.29 in Equation 4.18 leads to two integrals of the type
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The coefficient of the state f at time t is thus
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Equation 4.33 reveals that the amplitude of the final state is expected to be large whenever ω ≈ −ωfi or ω ≈ ωfi. 
The frequency of the light ω is considered positive, so whether the first or second resonance condition can be 
met depends on whether the final state is higher or lower in energy than the initial state. If the final state is below 
the initial state, then ωfi is negative, and when the first condition is met, emission of light is possible. Conversely, 
a positive value of ωfi corresponds to a transition to a higher-energy state, and when the second condition is met, 
absorption of light can take place.

It is important to recognize that the emission we are talking about here is the exact opposite of absorption; 
thus it is stimulated emission and not spontaneous emission, which falls out of the treatment here. Stimulated 
emission is exemplified by the output of lasers. As the name implies, this emission is stimulated by incident 
photons, and the properties of the incident photons (wavelength, phase, polarization, and propagation direc-
tion) are imparted to the emitted photons. Spontaneous emission, exemplified by ordinary luminescence, 
cannot be accounted for using a classical view of the radiation. Spontaneous emission proceeds on its own, 
once the excited state is prepared, and it is therefore independent of the incident radiation. We will see in 
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Section 4.5 that a quantized radiation Hamiltonian gives rise to spontaneous as well as stimulated emission. 
Stimulated and spontaneous emission are discussed further in Chapter 6.

Suppose that ω ≈ ωfi. We can neglect the first term and square the second to get the probability of the 
i → f transition.
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where Δω ≡ ω − ωfi is the difference between the frequency of light and that of the transition. The properties 
of the function
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are of great interest here. As shown in Figure 4.1, where f(t,Δω)/t2 is represented at an instant in time t, the 
function reaches its maximum value of one at Δω = 0. The full width at half-maximum is 2π/t. Using the 
integral
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The area under f(t,Δω)/t2 is found to be 2π/t. Thus f(t,Δω) is an increasingly sharply peaked function as time 
increases. In the limit that t →∞, f(t,Δω) = 2πtδ(Δω). We can use the following result to convert the delta func-
tion when the argument is changed:
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We now consider some physically meaningful limits of Equation 4.34.

4.2.3  Fermi’s golden rule and the time–energy 
uncertainty principle

4.2.3.1 CASE 1. THE LIMIT t → ∞
In the limit that the perturbation persists for a time that is long compared to the inverse of the frequency 
mismatch Δω, we can take f(t,Δω) ⇒ 2πtδ(ω − ωfi). This gives a transition probability that is linear in time:
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Figure 4.1 Graph of f(t,Δω)/t2 at time t, versus Δω.



90 Time-dependent perturbation theory of spectroscopy

 
P t

E t
f

if

fi( ) =
⋅( )

−( )
2

4

0

2

2

π µ
δ ω ω

� �

�  
(4.38)

The significance of this result is that the transition rate wif, which is the transition probability per unit time, 
is independent of time:
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The second delta function in the above expression results from adding in the contribution of stimulated emis-
sion. The substitution δ (ν − νfi) = 2πδ(ω − ωfi) has been made. (See Equation 4.37.) Equation 4.39 is sometimes 
called Fermi’s Golden Rule of spectroscopy. It is of central importance to relating experimentally observable 
intensities to quantum mechanical quantities such as the transition dipole. In Chapter 6 we will use the 
Golden Rule as a starting point for showing how the integrated molar absorptivity depends on |μif|2. Equation 4.39 
says that the longtime limit results in the familiar Bohr frequency condition: ħω = Ef − Ei; that is, the energy 
of the photon must match that of the energy difference of the two states. Since wif is independent of time, we 
conclude that the transition rate in this limit is constant. This is the behavior that we expect with light sources 
of ordinary intensity. For example, the amount of visible light absorbed by a dye, which is proportional to the 
transition rate, remains constant in time upon illumination with a source of given intensity.

4.2.3.2 CASE 2. EXACT RESONANCE, MONOCHROMATIC RADIATION

In the limit that Δω → 0, then ω = ωfi and we can take f(t,Δω) ⇒ t2. This gives a transition probability that 
increases as t2, and a transition rate that is a linear function of time:
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Thus monochromatic radiation is capable of pumping the state f, since the transition rate evidently increases 
with time. We must be careful, however, not to overstep the limits of first-order perturbation theory, which 
requires that | ⋅ | <<

� �
�µif E t0 . Equation 4.40 is valid for short times and weak fields. We next ask whether suf-

ficiently monochromatic sources exist for which the short-time condition, and thus Equation 4.40 can be 
fulfilled. The short-time condition requires the use of a pulsed rather than a steady state source of radiation. 
The uncertainty in the frequency of the light, Δν, cannot be any smaller than about 1/t, where t is the duration 
of the light pulse. But monochromatic radiation, in view of the behavior of f(t,Δω), implies that Δω = 2πΔν 
is small compared to the spread of f(t,Δω), which is about 2π/t. Thus we cannot simultaneously fulfill the 
conditions of monochromaticity and short time. The correct treatment of optical pumping in the presence of 
intense resonant radiation, for example in the case of a two-level system, leads to state populations that oscil-
late in time with a frequency given by | ⋅ |/

� �
�µ12 0E , known as the Rabi frequency, Ω. The short-time limit of the 

transition rate obtained using higher-order perturbation theory is the same as that given in Equation 4.40.

4.2.3.3  CASE 3. INTERMEDIATE TIMES AND THE TIME–ENERGY 
UNCERTAINTY PRINCIPLE

For finite durations of the light pulse that excites absorption or emission, we must concede that the finite 
width of f(t,Δω) permits transitions even when the photon frequency does not exactly match the transition 
frequency. Since frequencies within about ±π/t of ωfi account for a considerable fraction of the probability, the 
associated spread of frequencies δω is on the order of 2π/δ t, where δ t is the duration of the radiation–matter 
interaction. The time duration of the interaction may be limited by the duration of the light pulse or by the 
lifetime of the states involved in the transition. Hence, the uncertainty in the energy obeys

 δ δω π δE t= = ( )� � 2 /  (4.41)
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which gives δEδt ≈ h or δνδt ≈ 1. Since the high-frequency wings of f(t,Δω) allow for transitions to take 
place at even higher frequency shifts than ±π/t, albeit with small probability, Equation 4.41 represents the 
minimum energy uncertainty. Thus the time-energy uncertainty principle is δEδt ≥ h or δνδt ≥ 1. The second 
statement agrees with common sense expectations: we cannot specify the frequency of light if the pulse dura-
tion is less than one period. As will be discussed in Chapter 14, when we take up the subject of time-resolved 
spectroscopy, the Fourier transform relationship between the frequency distribution of a light source and its 
time duration translates into an inverse correlation between the widths of the pulse in the time and frequency 
domains. Shorter pulses result in broader frequency distributions and longer-lived pulses have a more narrow 
spread of frequencies. But we can also look at the problem from the point of view of the molecule, where the 
finite lifetimes δt of the states themselves limit the duration of the interaction, resulting in a spread in fre-
quencies inversely proportional to the lifetime. This lifetime broadening represents the minimum linewidth 
for a spectroscopic transition. Other contributions that cause the observed linewidth to exceed the inverse 
lifetime will be discussed throughout this book.

4.2.3.4 CASE 4. ACCOUNTING FOR THE INTENSITY DISTRIBUTION OF THE SOURCE

Finally, we consider the situation of interest in many practical applications of the Golden Rule. We have a 
source that spans some frequency range that encompasses the transition frequency, with some energy den-
sity ρ(ν), which is particular to the experimental arrangement. By analogy to the expression for the energy 
density of monochromatic radiation (see Equation 2.27), we can replace the square of the amplitude of the 
electric field in Equation 4.39 by making the correspondence, u E d= ⇔ ∫1 2 0 0

2ε ρ ν ν( )  and integrating over 
all frequencies. Now, in general the energy density of the source ρ(ν) is a slowly varying function of frequency 
compared to f(t,Δν), so the energy density can be evaluated at the transition frequency and left out of the 
integral over frequency. The result is
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where ê  is a unit vector in the direction of the electric field. The transition dipole moment that the experiment 
sees is actually projected onto one of the laboratory-fixed directions determined by the polarization of the 
light, say the x direction. In a randomly oriented sample, such as a gas or liquid, the x, y, and z components of 
the transition moment squared must be equal, since there is no preference for any one lab direction. We can 
choose, say, the x component and put | | =µ µif if x

2 23( )  to get
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The transition rate is proportional to the energy density ρ(ν) of the incident field evaluated at the transition 
frequency.

4.3 RATE EXPRESSION FOR EMISSION

4.3.1 photon density oF states

In this section we consider how the transition rate depends on the photon density of states. The expression 
to be obtained is particularly useful when considering the experimental parameters on which the rate of 
emission depends. (We will reconsider the absorption rate in Chapter 6 when we relate the Golden Rule 
rate expression to the Beer’s law molar absorptivity.) We need to know the density of states for photons of a 
particular energy or frequency. Recall from Equation 2.69 how the components of the propagation vector are 
quantized. This is a consequence of the boundary conditions for a cubic box of length L, which require that 
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exp[ikx(x + L)] = exp[ikxx], and similarly for the y and z components. As a result, the number of photon states 
dN in an infinitesimal volume in k-space is
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Here, we prefer to write the angular part in terms of the solid angle dΩ, where dΩ = sinθdθdϕ, and substitute 
ω = kc to get
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The number density of states per unit energy, dN/dE, is
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So dN/dE is given by
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4.3.2  Fermi’s golden rule For stimulated and spontaneous 
emission

Now let us reexamine the Golden Rule rate expression given in Equation 4.39. Taking the case where the final 
energy is lower than the initial (emission), we can neglect the first delta function and write
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We have recast the delta function in terms of energy rather than frequency by using the relationship 
δ(ω + ωfi) = ħδ(E + Efi). We now make two changes to Equation 4.48: We replace the square of the ampli-
tude of the electric field by a term proportional to the number density of photons, and we replace the 
delta function by the number of photon states per unit energy considered above. To accomplish the first 
change, recall the classical expression for the energy density u discussed in Chapter 2 (Equation 2.27), 
proportional to the square of the electric field. Quantum mechanically, the energy density is the number 
of photons per unit volume times the energy per photon. Hence
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So we can make the substitution
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in Equation 4.48, keeping track of the direction of the electric field by projecting the transition dipole onto 
the direction of polarization:
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Next, we consider the delta function to be better expressed as the number of photon states having E = Eif per 
unit energy:
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Thus, putting Equation 4.46 in Equation 4.51,
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where we have admitted that the rate is really a differential rate per unit solid angle. Simplifying and rear-
ranging gives
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We can also recast this equation, as we did previously, for randomly oriented systems:
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The importance of Equation 4.55 is that the emission rate is proportional to the cube of the frequency, and to 
the number of photons N that stimulate the emission event. This expression does not allow for spontaneous 
emission of light. We shall see in Section 4.5 that a quantum mechanical treatment of the radiation–matter 
interaction leads to a slight modification of Equation 4.55: the number of photons N is replaced by N + 1. The 
consequence of the modification is that emission can take place in the absence of photons, as it does in the 
case of spontaneous emission. Anticipating the quantum mechanical result, we can rewrite Equation 4.55 as

 

dw

d

N

c
if if

if
Ω

=
+( )1

3

3

0
3

2ν
ε

π µ
�  

(4.56)

The rate of absorption, on the other hand, can only depend on the number of photons N, not N + 1, because 
there is no such thing as “spontaneous absorption.”

4.4 PERTURBATION THEORY CALCULATION OF POLARIZABILITY

4.4.1 derivation oF the Kramers–heisenberg–dirac equation

The transition rates calculated in the previous sections apply to one-photon transitions: absorption and stim-
ulated emission between two states coupled by a transition dipole moment. (Equation 4.56 covers spontane-
ous emission as well.) Light scattering, on the other hand, requires two photons: an incident and a scattered 
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photon. We view the transition from the initial to final state as taking place by way of one or more interme-
diate states. Figure 4.2 represents the conceptual picture associated with Raman scattering involving two 
vibrational or rotational states i and f. The upward and downward arrows represent the incident and scattered 
photon energies, respectively, but are not to be interpreted as distinct absorption and emission processes. In 
the case of Stokes scattering, the initial state is lower in energy than the final state, and the scattered frequency 
νs is lower than the incident frequency ν0. Anti-Stokes scattering, on the other hand, results when the initial 
state is higher in energy than the final, and consequently νs is greater than ν0.

The picture shown in Figure 4.2 correlates well with the quantum mechanical representation of the transi-
tion polarizability, given by the Kramers–Heisenberg–Dirac (KHD) equation:
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In Equation 4.57, (αρσ)if is a component of the transition polarizability tensor connecting states i and f, where 
ρ and σ are Cartesian directions. The intensity of the transition i → f is proportional to the square of the ampli-
tude of (αρσ)if. In this section, we derive Equation 4.57 using the first-order perturbation theory approach 
presented previously. We calculate the transition moment ψ µ ψi ft t( ) ( )�  to first order using time-dependent 
wavefunctions that are correct to first order in the radiation–matter perturbation. We expect to get a result 
of the form

 ψ µ ψ µ µω
i f

i t
if ift t e if( ) ( ) ( ) ( )� = + perm ind  (4.58)

where μif(perm) is the previously discussed transition dipole moment evaluated with the zero-order states: 
μif(perm) ≡ 〈i|μ| f〉. We call it permanent because it persists in the absence of an applied field, while the 
induced term, which depends on the transition polarizability, is directly proportional to the amplitude 
of the field. The factor exp(iωift) comes from the phase factors attached to the Schrödinger representation 
wavefunctions and is not particularly interesting except to anticipate its appearance as we go through 
the derivation. The polarizability operator corresponds to a physical property and must be Hermitian. 
Therefore

 α αif fi= ∗
 (4.59)

Similarly, the dipole operator is Hermitian, so we expect

 µ µif fi= ∗
 (4.60)

The induced transition moment will satisfy Equation 4.60 if it is of the form
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Figure 4.2 State diagram for light scattering.
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We are neglecting vector notation here for simplicity. Let us now write the first-order wavefunctions that we 
need to evaluate Equation 4.58.
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The superscript on the coefficient reminds us that state f is the unperturbed state (the state at t = 0). A similar 
expression can be written for the perturbed state i. The first-order coefficients are, for j = i or f,
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The delta function in this expression allows for the unperturbed wavefunction to be the lead term in the case 
that n = j. (Compare to Equation 4.18.) The matrix element of the perturbation will be taken to be
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We simply factored out the amplitude of the perturbation, given by
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As was done previously, the coefficients are found by direct integration:
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and similarly for the coefficient c tn
i ( ). The perturbed wavefunction is thus
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We want to get the phase factor exp(−iEft/ħ) for the wavefunction taken care of, so we factor it out of the 
expression to write
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The term exp(−iEft/ħ) is going to combine with the term exp(iEit/ħ) in 〈ψ i(t)| to give the phase factor exp(iωift) 
that we anticipated in Equation 4.58. Now, we are only interested in that part of the induced moment that fol-
lows the field, so it is the part of the perturbed wavefunction that depends on exp(±iωt) that matters. The part 
that depends on the transition frequency exp(iωnft) does not contribute to the induced transition moment that 
follows the field, so it is dropped. This is called the rotating wave approximation. The result is
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Taking the complex conjugate of Equation 4.69 and changing the index f to i results in
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Next we use Equations 4.69 and 4.70 in Equation 4.58. The zero-order wavefunctions combine to give the 
ordinary transition moment μif(perm) = 〈i|μ|f〉. The cross-terms connecting zero-order states with the first-
order correction terms are linear in the perturbation and therefore give us the induced transition dipole 
moment. The second-order term proportional to the square of the field is dropped. Thus we get
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Note that the induced moment is the sum of two terms, either of which can be obtained from the other by 
swapping the indices i and f and taking the complex conjugate. This is the form expressed in Equation 4.61. 
Substituting for the matrix elements of V0, using Equation 4.65, we get:
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Comparing to Equation 4.61 gives the following expression for the transition polarizability:

 
α

µ µ
ω ω

µ µ
ω ωif

in nf

nf

nf in

nin

=
+

−
−









∑1

�  
(4.73)

Recall that each of the transition dipole moments in this expression is actually a vector. Thus the ρσ-component 
of αif is
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Equation 4.74 is the Kramers–Heisenberg–Dirac (KHD) expression that we sought to derive. It has a physi-
cally appealing interpretation in that the polarizability is related to excited states connected to the initial and 
final states by transition dipoles. When the frequency of the incident light is close to that of a dipole-allowed 
transition i → n, then the transition polarizability becomes large (through the second term in Equation 4.74) 
and we speak of resonance enhancement. In that case the first term, called the anti-resonance term, is unim-
portant and can be dropped.

When the initial and final states are rotation–vibration levels within the same electronic state, the KHD 
expression refers to Raman scattering. Alternatively, if i and f designate the same quantum state, the result-
ing expression refers to Rayleigh scattering, and the polarizability is connected to the refractive index as 
discussed in Chapter 3. The ground-state polarizability is
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4.4.2  Finite state liFetimes and imaginary component 
oF polarizability

Equations 4.74 and 4.75 are not quite complete, as is evident when comparing them to the expression obtained in 
Chapter 3 using the Lorentz model of the atom, Equation 3.43. We need to amend these expressions, especially in 
the case of resonance, to allow for the finite lifetime and thus energy width of the states. As discussed previously, 
the imaginary component of polarizability is associated with absorption and emission of light. In the Lorentz 
model, the damping factor for electron oscillations results in an imaginary component of the polarizability.

Let us explore a quantum mechanical approach to obtaining this damping factor by introducing the idea of a 
quasi-stationary state. A quasi-stationary state is one that decays in time due to radiation of energy associated with 
transitions to lower energy states. Consider the probability of stationary state |n〉, which decays exponentially in time:

 P t c t en n
t( ) ( )= ∝ −2 Γ
 (4.76)

The coefficient cn(t) therefore has a time dependence such that

 c t en

t
( ) ∝

−1

2
Γ

 (4.77)

The rate Γ at which the state probability decays is just the inverse of the lifetime of the state. The decay is due 
to transitions to all lower energy levels. From Fermi’s Golden Rule, we have
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where the sum is over all states m having energies less than that of state n. The perturbation operator V0 is 
often the electric dipole moment operator, but other mechanisms that permit transitions, such as electric 
quadrupole- or magnetic dipole-allowed transitions can also contribute. Note that the more strongly allowed 
the transition, the faster is the rate of decay of the state. This is why excited states that are connected to the 
ground state by weakly allowed transitions are longer lived than excited states that make strongly allowed 
transitions to the ground state. Compare the typical lifetime of phosphorescence, which corresponds to a 
spin-forbidden transition, to that of fluorescence which is spin-allowed. Phosphorescence lifetimes can be 
microseconds or longer, while fluorescence lifetimes are typically only on the order of nanoseconds or less.

The form of Equation 4.78 suggests a simple way to revise the expression for the superposition wavefunc-
tion discussed previously in order to account for the finite lifetime of the basis states. In the phase factor of 
the Schrödinger representation wavefunction, Equation 4.1, we make the following change:
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The result will be probabilities (squared coefficients) that have the appropriate time decay. This suggests a 
modification of the KHD equation as follows:
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We have written only the resonance term and assumed that the lifetime of the initial state is infinite. The inverse 
lifetimes are often treated phenomenologically, that is, they are based on the agreement of Equation 4.80 
with experimental data. In future chapters, we will consider other factors that affect the lifetime and the 
spectral linewidth, in addition to the radiative contribution Γ.
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4.4.3 oscillator strength

The polarizability expression obtained previously in Chapter 3 was
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where m is the electron mass. Comparing this to Equation 4.75 leads to the following quantum mechanical 
interpretation of the oscillator strength for the 0 → n transition:
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Thus the oscillator strength is proportional to the transition dipole squared. We can generalize this 
expression by writing it for any pair of states, say m and n. Oscillator strengths are convenient for speci-
fying the intensity of a transition. Problem 3 offers the chance to prove the Thomas–Reiche–Kuhn sum 
rule, which says that if all the oscillator strengths connecting a given state to other states are summed 
the result is
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(4.83)

Summing all the oscillator strengths for allowed electronic transitions results in the number of electrons in 
the molecule. This is consistent with the classical interpretation of the meaning of oscillator strength.

4.5 QUANTUM MECHANICAL EXPRESSION FOR EMISSION RATE

In this section we revisit Fermi’s Golden Rule using a quantum mechanical version of the radiation– matter 
perturbation. We wish to write the long-wavelength form of the perturbation operator, H t E t� � �

′ = − ⋅( ) ( ),μ  in 
terms of a quantized radiation field. Recall from Chapter 2 how the vector potential was expressed as a super-
position of cavity modes:
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We can find the electric field as follows:
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In the long wavelength limit, we can replace u r e ik rk k� �
� �

( ) exp( )= ⋅  by êk , the unit vector in the direction 
of polarization. (Recall that there are two allowed polarizations for every k-vector.) The variable �q pk k=  
can be expressed in terms of the raising and lowering operators with the help of Equations 2.62 and 2.63:
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What is needed in Equation 4.85 is
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The time-dependent raising and lowering operators in Equation 4.87 are found using the Heisenberg equa-
tion of motion, Equation 4.9:
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The Hamiltonian employed here is the radiation Hamiltonian presented in Equation 2.68. The commutator 
is reduced using Equations 2.64 and 2.65. Remember that bk is the operator at time zero. We can integrate the 
preceding equation to get the value of bk(t). The solution to Equation 4.88 is

 b t e bk
i t

k
k( ) = − ω

 (4.89)

And taking the complex conjugate we also have

 b t e bk
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k
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 (4.90)

Thus, in the long wavelength limit, the quantum mechanical radiation-matter Hamiltonian is
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Compare this to our previous expression using the classical view of radiation:
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Next we need to evaluate matrix elements of this operator with respect to initial and final radiation–matter 
states. The quantum mechanical matrix element i H f| ( )� ′ 0  is comparable to the matrix element 1 2 0

� �
µ if E⋅  

obtained previously. We write each total wavefunction as the product of wavefunctions for radiation and 
matter. That is

 Ψi k k kn n n i= …1 2 3  (4.93)

 
Ψ f k k kn n n f= ′ ′ ′ …1 2 3  

(4.94)

where |i〉 and |f 〉 are the wavefunctions for the matter states, and the radiation states are designated by the 
number of quanta (photons) in each mode. The unprimed n’s are the initial and the primed n’s are the final 
photon numbers. When the operator of Equation 4.91 is sandwiched between the bra and ket vectors given 
above, it is apparent that one part of the resulting (product) expression will just be the previously obtained 
transition dipole moment, projected onto the field direction:  ⋅

�
�µ if ke . The photon operators lead to matrix ele-

ments of the type
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(4.95)

where we are considering a particular term in the sum over modes where k = k2. Equation 4.95 says that 
the operator bk2 permits transitions in which the number of photons in mode 2 is increased by one, and 
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the number of photons in all the other modes is unchanged. Thus this operator corresponds to one-
photon emission.

The matrix element of the creation operator accounts for one-photon absorption transitions. It is
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(4.96)

The probability of a transition is proportional to the square of the amplitude of 〈 ′i H f| ( )� 0 . The part that 
corresponds to emission is given by
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This is analogous to the expression obtained in Section 4.3, where we made the substitution given in 
Equation 4.50 to replace the square of the electric field amplitude with a function of the number density 
of photons. The summation over modes in Equation 4.97 takes care of the photon density of states. The 
importance of Equation 4.97 is that the emission rate is proportional to the number of photons plus 
one; the transition that takes place when the number of photons is zero is spontaneous emission. The 
square of the matrix element corresponding to absorption, as expected, is proportional to the number of 
photons. Note that just as the creation and annihilation operators for the harmonic oscillator can only 
connect states that differ by one vibrational quantum, those for the quantized radiation field can only 
connect states of the field that differ by one photon in one of the allowed modes. This is a consequence 
of our first-order perturbation approach. If instead of using the electric dipole approximation in the 
above discussion we had used the perturbation operator − ⋅e m A p/ ( )

� �
 of Equation 4.20 in order to account 

for E2- and M1-allowed transitions, keeping the ik r
� �
⋅  term in the expansion of Equation 4.22, that would 

have changed the nature of the matrix element connecting the matter states i and f . We would still be 
limited, however, to one-photon transitions as this restriction results from the matrix element involving 
the radiation field. In Chapter 13, we will see how two-photon transitions require a third-order pertur-
bation approach.

4.6 TIME DEPENDENCE OF THE DENSITY MATRIX

In this section, we introduce the density matrix formalism, which provides a convenient way to describe the 
relaxation dynamics of a molecule when it is coupled to the surroundings. Ideally, we could describe the time 
evolution of the system by solving the Schrödinger equation for the molecule plus the surroundings. Since 
this is not possible, we take a phenomenological approach to account for the effect of the surroundings on the 
dynamics of the molecule of interest. Time-dependent perturbation theory enables us to use a superposition 
wavefunction to describe the molecule when it is in the process of making a transition.

To get a physical handle on the density matrix, we start by considering a two-state picture. In addition 
to spin-1/2 magnetic resonance phenomena, some optical spectroscopy experiments can be adequately 
described in a two-state basis. The wavefunction can be written

 Ψ( ) ( ) ( )t a t a t= +1 21 2  (4.98)

where the phase factors are absorbed into the time-dependent coefficients: an(t) = cn(t)exp(−iEnt/ħ). (Compare 
to Equation 4.12.) We have used this approach to treat a system that starts out in one state before the perturba-
tion is turned on, a1(0) = 1, a2(0) = 0, and then makes a transition to state 2 under the influence of light. We can 
also use the same picture to discuss the relaxation of a system as it returns to equilibrium, after an absorption 
transition has taken place. During the transition, both coefficients are in the range 0 < an  < 1, and normaliza-
tion requires that a a a a1 1 2 2 1∗ ∗+ = . Thus a t a tn n

∗( ) ( ) is the quantum mechanical probability of finding the system 
in state n at time t. If this hypothetical two-level molecule is isolated, then once it is promoted to level 2 it can 
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return to level 1 by making a radiative transition. This was the point of view taken in Section 4.4.2, when we 
accounted for the damping term in the polarizability. A molecule interacting with its environment can also 
lose energy by making nonradiative transitions. These transitions take place via collisions and interactions 
with other molecules, resulting in energy transfer to other degrees of freedom. The time decay of the prob-
ability a t a t2 2

∗( ) ( ) thus represents population relaxation by both radiative and nonradiative means. The terms 
a t a t1 2
∗( ) ( ) and a t a t2 1

∗( ) ( ), on the other hand, represent the coherence of the system. If a perturbation affects states 1 
and 2 the same way, we refer to the effect as coherent, and states 1 and 2 would bear a definite phase relation-
ship with respect to one another. Relaxation of the terms a t a t1 2

∗( ) ( ) and a t a t2 1
∗( ) ( ) is called phase relaxation 

or dephasing. At equilibrium, these off-diagonal terms vanish.
The density operator may be defined as ρ�( ) ( ) ( )t t t= Ψ Ψ . In the two-dimensional basis used here, the 

matrix representation of this operator is
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The diagonal elements, e.g., ρ11 1 11 1( ) ( ) ( ) ( ) ( )t t t a t a t= = ∗Ψ Ψ , represent populations and the off-diagonal 
elements ρ12 and ρ21 represent coherences. Borrowing the language used in the previous chapter in our discus-
sion of magnetic resonance, population (or energy) relaxation is referred to as a T1 process. The populations 
are assumed to decay exponentially with time constant T1. The dephasing time T2 is the time constant for 
phase relaxation. It is said that “all T1 processes are also T2 processes.” This is so because any time dependence 
of the diagonal elements of the density matrix is always associated with time dependence of the off-diago-
nal parts. There is, however, something called pure dephasing, with relaxation time T2

∗, which derives from 
medium-induced phase fluctuations. (These will be considered further in Chapters 6 and 12.) The physical 
picture here is that the surroundings cause the transition frequency to fluctuate without changing popula-
tions, leading to pure dephasing. As previously stated (Equation 3.120), these relaxation times are related as 
follows:
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(4.100)

Note that in the absence of pure dephasing one expects T2 = 2T1. More generally, we have T1 ≥ T2/2.
The density matrix can be generalized to any dimension. Consider the superposition state
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The density matrix elements are then ρ ρnm n mt n t m a t a t( ) | ( ) ( ) ( )= 〈 = ∗� . The expectation value of any operator 
O�  at time t is
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(4.102)

This is the time-dependent equivalent of Equation 1.91.
Density matrix formalism is advantageously applied when we want to focus on a system that interacts 

weakly with its surroundings, often referred to as the bath. For example, we might have a spectroscopically 
active molecule in solution, and we want to know how the states of the molecule evolve under the influence of 
bath perturbations. The density matrix is then an ensemble average:

 ρnm n mt a t a t( ) ( ) ( )= ∗
 (4.103)
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where the bar represents the ensemble average. From here on we will consider the density operator ˘
ρ�  to be 

that for which the matrix elements are given by Equation 4.103.
The equilibrium density operator, discussed in Chapter 1, is assumed to apply in the absence of the time-

dependent perturbation: ρ β� �
0

1
0= −−z Hexp( ). Perturbations to the zero-order Hamiltonian include that due 

to the radiation field as well as the coupling between the system and the bath.
Let us return to the two-state picture and use the above expressions to find the time-dependence of the 

density matrix, using the following equation of motion:
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The Hamiltonian is the sum of three contributions: H H H t HR� � � �= + ′ +0 ( ) . The stationary states 1  and 2  are 
eigenfunctions of the zero-order Hamiltonian with eigenvalues ε1 and ε2, hence the matrix representation of 
H� 0 is diagonal. Specializing to electric dipole transitions, the perturbation operator is taken as H t E t� � ��′ = − ⋅( ) ( )μ  
and its matrix representation has only nondiagonal elements. Though this may seem like we are ignoring the 
possibility of a permanent dipole moment of the ground or excited state, on average there is no compo-
nent of the permanent moment in the direction of the time-varying electric field. Finally, the “relaxation 
Hamiltonian” is just phenomenological; we cannot evaluate its commutator with the density matrix. Instead, 
we add terms to the equation of motion that allow for T1 and T2 relaxation of the diagonal and nondiagonal 
elements, respectively, of the density matrix. Let us call H the matrix representation of H H H t� � �= +0 ′( ) and 
evaluate the matrix representation of the commutator in Equation 4.104:
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For simplicity, we omit vector notation on the transition dipole and field, such that μ12 represents the projec-
tion of the transition dipole onto the field direction. We also assume that μ12 = μ21. After adding in the relax-
ation, we obtain the following:
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As usual the Bohr frequency is defined as ω ε ε21 2 1= −( )/�. We have used the fact that the ρ12 and ρ21 are com-
plex conjugates of one another. The equilibrium values of ρ12 and ρ21 are zero, while those of ρ11 and ρ22 are 
given by Boltzmann’s law. We take the time-dependent electric field to be E t E e ei t i t( ) ( )= + −

0
ω ω . As E0 is then 

one-half the amplitude of the electric field, the Rabi frequency is Ω = 2 12 0µ E /�. In the absence of this field or 
any other perturbation, the solution to the equation of motion for the off-diagonal elements of the density 
matrix would be
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On resonance, ω 21 ≈ ω, thus there is a rapidly varying part of ρ12 and ρ21 that we are not interested in. This 
suggests a modification analogous to the rotating reference frame used in our treatment of magnetic reso-
nance in Chapter 3. We define the off-diagonal elements in this frame as follows:
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The equations of motion for these transformed quantities are
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In arriving at the above, we discarded the terms that vary as exp( )±2i tω  in keeping with the rotating wave 
approximation (RWA). This is entirely justified because ultimately the density matrix will be found by inte-
grating over time. The time-dependence of the rest of the integrand is much slower than that of exp(±2iωt), 
so that integration would give a zero result. The transformation of Equation 4.108 and the RWA also affect 
our calculation of the time-dependence of the diagonal elements of the density matrix. Consider the product 
of the time-varying field and the imaginary part of ρ12 that appears in the first two equations of 4.106. The 
RWA leads to
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This results in
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By subtracting the second equation from the first, we obtain an equation of motion for the population differ-
ence ρ11 – ρ22. Further, we add and subtract Equation 4.109 to obtain terms that are respectively proportional 
to the real and imaginary parts of ρ12. The result is the three optical Bloch equations:
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To see the correspondence between the above expressions and those in Chapter 3 for magnetic resonance, 
Equation 3.118, the following analogies are made:
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As previously pointed out (and shown in homework problem 10 of Chapter 3), the magnetization Mz is 
proportional to the population difference, so the first correspondence is no surprise. In addition, we now 
have the following handle on the real and imaginary parts of ρ12. The real part is analogous to the part of the 
response (magnetization u) that is in phase with the driving field, and the imaginary part corresponds to 
the component in quadrature with the field (magnetization v). It is the latter which gives rise to the signal in 
NMR. Since the time-dependent polarization is found from Tr tρ µ( ) , the real and imaginary parts of the 
density matrix give rise to the parts of the response that are respectively in phase and 90° out of phase with 
the driving field.

Finally, before generalizing the density matrix formalism, we wish to use the two-state model to get further 
insight into the concept of Rabi oscillations in the resonant case: ω = ω21. We assume the boundary conditions 
ρ11(0) = 1, ρ22(0); i.e., the system starts out in the lower energy state before the perturbing radiation is turned on. 
We further neglect the relaxation terms and obtain the simple equations of motion ρ11(t) = cos2(Ωt), ρ22(t) = 
sin2(Ωt). We see that the population oscillates back and forth between “normal” (ρ11 > ρ22) and “inverted” 
(ρ11 < ρ22), as in the transient nutation experiment of magnetic resonance. Figure 4.3a illustrates these Rabi 
oscillations in the case of exact resonance and ignoring all relaxation terms. If dephasing is considered, but 
population relaxation is ignored, the oscillations damp with time until the populations of the two states even-
tually become equal, as shown in Figure 4.3b.

Rabi oscillations are much easier to observe in magnetic resonance than in optical spectroscopy owing to the 
much slower dephasing rate of spin states compared to electronic and vibrational states. The reason is that the 
spin states interact weakly with their surroundings. Both dephasing and population relaxation rates contribute to 
the linewidth of a spectroscopic transition, as will be explored throughout this book. Hence the slow relaxation in 
an NMR experiment is responsible for the sharp lines that make the technique a powerful structural tool.

Next, we outline a general perturbation formalism for finding the density operator without regard to 
the nature of the perturbation. For details, the reader should consult [1–4]. Suppose that we have the full 
Hamiltonian ˆ ˆ ˆH H V= +0 , where V�  is a perturbation that may depend on time. It is convenient to introduce 
what is called the interaction representation of the density operator ρ� I t( ), defined by
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Similarly, the interaction representation of V̂  is
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Differentiating both sides of Equation 4.114 with respect to time gives
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Figure 4.3 Rabi oscillations in a two level system without (a) and with (b) dephasing.
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The above equation can be compared to Equation 4.104. The advantage of transforming to the interaction 
representation is that the density operator then evolves only according to the perturbation operator rather 
than the full Hamiltonian. The solution to Equation 4.116 is
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Equation 4.117 is the result of direct integration of 4.116, but it has ˘
ρ I  on both sides. This suggests an iterative 

solution:
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The perturbation series of Equation 4.118 is comparable to that which could be obtained from iteration of 
Equation 4.17. The difference is that here we are calculating products of the state coefficients, rather than the 
coefficients themselves. The former are more directly related to experiment. In the linear response regime, the 
perturbation V�  is the dipole operator and Equation 4.118 is truncated after the second term. The treatment of 
nonlinear spectroscopy requires higher-order terms in this series. Solutions to this equation depend on the 
nature of the interaction and the level of approximation. The interaction representation is also useful in 
the analysis of time-correlation functions, to be discussed in the next chapter. We return to the discussion 
of the time-dependent density matrix in Chapters 13 and 14 where it is indispensable to the discussion of 
nonlinear optical spectroscopy.

4.7 SUMMARY

The key result of this chapter is the derivation, using time-dependent perturbation theory, of Fermi’s Golden 
Rule for the rate of a spectroscopic transition. One significant consequence of this equation is the time-energy 
uncertainty principle, which reduces to the Bohr frequency condition, ν = (Ef − Ei)/h, in limits appropriate to 
many experimental situations. We have seen that the transition dipole operator derives from the lead term in 
an expansion of the function exp( )ik r

� �
⋅  about 

�
k = 0. This limit is valid when the wavelength is large compared 

to the size of the spectroscopically active system, and results in what are called electric dipole (E1) selection 
rules. The electric quadrupole (E2) and magnetic dipole (M1) transitions spring from the second term in 
the expansion of exp( )ik r

� �
⋅ . These types of transitions are generally less intense than those permitted by the 

electric dipole operator. In future chapters, we will apply symmetry considerations to deduce whether matrix 
elements of the electric dipole, electric quadrupole, and magnetic dipole moment operators are zero or not, 
thus determining selection rules for various spectroscopy experiments.

Two forms of the Golden Rule were obtained that are convenient to the discussion of absorption and emis-
sion. The transition rate in absorption is proportional to the energy density of light ρ(ν) at the frequency of 
the transition. In Chapter 6, we will compare this expression to a phenomenological kinetic expression, due 
to Einstein, and uncover the relationship between experimentally determined intensities and the theoretical 
transition rate. In emission, the transition rate depends on the photon density of states, which must be treated 
quantum mechanically in order to recover spontaneous as well as stimulated emission. The resulting transi-
tion rate is proportional to the cube of the frequency.

As a preface to future discussions of light scattering, the quantum mechanical expression for the transi-
tion polarizability was derived: the KHD equation of Equation 4.57. The theoretical picture behind this two-
photon experiment invokes transitions to numerous intermediate states. This sum-over-states expression for 
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the transition polarizability will serve as the basis for selection rules in rotational and vibrational Raman 
scattering, to be considered in future chapters. The KHD expression also provides the necessary link to the 
Lorentz theory expression for α(ω), obtained in Chapter 3. The result is a quantum mechanical expression for 
the oscillator strength f, which is proportional to the square of the transition moment.

The time-dependent density matrix was introduced in order to discuss transitions of a molecule coupled 
to the surroundings. The energy relaxation and phase relaxation are characterized by times T1 and T2, respec-
tively. In Chapter 6, we will consider a model for pure dephasing, with time scale T2

∗, due to environment-
induced fluctuations in the spectral frequency. The next chapter will also make use of some of the quantum 
mechanical tools presented in this chapter, in order to derive the time-dependent theory of spectral intensities.

PROBLEMS
 1. Solve the Heisenberg equations of motion for the momentum and position of a harmonic oscillator:
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 Verify that the expectation values evolve in time like those for a classical harmonic oscillator; that is, 
they oscillate sinusoidally in time with angular frequency ω.

 2. Show that f y z i m f yz ifi∂ ∂ = −/ /ω � . Hint: Insert the resolution of the identity, j j
j∑ =1, between 

the operators y and ∂ ∂/ z .
 3. Derive the Thomas–Reiche–Kuhn sum rule for the oscillator strength:

 
fij
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 Hint: This is a job for commutator algebra. Derive an expression for the commutator [ ,H� �µ] , where 
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ν µ µ µ µ µji ij

h
i H j j i i H j j i

2 1
= −{ }| | | |� � � � � �

 

 to a more useful quantity. The resolution of the identity is also helpful on this problem.
 4. Treat a one-electron atom according to the Lorentz model and calculate the oscillator strength for the 

v = 0 → v = 1 transition. The relevant wavefunctions are
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 where α ≡ (mω/ħ).
 5. Derive the E1 selection rules for an electron in a one-dimensional box of length L. In other words, for 

what changes in the quantum number n will the transition dipole μnn′  be nonzero? The wavefunctions 

are ψ π
n

L

n x

L
=

2
sin .
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 6. Calculate the oscillator strength for the 1s → 2pz transition of the hydrogen atom. The wavefunctions 
are
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 where a0 = 0.0529 nm is the Bohr radius. Hint: By symmetry, only the z component of the dipole 
moment operator, μz = −ercosθ, contributes to the transition moment.

 7. Consider a single molecule with an electronic transition at 530 nm that is exposed to a source having an 
energy density of 10−19 J/m3 Hz at that wavelength. The transition dipole moment of the molecule is 3.0 
Debye. Assume the light source is polarized along the direction of the transition dipole moment. Find 
the transition rate wif.

REFERENCES
 1. J. D. Macomber, The Dynamics of Spectroscopic Transitions (John-Wiley and Sons, New York, 1976).
 2. C. H. Wang, Spectroscopy of Condensed Media (Academic Press, Orlando, FL, 1985).
 3. G. C. Schatz and M. A. Ratner, Quantum Mechanics in Chemistry (Prentice-Hall, Englewood Cliffs, NJ, 

1993).
 4. W. G. Rothschild, Dynamics of Molecular Liquids (Wiley, New York, 1984).



http://taylorandfrancis.com


109

5

The time-dependent approach to spectroscopy

5.1 INTRODUCTION

Conventional spectroscopic measurements are concerned with the intensity of absorption, emission, or 
 scattering as a function of the frequency of radiation. In such steady-state, frequency-domain approaches, 
the emphasis is on the eigenstates and their energies, and the spectral response conveys structural informa-
tion. Complementary to the behavior of the system as a function of frequency is the time-dependent response 
of matter. The focus of this chapter will be on the intimate relationship between the frequency and time 
domains. The formalism presented here will give rise to the point of view that sufficiently weak electromag-
netic fields can be exploited to probe the molecular dynamics that take place in the unperturbed system. The 
fluctuation–dissipation theorem, to be discussed in Section 5.4, states that the energy imparted to the system 
by the probing field is dissipated by fluctuations characteristic of the system at equilibrium. The mathemati-
cal essence of this theory is that equilibrium time-correlation functions (TCFs) can be obtained by Fourier 
transformation of spectral intensity data.

One advantage of the time-dependent view is insight into how the same molecular dynamics can affect 
various types of spectra. For example, the lineshapes of infrared absorption, depolarized Rayleigh scattering, 
and dielectric relaxation are all influenced by molecular reorientation, and vibrational relaxation contributes 
to the lineshapes of both infrared and Raman spectra. The combination of different spectral tools to study 
dynamics can provide more information than would be afforded by a single spectrum. The use of TCFs to 
interpret spectra is especially useful in the liquid phase, where discrete rotational structure is not observed. 
The time-dependent approach avoids the need to consider the eigenstates of the system and is thus well-suited 
to the interpretation of diffuse spectra. The tools of classical statistical mechanics can be brought to bear on 
the treatment of rotational and translational motion in liquids.

Though the dynamical response of the system can be measured directly using pulsed excitation sources 
and time-resolved detection, in this chapter we are concerned with uncovering the time-dependent behavior 
from the frequency spectrum. The time and frequency responses are connected by a Fourier transform rela-
tionship. By understanding the theoretical basis for this connection, practicing spectroscopists can extract 
far more information from experimental data than is realized in common “phrenological”* approaches to 
interpreting spectra. The application of the time-dependent theory has both advantages and disadvantages. 
The advantage is in the practice of modeling or interpreting the data without having to know the eigenfunc-
tions of the system, and in direct determination of the timescales for relaxation of the perturbed system. 
Unfortunately, there are impediments to accurate determination of either experimental or calculated cor-
relation functions. The truncation of what ought to be an integral over all frequencies, and baseline errors 
in the wings of the spectrum, lead to errors in the experimental TCF. Overlapping bands, such as those due 
to naturally occurring isotopes, obscure the meaning of the TCF obtained by direct Fourier transformation. 
Modeling of spectra and correlation functions in condensed phases is fraught with the problem of accounting 
for the influence of intermolecular interactions. On the other hand, there is the potential for the approach to 
reveal these interactions. The numerous physical mechanisms that can simultaneously perturb the lineshape; 
reorientation, vibrational energy transfer, fluctuations in the transition energy, collisions, etc. can be difficult 
to disentangle in practice. Nevertheless, the approaches described here provide a powerful spectroscopic 

* Phrenology was a nineteenth century fad of deducing character traits and intellectual abilities by measuring the bumps 
on a person’s skull.
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vantage point, and have given rise to a modern view of spectroscopy that has been applied to both time- and 
frequency-domain experiments.

In this chapter, we confine our discussion to spectroscopic transitions taking place on a single potential 
energy surface, that of the ground electronic state. The time-dependent view can also be fruitfully applied 
to electronic spectroscopy (absorption, fluorescence, and resonance Raman). This time-dependent view of 
spectroscopy will be discussed in Chapter 12.

In Section 5.2 it will be shown how the Golden Rule derived in Chapter 4 can be transformed to an expres-
sion in which the spectral intensity is the Fourier transform of an equilibrium-averaged time-correlation 
function. The resulting formalism is well suited to the study of condensed phase dynamics through the mea-
surement of rotational and vibrational spectra. The more general approach outlined in Section 5.4 considers 
the full wave vector and frequency resolved response to depend respectively on correlations in space and in 
time. In Chapter 12, we will extend the approach to account for dynamics on more than one potential energy 
surface. The result will be a theory for calculating absorption, emission, and resonance Raman scattering 
spectra from the time-dependent overlaps of vibrational wavefunctions.

5.2  TIME-CORRELATION FUNCTIONS AND SPECTRA AS FOURIER 
TRANSFORM PAIRS

In this section, we review the derivation presented by Gordon in [1], in order to find the relationship between 
the intensity spectrum I(ω) and the time-correlation function C(t) ≡ 〈A*(0) · A(t)〉, where A is the dynamical 
variable associated with the spectrum of interest (in absorption spectra it will be the dipole moment or transi-
tion dipole moment) and the angle brackets indicate an equilibrium average. The name correlation function 
indicates that C(t) is a measure of the extent to which the dynamic variable A(t) is correlated with the value 
it had at time zero. A correlation function of the type 〈A*(0) · A(t)〉 is called an autocorrelation function, in 
contrast to a cross-correlation function, 〈B*(0) · A(t)〉.

We shall find that the physical property A of interest to a particular TCF may depend on molecular orien-
tation or the coordinate defining a molecular vibration. It is often the case that the operator corresponding to 
this property is real, and we can dispense with the complex conjugate notation. If we singled out one molecule 
in an ensemble and tried to track, say, its orientation, then A(t) would appear to fluctuate in an unpredictable 
manner, as illustrated in Figure 5.1. It may seem that little information is obtainable from such a single trajec-
tory. However, if we compare the value of A(t) at some time t with its value t + τ later, for short enough time 
intervals τ the two measurements of A are correlated.

The equilibrium average 〈A(t)A(t + τ)〉 does not depend on the choice of starting time t, which is arbitrary, 
but does depend on the interval τ. To find the average 〈A(t)A(t + τ)〉 = 〈A(0)A(τ)〉, imagine making pairs of mea-
surements of A, separated in time by τ, over a large time interval and then averaging them:

 A A
T

dtA t A t

T

( ) ( ) ( ) ( )0
1

0

τ τ= +∫  (5.1)

t

A
(t

) <A>

Figure 5.1 Trajectory of a dynamic variable A(t).
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Equation 5.1 corresponds to averaging a number of trajectories such as that of Figure 5.1. The result is a 
smooth function 〈A(0)A(τ)〉 = C(τ), as shown in Figure 5.2, whose time decay is a measure of the loss of 
correlation between repeated measurements of A. According to the ergodic hypothesis, the time average is 
equivalent to an ensemble average. It is this ensemble average which will be obtained in the derivation which 
follows. The initial value of C(τ) at τ = 0 is the equilibrium average 〈A2〉. As time proceeds, C(τ) must decrease 
overall due to cancellation effects: contributions to the average of 5.1 where A(t) and A(t + τ) have oppo-
site sign. Therefore 〈A(0)A(τ)〉 ≤ 〈A2〉. At times much longer than the correlation time τc, there is no relation 
between A(t) and A(t + τ), and the TCF tends toward 〈A(0)〉〈A(τ)〉 = 〈A〉2. In other words, at long times the two 
measurements can be averaged separately. The net result is the relation: 

 A C t A2 2≥ ≥( )  (5.2)

We shall see that the rate at which C(t) decays determines the width of the corresponding spectrum.
In the case where A is the dipole moment, we expect C(t) to go from an initial value of 〈A2〉 = 〈μ2〉 to 

the value of zero at times long enough that  
�
µ( )t  has “forgotten” its original value. The long-time limit of 

� �
µ µ( ) ( )0 ⋅ t   vanishes because 

�
µ( )t   is just as likely to be antiparallel to 

�
µ( )0   as it is to be parallel, so the dot 

product averages to zero.
Let us recall the Golden Rule derived in the previous chapter, Equation 4.39, in which the rate of transi-

tions is given by

 w f E iif fi fi= −( ) + +( ){ }π µ δ ω ω δ ω ω
2 2 0

2

�
� �

·  (5.3)

This is the probability per unit time of the transition i → f. Notice that Equation 5.3 is unchanged if the indi-
ces i and f are interchanged. The inherent transition rate per molecule is the same for upward (absorption) 
and downward (stimulated emission) transitions. To obtain the net energy change in the radiation field we 
take the sum, over all possible initial and final states, of the transition rate times the energy of the transition, 
weighted by the probability pi that the initial state is occupied:

 
−

= − = ∑du

dt
u

N

V
p wi

i f

if fi� �
,

ω  (5.4)

The energy density u is the energy per unit volume, and there are N molecules in the irradiated volume V. 
Note that in Equation 5.4 the sign on the left-hand side and the sign of the frequency ωfi work together to 
account for absorption, which subtracts energy from the radiation field, and stimulated emission, which adds 
to it. The probability is given by the Boltzmann distribution, which is negligibly perturbed for the types of 
experiments for which the Golden Rule applies. Therefore, pi = z−1exp[−(ħωi0/kBT)], where z is the partition 
function, ħωi0 is the energy of state i less that of the ground state, and kB is Boltzmann’s constant. We now 
substitute Equation 5.3 in Equation 5.4 and separate the two delta functions to get

t

<A>

<A>

<
A

(0
)A

(t
)>

Figure 5.2 Time-correlation function 〈A(0)A(t)〉.
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Since i and f are only dummy indices, we can interchange them in the second sum, and use the fact that 
ωif = −ωfi to obtain
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 (5.6)

Using Boltzmann’s law, we can replace pf by piexp(−ħωfi/kBT) and drop the subscripts on ω, since the delta 
function requires that ω equal ωfi. The imaginary part of the relative permittivity* is given by ′′ = −ε ω ωr u u( ) /� , 
where u E= ( )1 2 0 0

2ε  is the time averaged energy density. Dividing Equation 5.6 by ω u gives

 ′′ = − ⋅ −( )− ∑ε δω π
ε

μ ω ωω
r

k T
i

i f

fie
N

V
p f e iB( ) ( )/

,0

2

1
�

� ��
 (5.7)

The unit vector ê  points in the direction in which the radiation is polarized. In the absence of a static field, this 
direction is arbitrary, so suppose that the radiation is x-polarized and it is the quantity µif x

( )2  that is needed in 
Equation 5.7. For an isotropic sample such as a liquid or gas, all three components of the transition moment 
are equal, so we can replace µif x

( )2
  by ( )1 3

� �
µ µif fi⋅  .

The intensity I(ω) is defined to be
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For frequencies large compared to kBT/h, the exponential function can be neglected compared to one.† In the 
opposite limit, ħω << kBT, we can make the approximation: exp(−ħω/kBT) ≈ 1 − ħω/kBT. The quantity ω 2I(ω) 
is then proportional to the molar absorptivity.

Next, we introduce the integral representation of the delta function:
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Here, it is convenient to write the above as follows:
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After inserting Equation 5.10 into Equation 5.8, we can use the exponential functions of energy to express one 
of the dipole moment operators in the Heisenberg representation:
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* Recall that the molar absorptivity εM is proportional to ωε ′′r .
† Thermal energy kBT/hc is around 200 cm−1 at room temperature.
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This step is valid when the states i and f are eigenfunctions of the same Hamiltonian. This will not be the case 
for electronic spectroscopy, which we do not consider at present. Note that 

� �
µ µ≡ ( )0 . The intensity can now 

be expressed as
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The two matrix elements in Equation 5.12 are just numbers, so it is okay to interchange the order of multi-
plication. Next, we take advantage of the resolution of the identity, f ff =∑ 1, to remove the sum over f in 
Equation 5.12, resulting in
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 (5.13)

This is the Fourier transform of an equilibrium average. Recall that:
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Thus, Equation 5.13 is equivalent to
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Equation 5.15 is the key result of this chapter. The spectral intensity I(ω) is the Fourier transform of the 
time-correlation function C t t

eq
( ) ( ) ( )≡ ⋅

� �
μ μ0 . We will henceforth drop the subscript eq as is done in 

the conventional notation. A very useful property of Fourier transforms is that they can be turned inside-
out. The correlation function is the inverse Fourier transform of I(ω):

 C t e I di t( ) = ( )
−∞

∞

∫ ω ω ω  (5.16)

Note the limits are from minus to plus infinity, which is impossible to achieve experimentally. Nevertheless, 
the dynamics which take place on a certain timescale will influence the intensity at frequencies which are 
reciprocally related to the characteristic times. Applications of Equations 5.15 and 5.16 frequently involve 
vibrational bands in Raman and infrared spectra, in which case the band center is considered to be the origin 
of frequency. By using ω − ω0 as the transform variable, high frequency oscillations in the correlation func-
tion are eliminated and one can concentrate on the dynamics which contribute to the width (rather than the 
 position) of the spectrum.

By a suitable expression of the dipole moment operator in Equation 5.15, various spectroscopic experi-
ments are accounted for as follows: 

 1. Microwave or far-infrared (far-IR) spectroscopy: 
� �
µ µ= 0 , the permanent dipole moment.

 2. Infrared spectroscopy: 
� �
µ µ= ∂ ∂( )Q Q

0
, where Q is a normal coordinate for the vibrational mode, to be 

discussed in Chapter 10.
 3. Rayleigh scattering: 

� � � �µ µ α= ∝ ⋅ ⋅ind e ei s , where α is the polarizability, a second rank tensor, and êi  and 
ê s are the polarization directions of the incident and scattered radiation.

 4. Raman scattering: 
� �

� �μ μ α= ∝ ⋅ ′ ⋅ind e e( )i s Q , where α ′, also a second rank tensor, is the polarizability 
derivative with respect to the normal coordinate, ∂ ∂( )α Q

0
.

More generally, for an operator Â which is responsible for the spectroscopic intensity, we should write C(t) = 
〈A*(0)·A(t)〉, allowing for the possibility that Â is complex. Since the dipole moment operator is real, we did not 
need to worry about the complex conjugate in the above derivation.
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5.3  PROPERTIES OF TIME-CORRELATION FUNCTIONS 
AND SPECTRAL LINESHAPES

In this section we explore the mathematical features of correlation functions and intensity spectra. As cor-
relation functions cannot necessarily be measured directly, they do not have to be real: C(t) = CRe(t) + iCIm(t). 
As will be shown, classical systems have purely real correlation functions while quantum mechanical TCFs 
are complex. The real and imaginary parts are related to the even and odd parts of the intensity, respectively. 
To show this, we need the help of the detailed balance theorem, which states that I(−ω) = exp(−ħω/kBT)I(ω).

To obtain the detailed balance theorem, we begin be deriving a relationship between a correlation func-
tion and its complex conjugate. Without assuming that C(t) is real, we write

 C t A A t p i A f f A t ii

i f

( ) ( ) ( )
,

= =∗ ∗∑  (5.17)

Then the complex conjugate of C(t) is
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,
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Because the operator A is Hermitian, we can use the turn-over rule: 〈i|A|f 〉 = 〈 f |A*|i〉:
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 (5.19)

The probabilities that state i and f are occupied satisfy pf = exp(−ħωfi/kBT)pi, therefore:
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We want to relate I(ω), as given by
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We know that the intensity is real; thus, I(ω) = I*(ω). Taking the complex conjugate of Equation 5.21, and 
using Equation 5.20, we obtain
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In the third line of Equation 5.23, it has been recognized that ωfi has to equal ω. This can be shown by 
writing 〈i|A(t)|f〉 in the Heisenberg representation, and expressing δ(ω−ωfi) in the integral representation 
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as in Equation 5.10. This allows closure (the resolution of the identity) to be used to remove the sum over i. 
Since summing over all states f, p f A A t fff∑ ∗| ( ) |   gives 〈A*A(t)〉 of Equation 5.22, we recover the desired 
relationship:

 I k T IB( ) exp( / ) ( )− = −ω ω ω�  (5.24)

Detailed balance is a consequence of equilibrium; the rate of transitions into the state is balanced by transi-
tions out of the state. The factor exp(−ħω/kBT) is the ratio of the Boltzmann population of the upper state to 
that of the lower state. In the classical limit, ħ can be put equal to zero, and the intensity is an even function 
of frequency.

As with any function whose argument can range over positive and negative values, the intensity can be 
broken up into odd and even parts as follows:

 Iodd ω ω ω( ) = ( ) − −( ) 
1

2
I I  (5.25)

 Ieven ω ω ω( ) = ( ) + −( ) 
1

2
I I  (5.26)

such that I(ω) = Iodd(ω) + Ieven(ω). The intensity can also be written as

 I C t iC t t i t dtRe Imω
π

ω ω( ) = ( )+  −[ ]
−∞

∞

∫1

2
( ) cos sin  (5.27)

Since I(ω) is real, the imaginary part of the right-hand side of Equation 5.27 vanishes. Therefore

 0
1

2
= − ( ) 

−∞

∞

∫π
ω ωcos ( ) sintC t tC t dtIm Re  (5.28)

Equation 5.28 will hold if the imaginary part of C(t) is an odd function of time and the real part an even func-
tion: that is Re C(t) = Re C(−t) and Im C(t) = −Im C(−t). Equivalently, we can write C*(t) = C(−t). The classical 
part of the correlation function displays the time reversal symmetry dictated by Newton’s laws. Equations 
5.27 and 5.28 lead to the conclusion that the even part of the intensity depends on the real part of the correla-
tion function and the odd part of the intensity on the imaginary part. With the help of the detailed balance 
theorem, it can be shown that Iodd(ω) = tanh(ħω/2kBT)Ieven(ω). Since limx→0tanhx = 0, the odd part of the 
intensity vanishes as ħ → 0, meaning that Iodd(ω) and CIm(t) are purely quantum mechanical quantities. Let 
us concentrate on classical correlation functions and explore the form of the intensity for various functional 
forms for C(t). For example, 

 1. If C(t) = C(0)cosω0t, then I = I0δ(ω−ω0).
 2. If C(t) = C(0)exp(−t2/τ2), then I = I0exp(−ω2τ2/2).
 3. If C(t) = C(0)exp(−|t|/τ), then I = I0/(1 + ω2τ2).

The first example would apply to a hypothetical case of a molecule rotating with a constant frequency of ω0 
without interruption. This is physically unrealistic, but if such a situation were possible, the resulting spectrum 
would be an infinitely sharp spike at the frequency of rotation. The second example applies to a Gaussian cor-
relation function, a limit observed at short times in the case of a classical linear free rotor (to be discussed later). 
In this case, the intensity is also a Gaussian function, having a frequency distribution which is inversely related 
to the decay time for the correlation function. In other words, the Fourier transform of a fat Gaussian is a 
skinny Gaussian, and vice versa. It is a quite general and important result that the more rapidly the correlations 
decay, the broader will be the frequency distribution, and vice versa. This is another manifestation of the time-
energy uncertainty principle. In the last example, an exponential correlation function gives rise to a Lorentzian 
function of frequency. The Lorentzian lineshape applies to the case of a rotational Brownian diffuser, a long-
time limit that is valid after a rotating molecule has suffered a large number of reorienting collisions. Since this 
picture holds at relatively long times, it can only account for the low-frequency part of the intensity.
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5.4  THE FLUCTUATION–DISSIPATION THEOREM

The use of correlation functions in chemical physics is not limited to the spectroscopic examples discussed 
above. Whenever one is interested in the effect of a weakly perturbing field or a mechanical or thermal probe, 
the use of linear response theory is appropriate. In this section we summarize the key equations of linear 
response theory without deriving them. The interested reader is referred to the review article by Berne and 
Harp [2] for more details on this approach. The goal here is to present a general form for the wave vector- 
and frequency-dependent spectral response, which can be employed when collective motions influence the 
spectrum. The spatial correlations in the dynamics give rise to the k-dependence of the spectrum, just as time 
correlations affect the frequency dependence.

We consider a generalized susceptibility function χAB having real ′χ AB  and imaginary ′′χ AB  parts related 
by the Kramers–Kronig transforms. The notation is based on the idea that there is a perturbing field F, the 
perturbation Hamiltonian is of the form ˆ ·H B′ ∝ F, and A is some physical property whose response to the 
perturbation will be probed. The average value of the physical property A(R, t) depends on the perturbation 
at all positions R′ and at all times t′ prior to t. This dependence is expressed with the help of the after-effect 
function ΦAB, where

 A( , ) ( , ) ( , )R R R R F RABt dt d t t t

t

= ′ ′ ′ ′ ′ ′
−∞
∫ ∫ Φ , ;  (5.29)

Vector quantities are in bold typeface in this section. Equation 5.29 is a mathematical statement of causality. 
The after-effect function, a real quantity, conveys all the information about the response of the system to the 
perturbing field. It takes into account any time lag between the perturbation and the measured response. For 
frequency-dependent fields of interest to spectroscopy, we know that the imaginary part of the susceptibility 
determines the out-of-phase response of the system, associated with energy loss due to absorption. As writ-
ten, the after-effect function depends on two space and two time coordinates, but a physically reasonable 
function for ΦAB should depend only on displacements in space and time: ΦAB(R, R′;t, t′) = ΦAB(R − R′;t − t′). 
We want to show how the after-effect function relates to the susceptibility by considering a monochromatic 
perturbing field Fkω. For linear response we expect that

 A t i tAB kR k F k R, , exp (( ) = ( ) ⋅ −[ ]χ ω ωω  (5.30)

The susceptibility depends on both wave vector and frequency. To be consistent with the previous expression, 
it must be the Fourier transform of the after-effect function

 χ ω ωAB ABdt d t i tk R R k R, ( , )exp (( ) = ⋅ − 

∞

∫ ∫
0

Φ  (5.31)

Since ΦAB(R, t) is real, the real and imaginary parts of χAB(k,ω) are cosine and sine transforms, respectively, 
of the after-effect function. Equation 5.31 reveals why the real and imaginary parts of χ must be related, since 
they are cosine and sine transforms, respectively, of the same function. As shown in [2], the spatial Fourier 
transform of ΦAB is related to a commutator of the Fourier components of the operators A and B:
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 (5.32)

In Equation 5.32, the Fourier components of the operators are defined by

 A A ek

j

j
i j=∑ ⋅

+
1

2
[ , ]k R  (5.33)
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where the sum is over all the molecules, and Rj is the position of molecule j. The subscript + indicates an 
anticommutator: [ , ]A B AB BA� � � � � �

+ = + . If the operator Â commutes with the position variable, then the Fourier 
component is just A A ek jj

i j= ∑ ˆ ·k R .
We can express χAB as

 χ ω ω
AB AB

i tt e dtk k, ,( ) = ( )
∞

−∫Φ
0

 (5.34)

In addition to the k-dependence of the operators in Equation 5.32, the correlation function expressed here 
differs from the previously discussed TCFs in that a commutator of two operators is involved, and the poten-
tial for considering cross-correlations (A ≠ B) exists.

Now consider the susceptibility χAA of interest in a spectroscopy experiment. The perturbation Hamiltonian is 
of the form ˆ ′ = − ⋅H E

� �
μ . The measured response is the polarization 

�
P  = χ εe E0

�
, which is the dipole moment per 

unit volume. So A B ii
= = ∑ µ  in the calculation of the susceptibility. The imaginary part of the susceptibility 

determines the rate of change of the radiation energy density.

 − = ′′
du

dt
EAA k

1

2

2ωχ ω ω( , ) ,k  (5.35)

As shown in [2], ′′χ AA is given by

 ′′ = 



 [ ]

−∞

∞

− +∫χ ω ω ω
AA

B

i t
k k

k T
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2
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 (5.36)

Equation 5.36 is the fluctuation–dissipation theorem. In the limit that k → 0, it is equivalent to Equation 5.15, 
as will be shown in Problem 5.

Linear response theory has been applied to many spectroscopic techniques, such as Mossbauer spec-
troscopy, neutron scattering, and magnetic resonance. In addition, it is a useful way to approach transport 
problems, such as translational and rotational diffusion and thermal and electrical conductivity. In the case 
where the correlation function can be considered classical and independent of wave vector, the fluctuation–
dissipation theorem is equivalent to the TCF derived in Section 5.2.

In the next two sections, the low-frequency reorientational spectroscopy of liquids is considered, where 
the k-dependence of light plays a potentially important role in the analysis, due to the collective nature of the 
molecular dynamics.

5.5  ROTATIONAL CORRELATION FUNCTIONS AND PURE 
ROTATIONAL SPECTRA

The rotational transitions of molecules in the gas phase are observed using microwave absorption or emis-
sion, or Raman scattering, as will be discussed in Chapter 8. Here, we would like to consider the spectra of 
molecules which do not rotate freely and therefore do not have resolvable rotational eigenstates. The pure 
rotational spectra of molecules in the liquid phase can be observed by means of dielectric relaxation, far-IR 
absorption, or depolarized Rayleigh scattering. In recent years, new terahertz sources [14–16] operating in 
the frequency range 0.1 – 10 THz (about 3 – 300 cm–1) have expanded opportunities for measuring reorienta-
tional relaxation and low-frequency intermolecular vibrations of liquids in the far-IR region of the spectrum. 
The dielectric relaxation experiment, to be discussed in Section 5.6.1, involves a measurement of the real and 
imaginary parts of the relative permittivity at frequencies in the microwave and radio-frequency range. The 
far-infrared absorption spectrum is essentially an extension of the dielectric relaxation experiment to higher 
frequencies, though the real and imaginary parts of the response are not always measured separately. Both 
these techniques observe the dynamics of rotating dipoles and, to a first approximation, the observed signal 
depends on the existence of a permanent dipole moment. The observation of depolarized Rayleigh scattering 
requires that the molecular polarizability tensor be anisotropic. Other techniques for measuring rotational 
relaxation times, not considered here, include polarized fluorescence and nuclear magnetic resonance.
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5.5.1  Correlation funCtions for absorption 
and light sCattering

The correlation function appropriate to far-IR absorption is 
� �
µ µ0 0⋅ ( )t  , where 

�
µ0   is the permanent dipole 

moment. This form of the TCF neglects the possibility of collective motion, which will be considered later. 
The magnitude of the dipole moment influences the total intensity but not the lineshape. Thus it is conve-
nient to work with the normalized correlation function C t u u t1( ) ( )= ⋅� � , where û  is a unit vector in the dipole 
direction. This form of the TCF has the value of one at time zero, and results in a spectral lineshape I(ω), 
which is normalized to unit area. The subscript 1 reminds us that this correlation function is the same as 
〈P1(cosθt)〉, where θt is the angle through which the dipole has rotated after time t, and P1(x) = x is the first 
Legendre polynomial. The reason for this notation is that the corresponding correlation function for depolar-
ized light scattering of axially symmetric molecules is 〈P2(cosθt)〉, where the second Legendre polynomial is 
P x x2

23 1( ) (1/2)( )= − .
In depolarized Rayleigh scattering, the scattered light is detected having a polarization perpendicular to that 

of the incident radiation. The polarized Rayleigh spectrum detects light scattered with the same polarization 
direction as the incident light. Rayleigh scattering detects rotational and translational dynamics, while Raman 
scattering is due to vibrational transitions. The experimental configuration for the polarized and depolarized 
light scattering experiment (Rayleigh or Raman) will be discussed in Chapter 6. The intensity of depolarized 
light scattering depends on the anisotropy of the polarizability tensor in the molecular frame of reference. The 
polarizability tensor of a nonvibrating molecule, i.e., one that is frozen in its equilibrium geometry, reflects its 
symmetry, and one can always find a reference frame that diagonalizes this tensor:

 α
α

α
α

=
















xx

yy

zz

0 0

0 0

0 0

 (5.37)

Equation 5.37 represents the polarizability in a molecule frame of reference, whereas the light scattering spec-
trum depends directly on the polarizability tensor in the laboratory frame of reference. In Chapter 8, we will 
examine the mathematical details of converting the polarizability tensor from one reference frame to another.

Consider spherical molecules, such as atoms and molecules of tetrahedral or octahedral symmetry. These 
have isotropic polarizability tensors: αxx = αyy = αzz. In this case, the induced dipole moment, which acts as a 
source for scattered radiation (see Equation 2.37), is always in the same direction as the electric field vector of 
the incident radiation. Thus there is no depolarized Rayleigh scattering for molecules with isotropic polariz-
ability tensors. Isotropic molecules, for example CCl4 or SF6, do give rise to polarized Rayleigh scattering, but 
in these systems the light scattering is insensitive to the orientation of the molecule. The observation of a pure 
rotational spectrum in the form of depolarized Rayleigh scattering requires that the molecular polarizability be 
anisotropic. This is a called a gross selection rule, and it is analogous to the requirement that a molecule have a 
permanent dipole moment in order to be active in pure rotational absorption and emission.

Now, the truth is that weak depolarized Rayleigh scattering is observed even for spherical molecules, and 
nonpolar liquids absorb far-IR radiation weakly. The more liberal selection rules are a consequence of colli-
sions and intermolecular interactions in the liquid, which result in changes to the polarizability and dipole 
moment of the isolated molecule. The correlation functions of this section account for the “allowed” part of 
the pure rotation spectrum.

We focus here on molecules having axial symmetry, in which case αxx = αyy ≠ αzz. The polarizability 
anisotropy is then defined as β = (αzz − αxx), the square of which scales the intensity of depolarized light 
scattering. Similarly, the far-IR intensity is proportional to the square of the permanent dipole moment, μ0, 
in the absence of interaction-induced effects. The normalized TCF for the pure rotational spectrum, in the 
absence of collective dynamics, is given by

 C t Pl l t( ) (cos )= θ  (5.38)

where l = 1 for absorption and l = 2 for depolarized Rayleigh scattering.
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5.5.2  ClassiCal free–rotor Correlation funCtion and speCtrum

To get some insight into the nature of correlation functions, let us consider an ensemble of classical free rotors 
having axial symmetry. The dipole moment, if it exists, must coincide with the symmetry axis, taken to be the z 
direction in the molecule frame.

We write the correlation function for pure rotational spectroscopy as 〈Pl(cosθt)〉, where the angle brackets 
denote an equilibrium average. To compute the classical equilibrium average, we need the normalized prob-
ability distribution p(Ω) for the rotational velocity Ω = �θ  [3]:

 p
I

k T

I

k T
z

B

z

B

( ) expΩ
Ω Ω

=
−









2

2
 (5.39)

Iz (not to be confused with the intensity) is the moment of inertia for rotation of the symmetry axis (the 
molecule z-axis). (Rotation about the symmetry axis does not change the dipole moment or polarizability of 
an axially symmetric molecule.) The angle θt though which the molecule has rotated after time t is Ωt. The 
desired correlation functions are found by evaluating the following integral:
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The resulting correlation functions, obtained by numerical integration of Equation 5.40, are displayed 
in Figure 5.3 as a function of dimensionless reduced time: t* = (kBT/Iz)1/2t. There are several significant 
features of Cl(t). One is that C2(t) decays twice as rapidly as C1(t). The basis for this is that, for axially sym-
metric molecules, the polarizability rotates twice as fast as the dipole moment. Rotation by 180° returns 
the polarizability to its original value, while the dipole moment must rotate 360° to be restored to its orig-
inal value. This feature is related to the selection rules to be discussed in Chapter 8, where the frequency 
spacing of pure rotational spectra will be found to be twice as large in Raman scattering as in microwave 
absorption. The present discussion, however, is concerned with classical rotors, for which the spectrum 
does not consist of a series of discrete lines, in contrast to the situation for quantum mechanical rotors. 

Another interesting feature is that each correlation function starts out looking like a Gaussian func-
tion at short times. As a result, the wings of the spectrum should also approach Gaussian functions of 
frequency. Furthermore, the l = 2 correlation function, unlike that for l = 1, does not decay to zero at long 
time. This is a consequence of the difference in the functional forms of the Legendre polynomials. In any 
Fourier transform pair, the area under one function is proportional to the value of the other at the origin. 
The persistence of C2(t) at long time results in a delta function spike in the intensity at zero frequency. 
If  translational motion were accounted for, C2(t) would eventually decay and this zero frequency peak 
would have a finite width.

Taking the Fourier transform of Equation 5.40, we can evaluate the classical spectra of the free rotors as 
follows (see Problem 1):
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Figure 5.3 Free-rotor correlation functions.
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Notice that the absolute value of the frequency appears in each expression. In the case of Equation 5.41, 
negative frequencies correspond to stimulated emission. In 5.42, they correlate with anti-Stokes scattering, 
for which the frequency of the scattered radiation is higher than that of the incident radiation. However, 
since the above expressions are for classical rotors, the intensities are even functions of frequency: I(ω) = 
I(−ω). This is expected from the detailed balance relation if we take the limit ħ → 0.

5.6  REORIENTATIONAL SPECTROSCOPY OF LIQUIDS: 
SINGLE-MOLECULE AND COLLECTIVE DYNAMICS

In this section we examine in more detail the nature of pure rotational spectra of liquids. The hindered rota-
tional motions of molecules in liquids and solutions are responsible for several varieties of low-frequency 
spectroscopic techniques. In none of these methods is rotational structure observed; information about reori-
entational dynamics must be obtained by analysis of the spectral lineshape. We consider three experimental 
approaches and the corresponding theory for interpreting the data. The first of these, dielectric relaxation, 
is a very old and very low-frequency (less than about 1 cm−1) experiment. Far-IR absorption and depolarized 
Rayleigh scattering, in the vicinity of 1 to 100 cm−1, also reflect reorientational dynamics, and the time-
domain views of these two types of spectra will be presented.

5.6.1 dieleCtriC relaxation

In Chapter 3, we looked at the relative permittivity εr(ω) as a means of understanding the polarization induced 
in a sample by an applied electric field: 

� �
P Er= −( )ε ε1 0 . Naturally, the frequency dependence of the permittiv-

ity (or dielectric function) depends on the time-dependent response of the system. Imagine that a static elec-
tric field is suddenly applied to a sample. The polarization will experience an initial instantaneous response, 
dependent on the high-frequency permittivity ε∞, and then increase more slowly to its final value, a function 
of the static permittivity εs. Alternatively, the field could be turned off instantaneously and the system allowed 
to relax back to its unpolarized state. The response function (or relaxation function) which governs this process 
is called Φ(t), and the connection between the time and frequency responses is given by

 ε ω ε ω
r

i te t dt( ) ( )= +∞

∞

∫
0

Φ  (5.43)

Equation 5.43 can be compared to Equation 5.34. Recall that susceptibility and relative permittivity are related 
through εr = 1 + χe. Equation 5.43 comprises the expressions for the real and imaginary parts of the permittivity, 
which are related via the Kramers–Kronig expressions given in Chapter 3 (Equation 3.56). They are

 ′ = +∞

∞

∫ε ω ε ωr t t dt( ) cos ( )

0

Φ  (5.44)

 ′′ =
∞

∫ε ω ωr t dt( ) sin

0

Φ( )t  (5.45)

The real and imaginary parts of the permittivity determine the part of the polarization that is respectively in 
phase or in quadrature with the time varying field. A typical dielectric relaxation experiment measures both 
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′εr  and ′′εr  at frequencies from about 107 to 1011 Hz. One way to represent the data is to plot ′′ε ωr ( )  versus ′ε ωr( ). 
This is known as a Cole–Cole plot. Another representation of the data invokes the definition of the loss angle ϕ:

 tan
( )

( )
ϕ ε ω

ε ω
= ′′

′  (5.46)

The loss angle is the phase lag between the induced polarization and the applied field. Figure 5.4 shows some 
dielectric relaxation data for benzophenone in terms of this loss angle, taken from [4]. 

The simplest treatment of rotational relaxation in liquids is known as the Debye model. This picture is 
based on the idea that rotation can be treated as diffusional. The connection between rotational and trans-
lational diffusion can be made by describing the former in terms of the orientation vector of the molecule 
tracing a path on the surface of a sphere. If the path consists of many small steps, with random angles between 
successive steps, then we speak of rotational diffusion. In reality, this picture is valid only at long times, where 
the net displacement of the orientation vector can be viewed as the sum of many small steps, and the direc-
tion of each small step is uncorrelated with that of the previous step. This long-time caveat implies that the 
Debye model is valid only at low frequencies, and we shall see that this is the case. In the diffusional limit, the 
relaxation function is exponential:

 Φ( ) /t e t D∝ − τ  (5.47)

The Debye theory yields the following expressions for the relative permittivity:
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Hydrodynamic theory can be applied to estimate the Debye relaxation time τD. For example, in a dilute solu-
tion of polar molecules in a nonpolar solvent, the Debye time is given by

 τ πη
D

B

a

k T
= 4 3

 (5.50)

where η is the viscosity and a is the radius of the solute molecule. Typical Debye times are in the range of 
about 0.1 to 100 ps. For example, τD is 4 ps for acetonitrile and 20.6 ps for dimethylsulfoxide. The Cole–Cole 
plot for a Debye liquid with a single relaxation time is a semicircle. Deviations from a semicircle indicate 
more complex behavior. In alcohols, for example, torsional motion of the hydroxyl group and the breaking of 
hydrogen bonds contribute to the polarization relaxation, in addition to overall rotation of the molecule. The 
dielectric relaxation of alcohols is typically characterized by three, rather than one, relaxation times.

Recalling that the absorption coefficient is proportional to ωε ω′′r ( ), it can be shown that the Debye model 
predicts that the absorption tends to a constant value at high frequency ( )ω τ2 2 1D >> . This “Debye plateau” is 
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Figure 5.4 Loss angle of benzophenone (a) in paraffin and (b) in benzene. (From H.  Fröhlich, Theory of 
Dielectrics 1986, by permission of Oxford University Press.)
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completely unphysical; it is an artifact of the assumption of rotational diffusion. The short-time behavior of 
rotational motion must be accounted for properly in order to get the high-frequency response right. This leads 
naturally to a discussion of far-infrared absorption spectroscopy, which may be considered to be an extrapo-
lation of ωε ω′′r ( ) measured in a dielectric relaxation experiment.

In truth, dielectric relaxation is a collective phenomenon, which means that we cannot neglect the wave 
vector (k) dependence of the relevant correlation functions. The variable of interest is thus the Fourier com-
ponent of the total dipole moment:

 
� � � �

M ik Ri

i

i= ⋅( )∑µ exp  (5.51)

where 
�
Ri  is the position of molecule i and k is the wave vector. The correlation function for the total dipole 

moment is
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∑( ) ( )exp ( )µ µ  (5.52)

Equation 5.52 applies to both dielectric relaxation and far-IR experiments.
We consider here the longitudinal and transverse relaxation behavior. The former refers to the component 

of the polarization which is parallel to the propagation vector 
�
k  and the latter represents that part which is 

perpendicular to 
�
k . The long-range order in a dipolar liquid results in different polarizations in the longi-

tudinal and transverse directions. The Debye time actually corresponds to transverse relaxation. Consider 
the qualitative picture of dipolar alignment shown in Figure 5.5. (The orientational and translational order 
in this Figure is exaggerated for illustration purposes.) Relative to a central dipole, dipoles in the direction 
parallel to the central one tend to be aligned in parallel fashion, while those in a perpendicular direction tend 
to be parallel or antiparallel with equal probability. Let us examine the effect of this long-range order on the 
longitudinal (parallel to 

�
k ) and transverse (perpendicular to 

�
k ) polarizations.

The phase factor exp( )ik R
� �
⋅  plays an important role in the relaxation times for the longitudinal and trans-

verse polarization. Consider the longitudinal component of 〈|M|2〉, where M is the collective dipole moment:

 M ik RZ Z
i

Z
j

ij

i j

2 = ⋅∑ µ µ exp( )
,

� �
 (5.53)

Imagine that 
�
k  propagates in the Z direction and consider molecule i to be aligned with Z. The phase factor 

exp( )ik Rij

� �
⋅  oscillates rapidly and tends to cancel out contributions to the sum over j unless 

�
Rij is orthogonal to 

�
k . 

In directions perpendicular to the alignment of μi, about half of the neighboring dipoles, on the average, are 
aligned parallel and the other half antiparallel to the dipole moment of i. The result is that 〈|MZ|2〉 is reduced 
from the value expected in the absence of order, by an amount dependent on the static dielectric constant. Since 

Figure 5.5 Relative alignment of dipoles in a polar liquid.
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individual molecules do not need to rotate a full 180° in order to change the direction of the longitudinal polar-
ization, the longitudinal relaxation time τL is actually less than the single-molecule rotational relaxation time.

To consider the transverse components 〈|MX|2〉 and 〈|MY|2〉, imagine that the wave vector is perpendicular 
to the central dipole. Now the main contributions to the sum over j will be from molecules in directions 
parallel to μi. These dipoles tend to align parallel to the central dipole, enhancing the values of 〈|MX|2〉 and 
〈|MY|2〉 compared to 〈|MZ|2〉. This reinforcement of neighboring dipoles results in a transverse relaxation 
time which is greater than that of a single molecule. The ratio of the transverse to longitudinal relaxation 
times is given by

 τ
τ

ε
ε

T

L

=
∞

0  (5.54)

It is the long-range nature of the dipolar interactions that causes these two relaxation times to differ. In polar 
liquids, ε0 > ε∞, so the transverse relaxation time exceeds the longitudinal relaxation time. The magnitudes of 
τL and τD are important in theories of solvent effects on electron transfer and other reactions.

5.6.2 far-infrared absorption

In contrast to the plateau predicted by the Debye theory, the far-IR spectrum of a polar liquid consists of a 
broad and strong absorption with a peak frequency in the vicinity of about 50 cm−1. Early literature reports of 
this type of spectrum, once referred to as the Poley absorption, attempted to assign the peak absorption fre-
quency as if it were a discrete vibration, which it is not. The word libration is often used to refer to a hindered 
harmonic motion of the permanent dipole moment. We will use the time-dependent view of spectroscopy 
to take a more complete view of the basis for far-IR spectra of liquids. While it is mostly the reorientational 
motion of permanent dipoles which contributes to the response, the dipoles induced by collisions and by 
the fields of neighboring molecules are also represented. This greatly complicates the analysis of far-IR line-
shapes. For a review that encompasses both dielectric phenomena and far-IR spectra, see [5].

The molar absorptivity εM is related to the intensity I(ω) as follows:

 ε ω ω ω ωω
M

k Tn e IB( ) ( ) ( ) ( )/∝ − −1 �  (5.55)

The factor [1 − exp(−ħω/kBT)] has the effect of subtracting the stimulated emission rate from the absorp-
tion rate to get the net intensity of light absorbed by the sample. In far-IR spectroscopy at room tempera-
ture, where the frequency �ν  of the source is less than 100 cm−1 and kBT/hc ≈ 200 cm−1, this term plays a role 
in deciding the frequency at which the measured absorption is a maximum. Also note that the expected 
dispersion in the refractive index, n(ω), becomes important whenever the absorption is quite strong. In this 
case, the frequency dependence of n contributes to the observed band shape and should be measured inde-
pendently in order to extract the intensity. It is this intensity that is directly related to the time-correlation 
function:

 I M M t e dti tω
π

ω( ) = ⋅ ( ) −

−∞

∞

∫1

2

� �
 (5.56)

The variable 
�

M  is the collective dipole moment of the sample, defined in Equation 5.51. Neglecting the 
k-dependence of this variable, the correlation function appropriate to the far-IR spectrum is
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The summations in Equation 5.57 run over all molecules in the irradiated volume, and the second line follows 
from the equivalence of all molecules in a fluid sample. The 

� �
μ μ1 2⋅ ( )t   term involves pairs of molecules, and 
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while it complicates the analysis of far-IR spectra, it indicates the importance of intermolecular interactions 
in the interpretation of such spectra.

Absorption is frequently expressed in terms of the absorption coefficient γ (ω), introduced in Chapter 3,

 γ ω ωε ω
ω

( )
( )

( )
= ′′r

n c
 (5.58)

It can be checked that the units on γ are cm−1. To avoid confusion with wavenumber units, however, the power 
absorption coefficient is usually reported in neper/cm, where the word “neper” connotes a logarithmic scale anal-
ogous to the decibel scale but referred to the natural rather than the common logarithm. (Many references rep-
resent the absorption coefficient of Equation 5.58 by the symbol α, but we have reserved that Greek letter for the 
polarizability.) Figure 5.6 shows the far-IR absorption spectrum of CH3CN in the neat liquid and in two solutions 
with CCl4. The corresponding TCFs are also shown. The bulk of the spectral response in these data is due to the 
reorientation of permanent dipole moments. Note that, compared to the relaxation in neat acetonitrile, in more 
concentrated solution C(t) decays more slowly. In contrast, the relaxation in dilute solution is more rapid than in 
the neat liquid. It is interesting to speculate on the microscopic properties that could be responsible for this behav-
ior. The importance of the pair terms in Equation 5.57 should increase with concentration of the polar molecule.

Equation 5.57 assumes that the intensity of far-IR absorption is due only to permanent dipole moments. 
The fact that weak far-IR absorption is observed in nonpolar liquids indicates that induced moments lead 
to rotational spectra as well. These moments may result from the internal field due to the surrounding mol-
ecules and from collisional impacts which distort the molecular framework. Similarly, the weak depolarized 
Rayleigh scattering of spherical molecules such as CCl4 is a consequence of interactions that distort the polar-
izability. The observation of nominally forbidden spectra suggests that allowed rotational spectra depend 
on these interaction-induced effects as well. If the total correlation function could be expressed as a sum 
of the allowed and forbidden parts, then the total intensity would also be a sum of these two contributions. 
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tetrachloride. (Reprinted from Spectroscopy and Relaxation of Molecular Liquids, D. Steele and J. Yarwood, 
eds, Elsevier Science Publishers, Amsterdam, 1991, with permission.)
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Unfortunately, cross correlations of permanent and induced quantities prevent the spectrum from being con-
sidered to be the sum  of pure rotational and interaction-induced components. For more insight into this 
problem, see [5–7].

Consider the effect of the intermolecular potential that hinders reorientational motion. The torque is defined 
as the angular derivative of the potential, ÔV , and we would like to compare the mean square torque < >( )OV� 2  to 
the rotational kinetic energy, on the order of kBT. In the low-torque or high-temperature limit, < > <<( ) /OV k TB

� 2 1 2 , 
free rotation is expected. Even in the presence of torques, molecules rotate freely for short times, before collisions 
are suffered. This leads to a Gaussian correlation function as t → 0, CFIR(t) ∝ exp(−kBTt2/2Iz), and a lineshape 
which ought to be Gaussian in the wings. In the high-torque limit, < > >>( ) /OV k TB

� 2 1 2 , then perhaps one would 
observe a librational transition whose frequency depends on the mean square torque and the inertia about an 
axis perpendicular to the dipole direction. For such a librational frequency to show up as a discrete feature, the 
relaxation rate of the torque would have to be sufficiently slow compared to the librational frequency, a condition 
which does not generally hold. Thus the overall far-IR lineshape is a function of the torque, the torque relaxation 
rate, and the inertia for dipolar reorientation. Add to this the complication of pair dynamics, the consequences of 
collisions and induced moments, and the analysis of far-IR absorption can be a formidable problem. Computer 
simulation has been advantageously applied to the interpretation of far-IR spectra of liquids.

Recent developments in pulsed sources of terahertz radiation (1 THz = 1012 s−1) have made the far-IR region 
of the spectrum more accessible than previously. The typical frequency range of these sources, from about 
3–300 cm−1, is indeed that of the far-IR, but the term THz connotes radiation associated with coherent sub-
picosecond pulses generated by accelerating electrons or nonlinear mixing crystals. With pulse durations 
of only one cycle of radiation or less, the frequency range of the pulse spectrum is large. The technique is 
capable of probing the low-frequency motions of liquids as well as those of molecular solids and biological 
molecules, and the excitations of charge carriers in semiconductors. In contrast to ordinary incoherent sources 
of light, both the amplitude and the phase of the transmitted signal can be detected in a THz experiment. On 
Fourier transformation of this signal, both the real and imaginary parts of the dielectric function are obtained. 
Figure 5.7 presents an example of the determination of the absorption coefficient γ and real part of the refrac-
tive index n for some neat dipolar liquids [16]. Using molecular dynamics simulations, the authors determined 
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that the absorption spectrum, with a peak at about 60–90 cm–1, arises mostly from librational motion of the 
molecules, with some contributions from translational motions which influence induced dipole moments. 

5.6.3 depolarized rayleigh sCattering

Depolarized light scattering and far-infrared absorption of liquids are related to one another just as rotational 
Raman and microwave absorption of gases, to be discussed in Chapter 8, are connected. The combined frequency 
range of dielectric relaxation and far-IR absorption ( �ν  from less than 1 cm−1 to about 100 cm−1) is the same as the 
range of frequency shifts observed in depolarized Rayleigh scattering. Thus these experiments explore similar 
dynamics. In the case of low-frequency Rayleigh scattering by liquids, as in dielectric relaxation, we must account 
for the fact that the response of the system is collective. The collective polarizability should be expressed as

 A t t ik R tj

j

j( ) ( )exp[ ( )]= ⋅∑αρσ

� �
 (5.59)

where the sum is over all the molecules in the scattering volume, at positions 
�
Rj, and αρσ

j  is the polarizability 
of molecule j projected on to the laboratory directions, ρ and σ, of the polarization of the incident and scat-
tered light. The scattering vector 

�
k  is the difference between the wave vectors for the incident and scattered 

light. Its magnitude is given by

 k k k
n

s= − ≈
� �

0
0

4

2

π
λ

ϕ
sin  (5.60)

The scattering angle is ϕ, n is the refractive index, and the assumption λ0 ≈ λs has been made. The wavelength 
of the incident light is λ0 and that of the scattered light is λs, but for Rayleigh scattering, more so than for 
Raman scattering, the wavelength shift is very small.

The correlation function whose time and space Fourier transform determines the depolarized Rayleigh 
scattering (DRS) intensity is

 C t t eXZ
i

XZ
j ik R t R

i j

j i

DRS ( ) =
− ⋅ − ∑ α α( ) ( )

( ) ( )

,

0
0

� � �

 (5.61)

where the incident radiation is assumed to be polarized in the Z direction, and the scattered light is 
detected with X polarization. The sum over i and j includes both one- and two-molecule terms, and the 
vector 

�
R tj ( ) locates the position of molecule j at time t. Equation 5.61 reveals the role of translational 

motion and positional correlations in Rayleigh scattering. The influence of reorientational motion may 
not be obvious from Equation 5.61, but it is implicit in the projection of the molecule frame polarizability 
onto the lab frame directions Z and X, as will be shown in Chapter 8. The translational motion, which 
contributes through the exponential factor in Equation 5.61, is much slower than rotational motion. The 
scattered light in a Rayleigh scattering experiment is shifted in frequency from the incident light by only 
fractions of a wavenumber. This requires interferometric techniques and theoretical approaches which we 
will not cover (see [3]).

The far wings of depolarized Rayleigh scattering have been observed to decay exponentially with  frequency, 
an effect which has been attributed to the influence of collisions at short timescales. Attempts to subtract this 
collisional contribution have had some success, but are dependent on the assumption that the allowed and 
collision-induced spectra are additive. Figure 5.8 shows an experimentally determined correlation function 
C2(t) obtained from the depolarized Rayleigh spectrum of benzene, taken from [8]. At short times, less than 
the mean time between collisions, the correlation function resembles that of a free rotor. The exponential 
behavior at long times is characteristic of a diffusional process. 

Neglecting pair correlations for the moment, and other complications such as collision-induced effects, 
we can compare the correlation functions relevant to far-IR (FIR) and depolarized Rayleigh scattering (DRS) 
by axially symmetric molecules:
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 l C t P t= ∝1 0
2

1FIR( ) ( ) (cos )μ θ  (5.62)

 l C t Pzz xx t= ∝ −2 2
2DRS( ) ( ) (cos )α α θ   (5.63)

The Legendre polynomial Pl depends on the angle through which the molecule has rotated at time t. Thus 
both types of spectra reveal rotational dynamics and it should be possible to compare them. Unfortunately, 
collisional contributions and interaction-induced effects perturb DRS and FIR spectra in different ways, 
complicating the comparison of data from the two experiments. In the absence of these complications, the 
intensity can be expressed as

 I dte C tl
i t

lω
π

ω( ) = ( )−

−∞

∞

∫1

2  (5.64)

where l = 1, 2 corresponds to the intensity and correlation function for far-IR absorption and depolar-
ized Rayleigh scattering, respectively. In Rayleigh scattering experiments, this intensity is measured 
directly; that is, the scattering cross-section is directly proportional to I2(ω). The far-IR absorptivity, 
εFIR(ω), on the other hand, is roughly proportional to ω[1 − exp(−ħω/kBT)]I1(ω), neglecting the disper-
sion in the refractive index. The frequency dependent prefactor can cause a maximum in εFIR(ω) when 
none appears in the intensity, which again points out the error of assigning the peak frequency in a 
far-IR spectrum to a discrete vibration. For the general purpose of comparing far-IR and DRS data, the 
representation R(ω) ≡ ω [1 − exp(−ħω/kBT)]I2(ω) is sometimes used. This amounts to subtracting the 
anti-Stokes from the Stokes scattering and multiplying by the frequency to get something comparable 
to the net energy absorbed. The result is a maximum in R(ω), which has been observed for a number of 
liquids to be equal to or somewhat greater than the maximum observed in the far-IR spectrum. A simple 
theory [9] has been presented showing that the peak in R(ω) equals that in εFIR(ω) for high-torque liq-
uids. As the torque decreases, the ratio of the maximum in R(ω) to that in the far-IR spectrum increases, 
approaching a value of two for freely rotating molecules.

The discussion so far has assumed axially symmetric molecules, where the dipole direction coin-
cides with the parallel component of the polarizability and the two perpendicular components are equal. 
Anisotropic molecules are more difficult to treat. The central part of the DRS lineshape may consist of 
up to five superimposed Lorentzian functions [3]. Since even spherical molecules, such as CCl4, exhibit 
some degree of depolarized light scattering, interaction-induced effects are also important. Such effects 
contribute strongly to the spectral wings of “allowed” depolarized Rayleigh scattering. In spite of these 
drawbacks, light scattering spectroscopy provides a useful way to determine the rotational dynamics of 
small molecules in liquids.
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5.7 VIBRATION-ROTATION SPECTRA

In the case of infrared or Raman scattering, the lineshape is influenced by both rotational and vibrational 
dynamics. The latter will be discussed in more detail in Chapter 12, after the basic principles of vibrational 
spectra have been considered. Our goal here is to consider how to extract rotational information from liquid 
phase vibrational spectra. Vibrational dynamics include energy relaxation (decay of the population of the 
excited vibrational state) as well as fluctuations in the phase of the vibrational motion (dephasing). Solvent 
perturbations to the vibrational energy also appear in the lineshape, and in the limit that these perturbations 
are long lived compared to the overall vibrational relaxation, the resulting effect on the lineshape is referred 
to as inhomogeneous broadening. This language invokes a picture in which the spectroscopic transition is 
considered to occur instantaneously, capturing the active molecules in an ensemble of solution environments 
all having slightly different perturbations to the vibrational frequency. In truth, the limit of inhomogeneous 
broadening is achieved when the rate of solvent-induced frequency fluctuations is slow compared to their 
amplitude. In the opposite limit of fast fluctuations, the effect is referred to as motional narrowing. These 
limits and the middle ground between them will be considered in Chapter 6.

Just as the isotropic Rayleigh scattering depends on translational but not rotational dynamics, the iso-
tropic Raman spectrum reflects vibrational dynamics and is independent of rotation. The lineshapes of the 
infrared and depolarized Raman spectra depend on both vibrational and rotational motion. The combina-
tion of infrared and Raman spectroscopy provides a powerful approach for exploring these dynamics. In the 
case of an axially symmetric molecule with a permanent dipole moment, the totally symmetric vibration is 
allowed in both Raman and infrared, as will be shown in Chapter 9.

The operator responsible for IR spectroscopy is 
� �
µ µ= ∂ ∂( ) ⋅/ Q Q

0
, the dipole moment derivative times the 

normal coordinate. The form of the normal coordinates will be discussed in Chapter 10. In the case of a 
simple bond stretch, we can view Q as the displacement of the bond from its equilibrium position. We will 
write 

�
µ  as ′μ ûQ , where μ′ is the magnitude and û  the direction of ∂ ∂( )�

µ/ Q
0
. The square of μ′ determines 

the integrated intensity of the band, and we can drop it for now as we consider the normalized intensity. The 
standard assumption is to consider the vibrational and reorientational dynamics to be independent, so that 
the total infrared TCF factors into rotational and vibrational parts:

 C t u u t QQ tIR ( ) = ⋅ ( ) ( )ˆ ˆ  (5.65)

and similarly for the anisotropic Raman scattering:

 C t P t QQ tanis u u( ) = ⋅ ( )[ ] ( )2 ˆ ˆ  (5.66)

The angle brackets in Equations 5.65 and 5.66 represent separate averages over the rotational and vibrational 
degrees of freedom, which are considered to be independent. The expression given here for Canis(t) applies to 
the special case of a totally symmetric Raman band of a molecule with axially symmetric polarizability. In 
both Equations 5.65 and 5.66, û  is a unit vector along the symmetry axis of the molecule. More complicated 
correlation functions result for lower symmetry molecules and nontotally symmetric vibrations. Part of the 
time-dependence of the normal coordinate is that of the periodic vibrational motion. Let the peak vibrational 
frequency be called ω0; then the phase factor exp(iω0t) in Q(t) can be combined with exp(−iωt) in the Fourier 
transform of C(t). The net result is that the vibration–rotation correlation function can be obtained by trans-
forming the measured spectrum I(ω − ω0), where the peak frequency is considered to be the origin. Then 
I i t C t dtω ω ω ω−( ) = − −( )  ( )∫0 0exp  and the vibrational part of C(t) depends on fluctuations in the mean 
frequency and population relaxation.

The isotropic Raman spectrum depends on the mean polarizability, which is independent of orientation. Thus

 C t QQ tiso ( ) = ( )  (5.67)
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As will be shown in Chapter 8, the anisotropic and isotropic intensities are obtained from the polarized and 
depolarized spectra as follows:

 I I Ipol iso anis( ) ( ) ( )ω ω ω= + 4

3
 (5.68)

 I Idep anis( ) ( )ω ω=  (5.69)

Thus the measured depolarized spectrum depends only on the anisotropy of the polarizability, while the 
polarized spectrum depends on both the isotropic and anisotropic parts.

Equations 5.66 and 5.67 suggest that the vibrational and rotational correlation functions may be separated 
from one another by measuring the depolarized and polarized Raman spectra. This separation is possible 
for molecules possessing at least a threefold rotational axis. However, when the orientational and vibrational 
coordinates are strongly correlated, as they are in the case of stretching of very polar bonds, the factorization 
of the TCF into rotational and vibrational parts may not be valid.

Figure 5.9 shows the experimentally determined correlation functions obtained from the isotropic and 
anisotropic Raman spectra of the C–D stretch of CDCl3. The rotational correlation function P u u t2 ˆ · ˆ ( )   
was found by dividing the anisotropic by the isotropic TCF. The faster decay of Canis(t) compared to Ciso(t) 
reflects the additional contribution of rotational motion to the former. This translates into a broader Raman 
peak in the depolarized spectrum compared to the polarized spectrum. 

One easily obtained measure of the relaxation rate is the area under the normalized TCF. The relax-
ation time τc is defined by C t dt∫ ( ) . For the data given in Figure 5.9, the rotational relaxation time is 
about 1.2 ps.

The correlation functions of Equations 5.65, 5.66, and 5.67 assume that only single-particle correla-
tions contribute to the spectrum. This is a valid assumption for vibrational spectra in liquids. For lower 
frequency spectra, however, such as depolarized Rayleigh scattering and far-IR absorption, the collective 
nature of the response requires that the correlation function include two-particle terms as in Equation 5.57. 
The result is that the reorientational relaxation time depends on the experiment used to determine it. 
In neat liquids, longer correlation times τRay are found using depolarized Rayleigh scattering, compared to 
those from depolarized Raman, τRam. The reason is that the collective nature of the response in the Rayleigh 
scattering experiment means that longer times are required for the memory of the initial orientation of the 
particles to be lost. It has been experimentally verified that the values of τRay approach the reorientational 
times τRam upon dilution. Nuclear magnetic resonance and fluorescence depolarization can also be used 
to determine reorientational relaxation times. In these experiments, the single-particle relaxation time is 
determined.
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Figure 5.9 Time-correlation functions obtained from the polarized and depolarized Raman spectra of the C–D 
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5.8 SPECTRAL MOMENTS

If the complete lineshape I(ω) could be determined at all frequencies, the dynamics at all times could be deter-
mined, and vice versa. Alternatively, we could take the lineshape and decompose it into moments Mn as follows:

 M

I d

I d

I dn

n
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∞
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∞
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∫
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ω ω ω
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ω ω ω

( )
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( )�
 (5.70)

where I�( )ω  is the intensity normalized to unit area. M0 is just unity, and M1 vanishes for symmetric bands. 
Thus the lowest interesting moment is the second moment, which conveys information about the width of the 
band. Notice that the computation of spectral moments according to Equation 5.70 is insensitive to scaling 
factors such as the square of the dipole moment.

As you will show in Problem 4, the nth spectral moment is related to the nth time derivative of the TCF. 
This can be derived by beginning with the equation C t e I di t( ) ( )= ∫−∞

∞ ω ω ω  and expanding eiωt in a Taylor series. 
Similarly, the correlation function can also be expressed as a Taylor series: C t C dC dt t( ) ( ) ( / )= + +0 0 �. 
Equating like powers of time in the two series leads to the following expression for the nth spectral moment:

 M i
d

dt
A A tn

n
n

n t
= − ⋅

=
( ) ( )

0
 (5.71)

Using the tools presented in the previous chapter (see Equation 4.10), the quantum mechanical equivalent of 
this expression is

 M A H H H An n= 

















1

�
ˆ ˆ , ˆ ,... ˆ , ˆ ...  (5.72)

where the nested commutator is repeated n times. For classical systems, this commutator is replaced by 
Poisson brackets (see [10]). One consequence of this result is that odd moments vanish for even (classical) 
correlation functions, resulting in spectra which are symmetric about the peak frequency. Thus, as shown 
earlier, the asymmetry of I(ω) is a quantum mechanical effect. For frequencies such that ħω is small compared 
to kBT, it can be shown that M2n−1 ≈ (ħ/2kBT)M2n.

The low-order moments can be evaluated for simple systems with the help of commutator algebra and 
statistical mechanics [11]. The rotational second and fourth moments for absorption (microwave or infrared) 
have been found to be
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For depolarized Raman or Rayleigh scattering, they are
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In either absorption or scattering, the second moment is calculated to be independent of intermolecular inter-
actions (since the intermolecular potential V commutes with any orientation variable). Iz is the moment of 
inertia for rotation about an axis perpendicular to the symmetry axis, M2 is thus a function of the mean rota-
tional velocity.* The fourth moments depend on interactions through the mean-square torque term < >( )OV� 2 .

 The above equations for M2 and M4 were obtained by considering the rotational motion of permanent 
dipole moments (in the case of absorption) or fixed polarizability (in the case of scattering). In numerous 
experimental investigations [6], the second moments have been found to exceed those calculated using these 
expressions. This additional line width is often attributed to the effects of collisions or internal fields, which 
perturb the dipole moment and polarizability on a short time scale and thus affect the spectral wings, increas-
ing M2. In this case the second and fourth moments cannot be used to accurately determine the mean-square 
torque. From the Raman data used to calculate the TCFs in Figure 5.9, the rotational second moment of 
CDCl3 was found to be 264 cm−2, compared to a theoretical value of 268 cm−2.

Equations 5.73 to 5.76 assume that the intensity is normalized to one, such that M0 = 1. In the case where 
the correlations of different molecules become important, we should write

 C t P u u t P u u tl l i i

i

l i j

i j

( ) = ( )( ) + ( )( )∑ ∑
≠

ˆ · ˆ ˆ · ˆ  (5.77)

The zeroth moment is equal to the correlation function at time zero: M0 = Cl(0). Thus static orientational order 
from the second term in Equation 5.77 can cause M0 to differ from unity:

 M P u ul i j

i j

0 1= + ( )
≠
∑ ˆ · ˆ  (5.78)

When l = 1, Equation 5.78 is equivalent to the Kirkwood–g factor presented in Chapter 3 (Equation 3.94). 
In principle, integrated far-IR intensities should permit the determination of gK. Two extenuating circum-
stances, not necessarily independent, make this determination difficult: the uncertain correction for the local 
field and the contribution of interaction-induced effects to the spectrum.

5.9 SUMMARY

In this chapter, we have shown that the intensity as a function of frequency is the Fourier transform of an 
appropriate time-correlation function. The faster the decay of the relevant correlation function, the broader 
is the frequency spectrum. Using the fluctuation–dissipation theorem, it was shown that spatial correlations 
in the molecular dynamics result in response functions which depend on wave vector. These correlations are 
important in experiments such as dielectric relaxation and Rayleigh scattering, which depend on collective 
molecular dynamics. Higher-frequency spectra, such as infrared absorption and Raman scattering, are not 
sensitive to collective motion and thus do not depend on wave vector. The importance of rotational dynamics 
in the lineshapes of both pure rotation and vibration–rotation spectra has been stressed. For totally symmet-
ric vibrations of axially symmetric molecules, measurement of both the polarized and depolarized Raman 
spectra allows vibrational and rotational relaxation to be separated.

It is also possible to measure the time-dependent response directly, and the inverse Fourier transform of 
the time-dependent signal gives the frequency spectrum. Theory and experiment have explored rotational and 
translational dynamics in liquids and solutions on femtosecond timescales [12,13]. Time-resolved experimental 
techniques such as transient birefringence and time-resolved fluorescence reveal solvent relaxation dynamics 
comparable to that obtained from frequency-domain experiments. The combined use of complementary time-
domain and frequency-domain experiments will no doubt continue to shed light on molecular dynamics.

* According to the equipartition theorem, the mean kinetic energy (1/2)I z Ω2   for each rotational degree of freedom is (1/2)k TB .
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PROBLEMS
 1. Derive Equations 5.41 and 5.42 for the spectra of a classical free rotor, and plot them using reduced 

units: ω* = (I/kBT)1/2ω. Do not worry about finding a closed-form expression for the TCF of 
Equation 5.40; you can take advantage of the integral representation of the delta function.

 2. Prove that the free-rotor correlation function is Gaussian at short times.
 3. Show that the inverse Fourier transform of ω 2I(ω) gives the correlation function � �A A t( ) ( )0 ⋅ . You can 

use the fact that an equilibrium average is independent of the origin of time: 〈A(0) · A(t)〉 = 〈A(−t) · A(0)〉.
 4. Derive the expression given in Equation 5.71 for the nth spectral moment.
 5. Verify that the imaginary part of the susceptibility χ ′′ given by Equation 5.36 is equivalent to the 

expression of Equation 5.15 in the long-wavelength limit.
 6. Graph a Gaussian and Lorentzian function with the same width at half the maximum intensity and 

comment on the essential difference between the two. What is the second moment in each case?
 7. Prove that M k T Mn B n2 1 22− ≈ ( )�  for ħω small compared to kBT.
 8. The inertia of a diatomic molecule is Iz = μR2. Calculate the rotational second moment of CO in cm−2, 

taking the bond distance to be 1.13 Å.
 9. Show that the Debye model for the imaginary part of the permittivity, Equation 5.49, leads to a 

Lorentzian lineshape for the intensity I(ω).
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6

Experimental considerations: Absorption, 
emission, and scattering

6.1 INTRODUCTION

The previous chapters have explored the molecular and bulk properties that are responsible for the dielectric 
and optical behavior of matter. For example, the real and imaginary parts of the complex refractive index 
were found to correspond to refraction and absorption/emission, respectively. We have also examined the 
quantum mechanical treatment of the radiation–matter interaction and found theoretical expressions for the 
transition dipole moment (for absorption and emission) and transition polarizability (for light scattering). 
In this chapter, we want to understand the connection between measured spectra and quantum mechanical 
properties. It will be shown how to extract properties such as transition dipole moments and excited-state 
radiative lifetimes from experiment. Of central importance to the discussions of this chapter is the idea that 
the rates of spectroscopic transitions decide the intensity of the spectral response.

We begin with a phenomenological treatment of absorption and emission that was developed by Einstein, 
in which the relative rates of stimulated and spontaneous emission are derived. The resulting expressions are 
fundamental to the understanding of laser emission. We then examine the measurement of absorption and fluo-
rescence spectra to obtain quantum mechanical transition moments and radiative lifetimes. The experimental 
considerations relevant to light scattering are discussed, where the polarizations of the incident and scattered 
light are of interest. Finally, we briefly consider some approaches to interpreting the lineshapes of spectra.

6.2  EINSTEIN A AND B COEFFICIENTS FOR 
ABSORPTION AND EMISSION

As we have seen, the classical treatment of the radiation field accounts only for the effects of absorption and 
stimulated emission, which are essentially inverses of one another. A quantum mechanical treatment intro-
duces the additional concept of spontaneous emission, the emission of light in the absence of a radiation 
field. Since absorption is always stimulated by the incident radiation, there is no absorption counterpart to 
spontaneous emission. In this section, we follow Einstein’s treatment and consider these three spectroscopic 
events to be experimentally observable transitions for which we can write rate equations. It is convenient to 
consider the radiation in which the sample is bathed to be that of a blackbody absorber–emitter. Although 
the blackbody is an ideal (sometimes referred to as an ideal gas of photons), the use of a convenient expression 
for the energy density ρ(ν) will not restrict the applicability of the general rate expressions obtained. The rate 
constants for absorption, spontaneous and stimulated emission are molecular properties, so the relationships 
among them do not depend on the use of the blackbody model. The rates of both absorption and stimulated 
emission are proportional to the energy per unit volume per unit frequency interval: ρ(ν) = du/dν.

Figure 6.1 shows a simple two-state diagram which represents the three possible processes: absorption, stimu-
lated emission, and spontaneous emission. The phenomenological rate constants for these events are called B12, B21, 
and A21, respectively. The rate of transitions out of a state is proportional to the number of molecules in that state. 
Designating the populations of the lower and upper levels by N1 and N2, and letting ρ(ν) represent the energy density 
of the radiation, we have the following expressions for the rates of upward (W12) and downward (W21) transitions:

 W N B12 1 12= ( )ρ ν  (6.1)
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 W N B N A21 2 21 2 21= ( ) +ρ ν  (6.2)

The energy density is that at the frequency for which hν = E2 − E1. Note that in the absence of radiation, 
Equation 6.2 predicts a first-order decay of the excited state populations. That is, −dN2/dt = A21N2 and 
N2(t) = N2(0)exp(−A21t). This leads to the important conclusion that the radiative lifetime is the inverse 
of the A coefficient: 

 τ rad
A

=
1

21

 (6.3)

Equation 6.3 assumes that the upper state can only decay to one lower state. If there is more than one down-
ward transition, the radiative rate is the sum of the rates for all downward transitions (see Equation 4.78). We 
show here that A21 is proportional to the square of the transition dipole moment.

In linear spectroscopy experiments, the Boltzmann populations of the two states are unperturbed: 
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We have allowed for the possibility of degeneracy; gi is the number of states at the energy level Ei. To maintain 
equilibrium, the rates of upward and downward transitions must be balanced: 

 N B N B N A1 12 2 21 2 21ρ ν ρ ν( ) = ( ) +  (6.6)

We now assume that ρ(ν) is that of a blackbody. As shown in Chapter 2, 
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Equation 6.7 was obtained from Equation 2.75 by replacing c by the speed of light in the medium, c/n, where 
n is the real part of the refractive index. Solving Equation 6.6 for the energy density and using Boltzmann’s 
law gives 
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Figure 6.1 Einstein coefficients for absorption and emission.
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Equations 6.8 and 6.7 are in agreement if 

 g B g B1 12 2 21=  (6.9)

and 

 A

B

h n

c
21

21

3 3

3

8
=

π ν  (6.10)

Equation 6.10 has the important consequence that the ratio of the rate constants for spontaneous to stimu-
lated emission is a strong function of frequency. As the frequency increases, spontaneous emission competes 
more and more effectively with stimulated emission. It is not really fair to compare A21 and B21, however, as 
they are not dimensionally equivalent. A better comparison is of the rates A21 and B21ρ(ν), the ratio of which 
is A B e h k TB

21 21 1/ ρ ν ν( ) /= − , in the case where the radiation comes from a blackbody. It is clear from this ratio 
that when hν >> kBT the rate of spontaneous emission greatly exceeds that of stimulated emission. Thus 
in systems at equilibrium at room temperature, the spontaneous emission of light at optical frequencies is 
greatly favored over stimulated emission. But as the frequency decreases into the far-infrared (far-IR) and 
microwave regions of the spectrum, the process of stimulated emission becomes more favorable. The proper-
ties of the two types of radiation are quite different. In the case of stimulated emission, the stimulated photon 
has the same properties as the incident radiation, resulting in emission which is collimated and coherent. 
Spontaneous emission, such as ordinary fluorescence, is emitted in all directions with random phase.

In attempting to achieve laser emission at frequencies for which hν >> kBT, one needs to get around the 
constraints of equilibrium that were invoked in the preceding discussion. Sustainable laser emission requires 
an inverted excited state population, a nonequilibrium situation for which N2 > N1. Even in this case, the 
inherent rate coefficients A21 and B21 still obey Equation 6.10, and one can appreciate why the first sustained 
stimulated emission was achieved in the microwave region of the spectrum. This first “laser” was actually a 
“maser,” an acronym which stands for “microwave amplification by stimulated emission of radiation.” In the 
next section we will see how the B21 coefficient can lead to amplification of the incident radiation, and how the 
Einstein coefficients may be found from experiment.

6.3 ABSORPTION AND STIMULATED EMISSION

In this section, we consider the attenuation or amplification of radiation as it traverses a sample. These two 
processes are represented by the diagrams in Figure 6.2, where the amplitude of the electromagnetic field 
either increases or decreases on passing through the sample. Since spontaneous emission is emitted in all 

absorption - attenuation of light

stimulated emission - amplification of light

sample

sample

Figure 6.2 Attenuation and amplification of light.
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directions, we can neglect the small contribution of spontaneous emission in the same direction as the beam. 
The processes of absorption and stimulated emission, respectively, subtract from and add to the energy of 
the radiation field. In Chapter 3, it was shown that the imaginary component of the relative permittivity is 
associated with absorption and emission. The susceptibility χe(ω) is equal to εr(ω) − 1. It follows that ′′χ ωe ( ) 
is equal to ′′ε ωr ( ). The transmitted intensity is I = I0e−γx, where x is the path length, I0 is the incident intensity, 
and γ is the power absorption coefficient: γ ωχ= ′′e cn/ . Recall that n is the real part of the refractive index. As 
will now be shown, this “absorption coefficient” takes on a negative value when the populations are inverted. 
The differential form of Beer’s law is 

 dI I dx= −γ  (6.11)

Positive values of γ lead to attenuation and negative values lead to amplification of the light intensity. dI/dx = −γ I 
can be equated to the net power created or dissipated per unit volume, 〈P〉/V. If N2 and N1 are the number of 
molecules per unit volume in the upper and lower states, then the Einstein rate picture yields 

 
P

V

dI

dx
N N w h= = −( )2 1 12( )ν ν  (6.12)

The intensity I is the power per unit area, and dI/dx is the change in power per unit volume. To see this, 
imagine carving out a section of the sample having a unit cross-sectional area A = 1 cm2 perpendicular to 
the direction of propagation of the light, and account for the change in energy within the volume Adx = dx. 
If N is the number of molecules per cm3, then Ndx is the number of molecules in that volume. Equation 6.12 
expresses the net power dissipation per unit volume in terms of the difference in the number of molecules N2 
in the upper state, which add to the power via stimulated emission, minus the number of molecules N1 in the 
lower state, which subtract power through absorption. Equation 6.12 contains the intrinsic rate w12(ν) of tran-
sitions between states 1 and 2, which is equal to B12ρ(ν). The lowercase symbol w12 is the transition rate per 
molecule, and W12 = N1w12 is the total transition rate. The two states are assumed here to be nondegenerate, 
so that B12 = B21. In the previous chapter, we found the transition rate w12 in a form convenient for absorption 
spectroscopy, shown in Equation 4.43. We reproduce that below after replacing the permittivity of free space, 
ε0, by that in the medium, εr ε0 = n2 ε0: 
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In this correction for the permittivity of the medium, we are neglecting the dispersion in the refractive index, 
which is justified when the absorbing molecule is part of a dilute solution or other matrix which is transparent 
in the region where the molecule absorbs. Thus in typical applications, n is the refractive index of the solvent. 
By virtue of Equation 6.10, the transition rate is also given by 
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The coefficient of spontaneous emission has been replaced by the reciprocal of the radiative lifetime. The lack 
of subscripts on ν foreshadows the need to integrate over a range of transition frequencies. The energy density 
ρ(ν) is related to the intensity I and the energy per unit volume u by u d nI c= =∫ ρ ν ν( ) / . There is in general 
some characteristic lineshape function g(ν) that describes a transition, taking into account all the broadening 
mechanisms including the minimum lifetime broadening, such that g d∫ ( ) =ν ν 1. Thus we can replace ρ(ν) 
by nI(ν)g(ν)/c. Then the transition rate is 
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and the rate of change in power is 
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Equation 6.16 emphasizes that the relative populations decide whether light is attenuated (if N2 < N1) or ampli-
fied (if N2 > N1). It is also clear that the rate of either process is slowed by increasing the radiative lifetime. In 
attempting to achieve amplification, a fast rate of radiative decay is desired in that it increases 〈P〉/V, but such 
an increase in rate makes achieving a population inversion more difficult. We will examine some examples 
of laser systems in the next chapter, where it will be shown how this population inversion may be created.

Equation 6.16 can be compared to Equation 6.11, and using γ ωχ= ′′e cn/  the imaginary part of the suscep-
tibility is obtained: 
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Equation 6.17 was derived taking the degeneracies of the two states to be equal. If this is not the case, one 
should replace N1 by N1g2/g1.

6.4 ELECTRONIC ABSORPTION AND EMISSION SPECTROSCOPY

Although many principles presented in this section are quite general, we now focus on applications in  electronic 
spectroscopy. Thus it is necessary to summarize a few important features of this topic that will be presented in 
more detail in later chapters, particularly Chapter 11. Suppose that the ground electronic state of a molecule is a 
singlet state; that is, all electrons are paired as shown in Figure 6.3. This is a common situation, and the ground 
state of any closed-shell molecule (in which all electrons are paired) is called the S0 (“singlet-zero”) state. There 
are two ways to generate an excited electronic state by promoting an electron from one of the occupied to one of 
the virtual orbitals. The first way preserves the pairing of spins and generates a singlet excited state, called S1 if 
it is the lowest excited state. Alternatively, if the electrons in the two half-occupied orbitals have the same spin, 
a triplet state (T1) is generated. The triplet state is generally lower in energy than the singlet state arising from 
the same occupied orbitals, due to lower interelectronic repulsion in the triplet state. Transitions between the 
T1 and S0 states are forbidden by spin but become allowed by virtue of spin–orbit coupling, to be discussed in 
the next chapter. Emission involving two states of the same spin is called fluorescence, while emission between 
states of different spin is phosphorescence. Emission from a triplet excited electronic state to a singlet ground 
state is thus phosphorescence. It is generally of longer wavelength and longer lifetime than the fluorescence 
emission from the singlet excited state. In this section, we concentrate on the absorption and fluorescence 
spectra that are typical of transitions between two singlet electronic states.

Here, we compare the transition rate in the Einstein picture to the quantum mechanical transition rate 
given by the Golden Rule. The latter, wif = |μif|2ρ(νfi)/6n2ε0ħ2, Equation 6.13, is a transition rate per molecule, 

ground singlet
excited

triplet
excited

Figure 6.3 Electronic configurations for a molecule having a closed-shell ground state.
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so on multiplying by the number of molecules in the initial state, we get the total transition rate N1w12 = 
N1B12 ρ(ν12). Thus the Einstein rate is the same as that given by the Golden Rule if 
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Using the relationship between A21 and g2B21 = g1B12, we have 
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Equations 6.18 and 6.19 tell us that the rates of absorption and emission are proportional to the square of the 
transition dipole moment. It is also seen that for spontaneous emission, the more allowed the transition, 
the shorter the radiative lifetime. In this section we consider how these quantities may be determined from 
the integrated absorption and fluorescence spectra. We assume equilibrium populations of the initial and 
final states and that hν >> kBT, so that the effect of stimulated emission can be neglected.

The differential form of Beer’s law can be written in terms of the molar absorptivity εM(ν) as follows: 

 − =dI CIdxM2 303. ( )ε ν  (6.20)

The molar absorptivity is generally expressed in units of L mol−1 cm−1, so the concentration C is in mol L−1 and 
the path length x is in cm. The factor of 2.303 appears in Equation 6.20 because it is derived from the form of 
Beer’s law preferred by spectroscopists: I I M Cx= −

010 ε . If N is the number of molecules per cm3 in the initial 
state i (essentially equal to the total number of molecules for electronic spectroscopy), then another way to write 
Equation 6.20 is 

 − =dI Nh w dxifν  (6.21)

Equating Equations 6.20 and 6.21 gives the transition rate per molecule as 
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It is convenient to replace the intensity I by cu/n and the molar concentration C by 1000N/NA, where N is the 
number of molecules per cm3 and NA is Avogadro’s number: 
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The total transition rate ought to be integrated over the band, replacing u by ρ ν ν∫ ( )d  and including εM(ν)/ν 
in the integrand: 
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If the bandwidth of the source ρ(ν) is broad compared to the range of frequencies for which εM(ν) is signifi-
cant, we can take ρ(ν) ≈ ρ(ν fi) as constant and move it outside the integral. This gives a transition rate which 
can be directly compared to Bif ρ(ν fi), and we obtain 
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This is now rearranged to get an equation which relates the square of the transition moment to the integrated 
molar absorptivity: 
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Equation 6.26 shows how the integrated molar absorptivity can be used to find the absolute value of the 
transition moment. The units on this expression require some care. The number 2303 is actually 2.303 
times 1000 cm3 L−1. The reader should verify that the conversion factor in front of the last integral is appropri-
ate for calculating the transition dipole moment μfi in Debye, where 1 Debye = 10−18 esu cm, when the molar 
absorptivity is in L mol−1 cm−1. In typical applications of this expression, i and f are the ground and first excited 
electronic states, and the width of the absorption band results from a progression of vibrational transitions within 
a single electronic transition. As will be shown in Chapter 11, the vibrational progression serves to distribute the 
total intensity over a range of frequencies while preserving the total area of the band. The integral over frequency 
in Equation 6.26 is sometimes expressed as ε ν νM d( ) ln∫ . If cgs rather than MKS units are desired, then ε0 should 
be replaced by 1/4π.

Equation 6.26 can be combined with Equation 4.82 to relate the oscillator strength f to the integrated 
intensity. In doing so, the frequency ω = 2πν in the numerator of Equation 4.36 is moved inside the integral 
over molar absorptivity. The result is 

 f
m cn

e N
de

A
band

= ∫4 2303 0
2

( )
( )

ε ε ν ν  (6.27)

The oscillator strength is a convenient way to express the strength of a spectroscopic transition. Very small 
values of the oscillator strength often result when a transition is forbidden to a first approximation, or when 
it is permitted by electric quadrupole or magnetic dipole selection rules. Oscillator strengths larger than one 
can be a sign of overlapping electronic transitions.

The intensity of emission f → i is also proportional to |μif|2 and to Afi. A measurement of fluorescence inten-
sity ought to reveal the radiative lifetime τrad. There are several reasons why this is not necessarily a practical way 
to determine τrad or the transition dipole moment. One reason is that fluorescence intensities, unlike absorption 
intensities, are difficult to quantify. As discussed in Chapter 4, it is necessary in the case of emission to consider 
the intensity of light collected into a solid angle. The measured intensity depends on the solid angle subtended 
by the detector, so it is sensitive to experimental conditions. One does not usually have the advantage of com-
paring a sample and reference beam as in absorption spectroscopy.

One can measure fluorescence lifetimes using time-resolved detection of fluorescence intensity. This gives 
the total rate of decay τfluor (the fluorescence lifetime) of the excited electronic state. In general, a state may 
decay by both radiative and nonradiative pathways, thus the total decay rate is 
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τ τ τfluor rad nonrad

= +  (6.28)

The nonradiative decay pathway accounts for the conversion of the energy of the excited electronic state into 
other degrees of freedom, essentially degrading the energy as heat. If nonradiative decay is negligible, then for 
every photon that is absorbed in order to create the excited state, one is emitted. The fluorescence quantum 
yield ϕfluor is the ratio of the number of photons emitted to that absorbed. It is also equal to the ratio of the 
radiative decay rate to the total decay rate: 
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The fluorescence yield can be determined experimentally by comparing the observed fluorescence intensity to 
that of a dye for which ϕfluor is known. Only if the fluorescence yield approaches one can a measurement of the 
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fluorescence lifetime alone reveal the radiative lifetime. However, if one determines the transition moment 
from absorption spectroscopy, then it is possible to calculate the A-coefficient and thus τrad. The procedure 
for this is straightforward for the case of atomic spectra, but requires additional care in the case of molecular 
electronic spectra. These two cases are considered next.

6.4.1 Atomic spectrA

Unlike molecular electronic spectra, which are broadened by vibrational and rotational transitions, atomic 
emission and absorption lines are sharp. The frequency ν fi = −νif of absorption is equal to that of emission 
when the same two states are involved. Thus one can evaluate |μif|2 from the absorption spectrum using 
Equation 6.26, then substitute it in Equation 6.19 to obtain τrad without making any assumptions. Putting all 
this together, we have 
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In obtaining Equation 6.30, the frequency has been converted to wavenumbers, �ν ν= /c , and it has been 
assumed that, since the atomic spectral lines are quite sharp, the frequency originally part of the integrand 
can be considered constant and factored out. Thus atomic absorption spectra lead directly to the determina-
tion of radiative lifetimes.

6.4.2 moleculAr electronic spectrA

Equation 6.30 fails for molecular electronic spectra because of the contribution of vibrational transitions to the 
distribution of intensity. As will be discussed in detail in Chapter 11, molecular electronic spectra typically com-
prise a number of vibrational subbands due to transitions such as those indicated schematically in Figure 6.4. 
In solution-phase electronic spectra at room temperature, the absorption transitions often originate from the 
ground vibrational level of the ground electronic state (v′′ = 0 in Figure 6.4), because higher vibrational states 
tend not to be occupied at room temperature. This will not be true for low-frequency vibrations, but we will 
neglect these for now.

After being excited to vibrational levels within the excited electronic states, nonradiative vibrational relax-
ation takes place within the excited electronic state. For large molecules in solution, such as the dyes often used 
in fluorescence spectroscopy, this radiationless relaxation process is fast compared to the rate of emission. As 
a result, the fluorescence originates from the v′ = 0 level within the excited electronic state. This is known as 
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Figure 6.4 Vibrational transitions within electronic absorption and emission bands.
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relaxed fluorescence. The total intensity of absorption or emission, proportional to |μif|2, is spread out over the 
vibrational progression such that the intensity of each vibronic transition is proportional to the Franck–Condon 
factor FC, which is the square of the overlap of vibrational wavefunctions within the ground and excited 
electronic states: 

 FC= =0 0 0
2

v v v  (6.31)

where v = v″ or v′ for emission or absorption, and in each scalar product one vibrational wavefunction cor-
responds to the ground and the other to the excited electronic state, which have different potential energy 
functions. We shall see in Chapter 11 that the distribution of electronic spectral intensity across this progres-
sion of vibrational transitions is a strong function of the change in geometry of the molecule. For now, we are 
interested in summing the coefficient for spontaneous emission over the bands within the Franck–Condon 
progression. Thus 
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The Einstein A coefficient is proportional to the cube of the frequency, which varies according to initial and 
final vibrational quantum numbers. By applying the completeness theorem to the set of vibrational states 
within any electronic state, we have 0 1

2
′′ =′′∑ v

v
. Thus the A coefficient is proportional to 
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Recall that the fluorescence intensity Ifluor is proportional to the cube of the frequency. The angle brackets in 
Equation 6.33 represent an average over the fluorescence spectrum. We therefore rewrite Equation 6.10 as 
follows: 
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and using Equations 6.25 and 6.26, we have 
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Equation 6.35 shows how fluorescence and absorption data may be combined to determine the  radiative 
lifetime. Notice that the averaging process used to compute ν fluor

− −3 1
 avoids having to know the abso-

lute fluorescence intensity. Strickler and Berg [1] demonstrated the validity of the above expression by 
 comparing the radiative lifetimes so determined to those measured using phase-sensitive fluorescence 
spectroscopy, which involves exciting the fluorescence spectrum with a modulated intensity source 
and detecting the phase lag between the exciting light and fluorescence radiation. Good agreement was 
obtained in the case of molecules having fluorescence yields near unity. The Strickler–Berg equation, 
Equation 6.35, can be combined with a direct measurement of the fluorescence lifetime in order to determine 
the fluorescence yield.
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6.5  MEASUREMENT OF LIGHT SCATTERING: THE RAMAN AND 
RAYLEIGH EFFECTS

Light scattering spectra depend strongly on the polarization of the incident and scattered beams, and as such 
we must take into account the projection of the polarizability tensor onto the lab frame in order to analyze 
the experimental data. In addition, the nature of the experimental setup introduces special concerns about 
the quantitative measurement of intensities. The discussion about relating the molecule and lab frame polar-
izability tensors will be postponed until Chapters 8 and 12. For now, we concentrate on the experimental 
considerations related to the scattering geometry.

Figure 6.5 shows the coordinate system that we envision for a typical 90° scattering arrangement. The 
incident light is considered to propagate along the X-direction, and the scattered light is detected along the 
Y-direction. Uppercase letters XYZ will always indicate the laboratory frame of reference (the “space-fixed” 
coordinate system) and lowercase letters will be used when referring to a coordinate system fixed in the mole-
cule (the “body-fixed” coordinate system). Conventional Raman or Rayleigh spectra are often measured using 
incident light polarized in the Z-direction (“vertically polarized”), which is perpendicular to the scattering 
plane. A polarization analyzer between the sample and detector enables the scattered light to be resolved into 
its two polarization components. The polarized spectrum is measured by observing the scattered light having 
the same polarization direction as the incident light. This intensity is referred to as I||, IZZ, or Ipol. If, instead 
of detecting the Z-polarized light, one measures the scattered light polarized in the X-direction (but still 
excited with Z-polarized incident radiation), then the depolarized light scattering spectrum is obtained. This 
is referred to as I⊥, IXZ, or Idep. The depolarization ratio ρ is defined by

 ρ =
I

I
dep

pol
 (6.36)

(The Greek letter rho is a popular one! The ρ defined in Equation 6.36 should not be confused with the energy 
density discussed in the preceding sections.) We shall see in future chapters that ρ is a revealing quantity when 
it comes to the symmetry of the transition responsible for light scattering. For now, note that the depolarization 
ratio is almost always less than one. And if the polarizability were perfectly isotropic, then no induced moment 
could result in a direction other than that of the incident polarization, so ρ would vanish for spherically sym-
metric molecules, frozen at the equilibrium geometry. We have some work to do (in Chapter 8) before this 
statement can be proven.

First, let us consider how the measured intensity of scattered light depends on molecular properties. As 
in fluorescence, we must account for the radiation being scattered into a sphere of 4π steradians. This net 
intensity will be determined by the cross-section for scattering, σ, a molecular property which depends on 
the square of the transition polarizability. The part of the cross-section dσ which contributes to the detected 
scattered light is the ratio of the power measured at the detector to the incident intensity: 
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Figure 6.5 90° scattering geometry.
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The differential power dP is proportional to the solid angle dΩ subtended by the detector. Introducing the 
irradiance Is  in W/sr, the differential power dP is I sdΩ . The differential cross-section is then 

 
d

d I
sσ

Ω
=

I

0
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The typical units of cm2/sr for the differential cross-section reflect the use of different ways of quantifying the 
scattered and incident intensities, the former in W/sr and the latter in W/cm2. The depolarization ratio in the 
90° scattering experiment is the ratio:
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In general, the differential cross-section depends on the polarization directions ê s and êi  of the scattered and 
incident radiation. It is necessary to project the polarizability tensor onto these directions: 

 d

d c
e e

s i

s i
s i

σ π ν ν
ε

α
Ω







 = ⋅ ⋅

,

2 3

0
2 4

2
� �  (6.40)

In the case of Rayleigh scattering, the polarizability tensor is a state property that varies in the lab frame due 
to the translational and rotational motion of the molecule. In Raman scattering, the elements of this tensor 
are matrix elements of the polarizability operator connecting rotational and/or vibrational states. Thus, just as 
E1-allowed absorption and emission depend on the square of the transition dipole moment, the Raman scat-
tering intensity is proportional to the square of the transition polarizability. This will be explored further in 
Chapter 12. Notice that the cross-section for scattering depends on the incident light frequency times the cube 
of the scattered light frequency. For small frequency shifts, the scattering intensity is proportional to the fourth 
power of frequency, as predicted by the form of the expression for dipole radiation given in Equation 2.37. 
The polarizability tensor α must be expressed in the lab frame XYZ, whereas it is natural to start from a consid-
eration of the polarizability in the molecular frame.

To figure out the total cross-section σR, the differential cross-section must be integrated over all possible 
scattering angles: 
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To do this, we need to consider how the intensity of light varies with the scattering angles (θ,ϕ) and polar-
ization. Figure 6.6 shows a generalized scattering geometry in which the incident radiation is considered 
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Figure 6.6 Generalized scattering geometry.
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to propagate along the X-direction and have Z-polarization, as in Figure 6.5, but the wave vector 
�
ks  of the 

scattered radiation may have any orientation, specified by polar and azimuthal angles θ and ϕ. The scattered 
light polarization may be resolved into two components ea�  and eb�  as shown in Figure 6.6. The first of these 
is chosen to be perpendicular to e�i  and 

�
ks , while the second is fixed by the requirement that 

�
ks , e a�  and eb�  be 

mutually perpendicular. The cross-section at a given scattering angle is the sum of that for the two polariza-
tion components:
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It is possible to show [2] using trigonometry that this is equivalent to 
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The depolarization ratio in Equation 6.43 is that evaluated at the 90° scattering geometry, as is the differential 
cross-section that appears on the right-hand side. Using Equation 6.43 in Equation 6.41 leads to the desired 
result: 
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The total cross-section can be found by measuring the differential cross-section and the depolarization ratio 
using a 90° scattering geometry. Note that the differential cross-section (dσ/dΩ)90° is the sum of the polarized 
and depolarized components.

6.6 SPECTRAL LINESHAPES

We have seen in Chapter 5 that molecular dynamics are reflected in the frequency distribution of the spectral 
response I(ω). Furthermore, we have seen that the time–energy uncertainty principle dictates that the mini-
mum spectral width be inversely related to the lifetime of the state: δω ≥ τ −1. Linewidth information is often 
quoted by citing the width of the band which corresponds to one-half the maximum intensity. This is called the 
“full width at half maximum,” or FWHM for short. A myriad of dynamical effects, in addition to the lifetime 
broadening, contribute to the total observed width. Such dynamics are quite specific to the type of spectrum 
and the sample under consideration. Nevertheless, there are some frequently encountered lineshape motifs 
that are often referred to in the literature, such as the characterization of homogeneous versus inhomogeneous 
broadening. In truth, these are limits that are not always achieved, but it is convenient nonetheless to classify 
lineshapes in this way.

Homogeneous broadening refers to a mechanism that affects the lineshape of every molecule in the sample in 
the same way. The radiative lifetime is one example of a homogeneous broadening effect. As we have seen, radia-
tive decay is a first-order rate process. The Fourier transform of an exponential is a Lorentzian function. In general, 
for a correlation function that decays in time according to exp(−t/τ), the resulting Lorentzian lineshape form is 
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where ω 0 is the peak frequency and the FWHM is δω1/2 = 2πδν1/2 = τ −1.
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The Franck–Condon progression observed in molecular electronic spectra is also an example of homo-
geneous broadening, in that every molecule experiences the same type of broadening, but in this case we 
don’t expect to observe an overall Lorentzian profile because no exponential decay is involved. Instead, 
the intensity distribution depends on the Franck–Condon factors, which in turn depend on the change 
in geometry of the molecule in going from the ground to the excited electronic state, as will be discussed 
in Chapter 11.

Inhomogeneous broadening is the result of having a collection of molecules with a distribution of transi-
tion frequencies. It is a statistical effect and therefore leads to a Gaussian (bell-shaped) distribution of spectral 
intensities: 
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The symbol σ has been used (reluctantly, since it has just been used to refer to the scattering cross-section) 
because it is the conventional way to represent the standard deviation of a normal probability distribution. 
The FWHM for the lineshape of Equation 6.46 is δω σ1 2 2 2 2/ ln= .

The concept of inhomogeneous broadening occurs frequently in the discussion of solvent effects on spec-
tral lineshapes. There is a gas-phase phenomenon, however, that also leads to Gaussian lineshapes. The veloc-
ity distribution of molecules in the gas phase obeys the temperature-dependent Boltzmann distribution. The 
relative motion of molecules with respect to the source (in absorption) or detector (in emission) leads to 
an apparent frequency shift due to the Doppler effect. For molecular velocity v along a line connecting the 
observer (or source) to the molecule, the apparent transition frequency is ν ν= ±( )0 1 ( / ) ,v c  where ν0 is the 
unshifted frequency. Molecules moving toward the detector have blue-shifted transitions, while those mov-
ing away have their transition frequencies shifted to the red. The resulting FWHM is 
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where the molecular mass is m. Suitable experimental conditions can minimize the Doppler broadening, for 
example, by observing the spectrum of a molecular beam in a direction orthogonal to the beam. The trans-
lational motion of molecules in dense phases also leads to Doppler broadening, but typical Doppler shifts 
are quite small compared to other mechanisms contributing to δν1/2, such as collisions and intermolecular 
interactions, so one can neglect this effect in low resolution spectra.

It is often desired to fit spectral lineshapes to functional forms, for example to characterize the area or 
spectral moments. A convenient lineshape expression which accounts for both homogeneous and inhomoge-
neous effects is the Voigt profile, which is a convolution of Gaussian and Lorentzian functions: 

 I I I dvoigt G L( )ω ω ω ω ω= ′( ) − ′( ) ′∫  (6.48)

The Voigt profile is a useful way to resolve the overall linewidth into homogeneous and inhomogeneous com-
ponents. Although there is no closed-form expression for Ivoigt(ω), the integral can be evaluated numerically.

The successful application of a function such as the Voigt profile suggests that the homogeneous or inho-
mogeneous limits of lineshapes need not be achieved. It is often desirable to account for I(ω) with a theory that 
is capable of interpolating between the limits which correspond to fast and slow modulation of the spectral 
frequency. The Kubo lineshape formulation is one such theory [3]. In this approach, the transition frequency is 
considered to be a random function of time: 

 ω ω δω= + ( )0 t  (6.49)
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The frequency shift δω(t) results from perturbations caused by interactions of the active molecule with the 
environment (solvent). It is considered to be a stochastic variable; i.e., it fluctuates in a random fashion, like 
the variable A(t) in Figure 5.1. The average frequency is ω 0. The Kubo model assumes that the correlation 
function for δω decays exponentially in time: 

 δω δω τ0 2( ) ( ) = −( )t t c∆ exp /  (6.50)

The variable Δ = < |δω|2 >1/2 is the amplitude of the solvent-induced perturbations to the frequency, and 1/τc is 
the rate at which these perturbations relax. τc is the pure dephasing time. The lineshape function ϕ(t) whose 
Fourier transform determines I(ω) is 

 ϕ δω( ) exp ( )t i t dt

t
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 (6.51)

The normalized intensity spectrum is 
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If Equation 6.50 is assumed to govern the frequency fluctuations, the lineshape function is found to be 

 ϕ τ τ τt t ec c
t c( ) = − − − ( ){ }−exp /∆2 1  (6.53)

The lineshape I(ω) obtained from the Fourier transform of Equation 6.53 is neither Gaussian nor Lorentzian. 
But there are two physically meaningful limits in which these functions are obtained. If ∆ >> −τ c

1, the ampli-
tude of frequency fluctuations is large compared to the rate of their decay. In this limit, ϕ(t) goes over to a 
Gaussian, as does the lineshape, and we may refer to the spectrum as inhomogeneously broadened. In the 
opposite limit, ∆�τ c

−1, the frequency perturbations relax on a timescale that is fast compared to the ampli-
tude, and the resulting ϕ(t) decays exponentially in time. This results in a Lorentzian intensity spectrum I(ω) 
typical of homogeneous broadening. This limit, referred to as motional narrowing, is frequently observed in 
liquid-phase NMR spectra. In the limit of motional narrowing, fluctuations in the frequency are too short-
lived to contribute to the spectral width.

Figure 6.7 shows the lineshape function ϕ(t) and resulting spectra I(ω) for the case where τc = 100 fs and Δ 
takes on three different values. Note that with increasing magnitude of Δ, compared to 1/τc, the function ϕ(t) 
narrows and the lineshape broadens. The Kubo formalism has been advantageously applied to vibrational 
and electronic spectra to determine the extent of homogeneous and inhomogeneous broadening. We will 
consider it further in Chapter 12.

6.7 SUMMARY

In this chapter, we have seen how to relate quantum mechanical molecular properties, such as the transi-
tion moment and transition polarizability, to measured spectra. The spectral intensity that we have called 
I(ω) is an inherent transition rate, whereas the measured spectral intensities, such as molar absorptivity or 
scattering cross-section, comprise frequency-dependent weighting factors which take experimental con-
siderations into account. It was shown that the radiative and nonradiative lifetimes can be extracted from 
measurements of the absorption and emission spectra. We have examined the processes of stimulated and 
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spontaneous emission, and though the relative rate constants for these processes are molecular properties, 
the experimental rates are dependent on state populations, and these are subject to experimental control. 
For stimulated emission to dominate the more common spontaneous emission process, a population inver-
sion is required. (Some approaches for achieving population inversions, in atomic lasers, will be considered 
in Chapter 7.) Several mechanisms contributing to spectral linewidths were considered, and it was shown 
how the spectrum can be analyzed to reveal the homogeneous and inhomogeneous contributions to the 
broadening. The equations presented in this and previous chapters present a set of spectroscopic tools, 
which we would now like to apply to rotational, vibrational, and electronic spectra. The entire electromag-
netic spectrum lies ahead of us.

PROBLEMS
 1. Consider an electronic absorption band having an oscillator strength of 0.5 and an absorption 

 maximum at 500 nm. Find (a) the transition dipole moment, (b) the Einstein B coefficient, and (c) the 
radiative lifetime. What has to hold for your answers to be valid?

 2. Consider a molecule having a vibrational frequency of 2000 cm−1 and a transition dipole of 0.1 D. 
Calculate the radiative lifetime of the v = 1 state. What does this lifetime tell you about the radiative 
decay of states in the infrared?

 3. Compare the radiative linewidth obtained in the previous problem to the Doppler width that would be 
observed at room temperature. Assume a molecular mass equal to that of a CO molecule.

 4. For rhodamine B in ethanol, the integrated absorbance ε ν νM d( ) ln� �∫  was found to be 5937 L mol−1 cm−1 
and �ν f

− −3 1
 was found to be 5.1 × 1012 cm−3 [1]. Find the transition moment and radiative lifetime of 

rhodamine B. (The refractive index of ethanol is 1.36 at visible wavelengths.)
 5. Find expressions for the Kubo lineshape formula ϕ(t) in the limits ∆ << −τ c

1 and ∆ >> −τ c
1.

 6. Calculate the lifetime of a 2pz state of hydrogen atom. Start with the result of Problem 6 from Chapter 4.
 7. Estimate the ratio of the rate of stimulated to spontaneous emission at three wavelengths: (a) 10 cm, in the micro-

wave (b) 10−2 cm, in the far-IR, and (c) 10−5 cm, in the near infrared. Assume a blackbody source at 298 K.
 8. Verify the conversion factor in front of the integral in Equation 6.26. Derive the conversion factor for 

finding the oscillator strength f from the integrated molar absorptivity according to Equation 6.27 
using (a) cm−1 and (b) s−1 as frequency units. Does the conversion factor for finding the transition dipole 
moment depend on the choice of frequency units?
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Figure 6.7 (a) Kubo lineshape function ϕ(t) and (b) intensity spectra I(ω) for τc = 100 fs and Δ = 5/τc, 1/τc, and 1/5τc.
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7

Atomic spectroscopy

7.1 INTRODUCTION

Why should a book about molecular spectroscopy include a chapter on atomic spectroscopy? There are a 
number of reasons why we want to consider atomic spectra before moving on to the chemically more interest-
ing subject of molecular spectra. Atoms present the simplest possible examples for applying some of the prin-
ciples laid out in the previous chapters. In this chapter, we consider aspects of selection rules which also apply 
to more complicated systems. We are concerned with the electronic spectra of atoms, and we can concentrate 
on this topic without worrying about the rotational and vibrational structure that accompanies an electronic 
transition in a molecule. The absorption wavelengths of an atom coincide with those for emission, which is 
not necessarily the case in molecular electronic spectra, as we shall see. We also discuss topics such as the 
effect of internal fields (spin–orbit coupling and hyperfine effects due to nuclear spin) and external fields (the 
Stark and Zeeman effects) on atomic spectra. These concepts are relevant to molecular spectra as well, but 
are easier to discuss quantitatively in the atomic case. This chapter also provides an opening into the very 
interesting topic of laser emission, and we consider the operating principles at work in some common atomic 
lasers. Lasers are important not only because they exemplify stimulated emission, but also because they are 
frequently employed as sources in spectroscopic experiments. The field of atomic spectroscopy is an old one, 
but still of vital interest in fields ranging from analytical chemistry to quantum optics.

7.2  GOOD QUANTUM NUMBERS AND NOT SO GOOD 
QUANTUM NUMBERS

Our starting point for considering atomic spectra is a review of the quantum numbers that define electronic 
states of atoms. Hydrogen-like (that is, one-electron) atoms require a set of four quantum numbers to fully 
specify the wavefunction, and only one to define the energy. The number of quantum numbers is consistent 
with the electron having three spatial and one spin degree of freedom. The variational principle, on which 
self-consistent field calculations are based, permits us to build approximate wavefunctions for many- electron 
atoms which assign individual electrons to hydrogenic orbitals with definite spatial and spin quantum 
numbers. How far can we carry this approximation and account for experimental spectra of many- electron 
atoms? And if the hydrogen atom orbitals are not exact eigenfunctions in the many- electron case, what 
are the good quantum numbers and how are they determined? To address these questions, we delve into 
the quantum mechanical bookkeeping which enables us to label the electronic states of many-electron atoms 
with term symbols. Term symbols represent atomic states and designate the good quantum numbers for 
the atom. “Good” quantum numbers are eigenvalues of operators which commute with the Hamiltonian 
and thus correspond to physical properties which can be specified exactly. In the presence of a perturbation 
that mixes states with different eigenvalues, the corresponding quantum number is no longer strictly good, 
but may be considered to be “approximately good” in the case of a sufficiently weak perturbation. We shall 
examine this sort of mixing for the case of angular momentum coupling in many-electron atoms, but first we 
review the one-electron problem. The one-electron wavefunctions are of interest because they form the basis 
for expanding approximate wavefunctions of many-electron atoms.
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7.2.1 The hydrogen aTom: Energy levels and selecTion rules

The hydrogen atom wavefunctions were reviewed in Chapter 1:
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where a0 = 0.529 Å is the Bohr radius. Recall that the degeneracy of a level is g nn = 2 2 and that states hav-
ing orbital quantum number l = 0, 1, 2, 3, 4 … are referred to by the letters s, p, d, f, g …, etc. As reviewed in 
Chapter 1, the spherical harmonics are eigenfunctions of the operators L̂2 and L̂z  (Equations 1.51 and 1.52), 
and the spin functions are eigenfunctions of Ŝ2 and Ŝz (Equations 1.58–1.61).

We now wish to derive selection rules for the spectrum of the hydrogen atom. We characterize a spectro-
scopic transition by the difference in the initial and final values of the quantum numbers n, l, ml, and ms. Our 
goal is to determine what changes in the quantum numbers, Δn, Δl, Δml, and Δms, lead to a nonzero electric 
dipole (E1) or electric quadrupole (E2) transition moment, or a magnetic dipole (M1) transition moment. Since 
the energy depends only on one quantum number, n, we could neglect selection rules concerning changes in l, 
ml, and ms. However, we will consider the selection rules for these quantum numbers, as they become impor-
tant in the presence of external fields, and similar considerations arise in the discussion of many-electron 
atoms, where the hydrogen atom wavefunctions are used as a basis for approximate wavefunctions. For the E1 
selection rules, our task is to find the matrix elements of the operator for the electric dipole moment, which is 
given by ˆ (ˆsin cos ˆsin sin ˆ cos )µ θ ϕ θ ϕ θ= − = − + +er er i j k

�
. Similarly, the M1 (magnetic dipole) selection rules 

arise from considering matrix elements of the operator 
�
L for orbital angular momentum. The E2 selection 

rules result from matrix elements of the quadrupole moment operator, which has the form err
��

. Thus E2 transi-
tions are allowed when operators such as x2, xy, etc. connect two states.

Let us start with the E1 selection rules, and suppose that the initial and final states are specified by 
the sets of quantum numbers n, l, ml, ms and n′, l′, ′ml , ′ms . Consider  the  transition  dipole  moment 
Ψ Ψnlm m n l m m ifl s l s

ˆ .μ μ′ ′ ′ ′ ≡  The derivation of selection rules consists of figuring out which possible values of 
initial and final quantum numbers will result in μif ≠ 0. Separation of variables allows us to write the transi-
tion moment as
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The delta function δm ms s′  comes from the orthonormality of the spin functions:
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The orthonormality relations for the spin functions can also be denoted by α α σ∗ =∫ d 1, α β σ∗ =∫ d 0, etc. 
These lead directly to the conclusion that ms must equal ′ms  for an allowed transition. Thus Δms = 0 is our 
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first selection rule. It holds for M1 and E2 transitions as well, because the operators for these transitions do 
not depend on electron spin. The exceptions to this selection rule for spin are notable, for when spin–orbit 
coupling mixes up the quantum numbers for spin and orbital angular momentum, then transitions between 
states of different spin become allowed. This will be considered in due time.

Due to separation of variables, a transition becomes forbidden if the integral over any one of the three 
spatial variables r, θ, or ϕ vanishes. Consider the angular part of Equation 7.3, which permits transitions 
whenever the integral involving one of the three functions in the curly brackets is nonzero. The three com-
ponents of the dipole operator apply when the radiation field is polarized in the x, y, or z direction in the 
laboratory frame. In the absence of a static field, these three directions are equivalent, so any of these three 
components may cause a transition, regardless of the polarization of the incident light. Using Equation 1.50 
for Ylml and extracting the ϕ-dependent integral, we obtain
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For the z component, arising from the “1” term in Equation 7.5, we have
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This is another integral representation of the delta function. Thus for z-polarized radiation, the selection rule 
on ml is Δml = 0. For k equal to any integer, the integral e dikϕπ

ϕ
0

2

∫  is equal to 2πδ k0. To take advantage of this, 
the cosine and sine functions of Equation 7.5 are expressed as follows:
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We find that the x (cos ϕ) and y (sin ϕ) components of the dipole operator lead to the selection rule Δml = ±1 
for x- or y-polarized radiation. The combined selection rule is Δml = 0, ±1.

The selection rule for changes in the orbital quantum number l can be found with the help of the orthogonality 
relation for the spherical harmonics,
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combined with the relation:

 sin , ,θY c Y c Ylm l m l ml l l= ++ + − −1 1  (7.10)

A similar expression holds for cosθYlml , as shown in [1]. The coefficients c+ and c− depend on l and ml, but 
their functional forms are not of interest to the result we are pursuing, because here we just want to know if 
an integral is zero or not. Substituting Equation 7.10 into Equation 7.3 and then using Equation 7.9 leads to 
the conclusion that l must equal l′ ± 1; i.e., Δl = ±1, for E1 transitions.

Finally, what about the changes in the principal quantum number n? These depend on the radial wave-
functions Rnl (r), which have the form:

 R r N c c r c r r enl n l
n l l Zr na( ) ( ) /= + + + − −

− − −
0 1 1

1 0�  (7.11)

The coefficients cn of each term rn obey a recursion formula which can be found in most quantum chemistry 
texts [2,3]. The point here is that there are no symmetry restrictions that cause the radial integral in Equation 7.3 
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to vanish for certain combinations of n and n′. Thus Δn can be any positive (for absorption) or negative 
(for emission) integer. This results in the very rich form of the hydrogen atom spectrum, where the frequen-
cies (in wavenumbers) of the absorption and emission lines are represented by the Rydberg formula:
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Here, we require n1 < n2. The expression for the Rydberg constant RH, 109,700 cm−1, is given in Equation 1.64.
Emission lines of atomic hydrogen terminating on various lower quantum states (indexed by n1) fall in 

characteristic spectral regions as follows:
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Absorption frequencies coincide with those for emission, and transitions having initial quantum number 
n ≠ 1 are observed only after preparation of the excited state by some means, such as electric discharge. The 
ionization limit in absorption corresponds to a final quantum number n2 = ∞. From the ground state, the 
ionization energy is 109,700 cm−1 or 13.6 eV.

Suppose that an excited hydrogen atom finds itself in a 2s state. Can it return to the 1s ground state via 
a radiative transition? Such a transition could satisfy the Δms = 0 and Δml = 0, ±1 selection rules, but the 
Δl = ±1 selection rule would be violated. The net result is that the 2s excited state of hydrogen is metastable. 
It can relax nonradiatively, of course, but as far as emission is concerned, the return path to the ground state 
must take place by means of a more weakly allowed transition than E1. Let us look at the selection rules for 
the weaker M1 and E2 transitions.

The orbital angular momentum has x, y, and z components. Hence an M1 transition is allowed when the 
matrix element of the operator ˆ ,Lx  ˆ ,Ly  or L̂z  exists. These operators depend only on θ and ϕ, so we need to 
consider the angular part of the wavefunction. However, since there is no r dependence of the operator for 
magnetic dipole-allowed transitions, the orthogonality of the radial wavefunctions requires that Δn = 0. Since 
the energy levels depend only on n, this means that magnetic dipole selection rules are rather uninteresting 
for the hydrogen atom! However, in the case where perturbations lift the degeneracy of states arising from the 
same principal quantum number (as in many-electron atoms), the M1 selection rules are of interest. So we 
continue this analysis. The spherical harmonics Ylml are eigenfunctions of L̂z  with eigenvalues ml�, but they 
are not eigenfunctions of L̂x or L̂y. The z component of the angular momentum operator has only diagonal 
matrix elements:
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Thus from the z component of the magnetic field we get the selection rule Δml = 0, Δl = 0. For the x- and 
y-polarized transitions, we can take advantage of the raising and lowering operators defined as ˆ ˆ ˆL L iLx y± = ± . 
The desired matrix elements are written as
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The action of the raising operator L̂+ on Ylml is to create a function proportional to Yl ml, +1. The exception to this 
is that when ml takes the maximum value of l, then ˆ

,L Yl l+ = 0. Similarly, application of L̂− results in a function 
proportional to Yl ml, −1, except when ml = −l, in which case ˆ

,L Yl l− − = 0. Consequently, both the x and y compo-
nents of the magnetic field result in transitions having Δl = 0 and Δml = ±1.
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The E2 transitions are straightforward to evaluate on the basis of knowing the E1 selection rules. Consider 
a general matrix element of the quadrupole operator:

 

Ψ Θ Ψ Ψ Ψ

Ψ Ψ

nlm m n l m m nlm m n l m m

nlm m

l s l s l s l s

l s

e r r

e r

˘
′ ′ ′ ′ ′ ′ ′ ′= −

= −

� �

�
′′′ ′′ ′′

′′ ′′
′′ ′′ ′ ′ ′ ′′′

′′ ′′
′′ ′′∑ n l m m

n l m m

n l m m n l m m
l s

l s

l s l srΨ Ψ
�

 

(7.16)

In the second line of Equation 7.16, we have inserted the resolution of the identity, n n
n

〈 =∑ | 1, where “n” speci-
fies the set of all four quantum numbers. We already know from considering the E1 selection rules that matrix 
elements of the type Ψ Ψnlm m n l m ml s l sr| |

�
″ ″ ″ ″  are nonzero for Δl = ±1, Δml = 0, ±1 and Δms = 0. Since this is the case 

for both of the matrix elements in Equation 7.16, the net selection rule for electric quadrupole transitions is Δl = 0, 
±2, Δml = 0, ±1, ±2 and Δms = 0. The set of selection rules that we have obtained is summarized in Table 7.1.

7.2.2 many-elecTron aToms

The conventional discussion of electronic states of many-electron atoms is fraught with apparent inconsisten-
cies. We know that the Schrödinger equation cannot be solved exactly, even for helium, and that the hydrogen 
atom wavefunctions are only approximations which we use to describe electronic configurations qualitatively. 
The many-electron atom is intractable because the interelectronic repulsion term in the Hamiltonian prevents 
separation of variables from being used to solve the Schrödinger equation. The central-field approximation, on 
which the Hartree–Fock calculation is based, deals with this problem by calculating the potential energy for each 
electron as a spherical average over the distribution of all other electrons. As a result, the potential energy of an 
electron in a many-electron atom is approximately spherically symmetric, and the functions Ylml are appropriate 
angular functions for the one-electron basis states. The self-consistent field approach is based on the variation 
theorem, and trial wavefunctions are frequently taken to be linear combinations of functions (spin–orbitals) 
which resemble those for a one-electron atom (though Gaussian-type orbitals are also employed). A spin–orbital 
is a product of a spatial function φ and a spin function α or β. The angular dependence of each spatial orbital is 
described by the spherical harmonic Ylml. Thus, the quantum numbers l and ml for each individual orbital can be 
characterized. If it can be established that an electronic state of the atom is well characterized by one set of occu-
pied orbitals, we can sum the values of ms and ml for all occupied orbitals to obtain the quantum numbers for the 
z component of the total orbital L and spin S angular momentum: ML and MS. The capital letters L and S will be 
reserved for many-electron quantum numbers, analogous to the one-electron quantum numbers l and s. To a first 
approximation, an atomic energy level can be designated by a term symbol, 2S+1L. In this section, we consider the 
rules for adding the angular momentum quantum numbers of individual electrons to get the quantum numbers 
L, ML, S, and MS for states of the atom.

Because electrons are fermions, the total wavefunction must change sign if the spatial and spin coordi-
nates of any two electrons are exchanged. For a closed-shell atom, all spatial orbitals are doubly occupied, and 
the total wavefunction can be represented by a single Slater determinant:
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Table 7.1 Selection rules for transitions of one-electron atoms

Allowed transitions

E1 Δl = ±1 Δml = 0, ±1 Δms = 0 Δn = any integer

M1 Δl = 0 Δml = 0, ±1 Δms = 0 Δn = 0

E2 Δl = 0, ±2 Δml = 0, ±1, ±2 Δms = 0 Δn = any integer
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In writing this Slater determinant, it has been assumed that there are 2n electrons in the atom; thus n spatial 
orbitals, φ1, φ2, …, φn, are required to accommodate them. Each spatial orbital appears in each column of 
the determinant twice: once with spin function α and once with spin function β. Along the diagonal of the 
determinant in Equation 7.17, the electrons 1, 2, 3, …, 2n are placed in consecutively numbered spin–orbitals. 
In each column of the determinant, the same electron is placed in each of the 2n different spin–orbitals, while 
across a row, all the electrons are placed in the same spin–orbital.

Open-shell atoms have one or more singly occupied orbitals and cannot necessarily be described by 
a single Slater determinant; rather, one must write a total wavefunction Ψ which is a linear combination 
of Slater determinants. The appropriate linear combination is that which results in specific values for the 
angular momentum quantum numbers. The rules for finding these appropriate linear combinations are 
introduced in Section 7.2.3.

When we write, say, the electronic configuration of carbon as 1s22s22p2, we are using a qualitative picture 
that summarizes a vast array of experimental observations about the element carbon and is consistent with its 
placement in the periodic table and tendency to form four bonds with other atoms. Yet the ground electronic 
state of carbon is not specified by 1s22s22p2, as “states” and “configurations” are precise terms which, unlike elec-
trons, are not interchangeable! A configuration generally implies a way of loading electrons into spin–orbitals 
in a manner consistent with the Pauli exclusion principle. This principle states that if two electrons in an 
atom share the same quantum numbers n, l, and ml, then they must have opposite signs for the spin quantum 
number ms. This requirement is enforced by the form of Equation 7.17, which vanishes if two rows (or two 
columns) are equal. If two electrons could share the same set of all four hydrogen-atom quantum numbers, 
this would correspond to the same spin–orbital being used twice, and Ψ would be zero.

As we shall see, there are 15 ways to place two electrons in the same p-shell, and there are thus 15 states 
associated with 1s22s22p2. The ground-state configuration of carbon atom can be specified more precisely as 
follows:

 Catom ground state 1 2 2 2 21 0 1s s p p p↓↑( ) ↓↑( ) ↑( ) ↑( )−  (7.18)

In accordance with Hund’s rule of maximum spin multiplicity, we have placed the two 2p electrons in two 
different p orbitals, with the same spin, leaving the third p orbital unoccupied. The subscript on each p orbital 
designates the value of ml. The real p orbitals px, py, and pz, which are linear combinations of p1, p0, and p−1, are 
not all eigenfunctions of L̂z  and are thus not convenient for the discussion of this section.* The configuration 
shown in 7.18 is still somewhat arbitrary: the two unpaired electrons could be spin down rather than spin 
up, and any one of the three p orbitals could have been left unoccupied. Thus Equation 7.18 only specifies one 
possible configuration of the ground state of carbon. We will refer to 1s22s22p2 as the ground configuration. This 
ground configuration gives rise to 15 different pictures like 7.18, and thus encompasses 15 Slater determinants 
which contribute to 15 electronic states. The ground state in the case of carbon atom is degenerate and must be 
expressed as a linear combination of Slater determinants.

The quantum numbers that specify the orbitals to which we assign electrons in a many-electron atom 
apply to the hydrogen atom; thus they are not good quantum numbers for carbon. To a good approximation, 
we can couple the angular momentum quantum numbers of occupied hydrogen-like atomic orbitals to gener-
ate quantum numbers which are good quantum numbers for the many-electron atom. The rules for adding 
angular momenta acknowledge the properties of quantum mechanical vectors. That is, the z component of 
the orbital or spin angular momentum is quantized, and when we add vectors, we add the z components. 
The x and y components of the vectors remain unspecified in accordance with the uncertainty depicted in 
Figure 1.9. The rule which takes all this into consideration is often called the triangle rule. It states that, for 
any two angular momentum quantum numbers j1 and j2, the permitted values of net angular momentum J 
which result from adding them are

 J j j j j j j= + + − … −1 2 1 2 1 21, , ,  (7.19)

* The p0 orbital is identical to pz, while px and py are each a linear combination of p−1 and p+1.
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Here, the lowercase symbols j1,2 represent either the l or s quantum numbers for individual electrons 1 and 2, 
while J is the net angular momentum quantum number of the two-electron state. The symbols j1, j2 and J are 
used here as generic quantum numbers for any type of angular momentum. For example, Equation 7.19 applies 
to the case of adding the net orbital L and spin S angular momenta to get the total electronic angular momentum J. 
If a three-electron state were under consideration, we could first apply the triangle rule to two of the elec-
trons, and for each of the resulting J’s we would then add in the value j3 to get J + j3, J + j3 − 1, …, |J − j3|. It is 
worth emphasizing that the type of quantum number under discussion here is that which specifies the length of 
the angular momentum vector; | |

�
�j j ji i i= +( )1  and | |

�
�J J J= +( )1 . The permitted values of the resultant 

angular momentum in Equation 7.19 are those that result from vector addition of 
�
j1 and 

�
j2  with all possible 

quantized relative orientations.
We now apply this rule to the determination of the net angular momentum state of a many-electron atom. 

The orbital and spin angular momenta of individual electrons can first be coupled to get L li= ∑  and S si= ∑ . 
When spin–orbit coupling is considered, the net orbital and spin angular momenta are then further coupled 
to give J, the total angular momentum quantum number. This approach, called LS or Russell–Saunders cou-
pling, is actually only appropriate for lighter atoms, for which the spin–orbit perturbation is weak compared 
to the Coulombic interactions of the electrons. For heavier atoms, it is more correct to couple the li and si 
of individual electrons to get ji for each electron, and then add these ji to get J. For more on this so-called 
jj-coupling scheme, see [4]. We illustrate the case of LS coupling in this discussion.

Our goal is to generate the term symbol for an electronic energy level, 2S+1L, which designates an electronic 
state of an atom. The set of states belonging to the 2S+1L energy level is called a term. The superscript 2S + 1 to 
the left is the spin multiplicity of the term; it results from the fact that for a particular value of S the quantum 
number for the z component of the spin, MS, ranges from S to −S by integral steps. Similarly, there are 2L + 1 
degenerate orbital angular momentum states, corresponding to the values of ML = −L, −L + 1, …L, where ML 
is the quantum number for the z component of net orbital angular momentum. The degeneracy of an energy 
level designated by the symbol 2S+1L is given by

 g S LLS = + +( )( )2 1 2 1  (7.20)

The degeneracy gLS accounts for all the allowed values of ML and MS.
It may seem a daunting task to apply the triangle rule N − 1 times for an N electron atom with large N. 

Fortunately, we need only consider the electrons in open shells, as the contribution to L and S from the closed 
shells is zero. The ml values of occupied orbitals add to give the net ML, and ms values also add to give MS. 
Closed shells always lead to ML = 0 and MS = 0 because for every plus value of ml or ms there is a negative value 
to cancel it. Another simplification is that “holes” in a shell are equivalent to electrons; a p5 configuration 
gives the same term symbols as a p1. The triangle rule does not take into account the fact that some of the 
possible values of L and S may violate the Pauli exclusion principle. Such states have to be discarded.

To illustrate this, we consider the case of coupling two p electrons. If these two electrons reside in different 
p orbitals (e.g., 2p13p1), then we do not need to worry that any of the resulting L and S values would violate the 
Pauli exclusion principle. Using Equation 7.19 with l1 = l2 = 1, we find that L = 2, 1 and 0. Analogous to the des-
ignation s, p, d, f,… for l = 0, 1, 2, 3,…, states with L = 0, 1, 2, 3… are specified by the capital letters S, P, D, F… etc. 
The configuration 2p13p1 thus gives rise to S, P and D states. For each of these states the values of S are s1 + s2 = 1 
or s1 − s2 = 0. (For any electron, the quantum number s = 1/2 specifies the magnitude of the spin. Do not confuse 
the letter s being used as the spin quantum number with the same letter used to specify an orbital having l = 0. 
Similarly, the quantum number S for the many-electron spin state is not the same as the symbol S used to desig-
nate an electronic state in which L = 0.) The values S = 0 and 1 belong to singlet (2S + 1 = 1) and triplet (2S + 1 = 3) 
states. So there are six states, 1S, 3S, 1P, 3P, 1D and 3D which derive from the 2p13p1 configuration. How is it that so 
many states can result from one choice of occupied orbitals? It is actually a rather straightforward result of quantum 
mechanical bookkeeping. There are six ways to load an electron into a 2p subshell, because there are three equiva-
lent 2p orbitals and in each one the electron may be spin up or spin down. For each of these six ways to place the 
first electron in 2p, there are six similar ways to add the second electron to 3p. There are thus 6 × 6 = 36 states, but 
only six energy levels (one for each term), in the absence of spin–orbit coupling. The degeneracies of each of the 
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six terms are determined from Equation 7.20, and it can be readily confirmed that they add up to 36. So there 
is a conservation law at work, which says that the total number of states is the same before and after coupling.

We would like to know the energies of the resulting terms, but that information must be found from a 
quantum mechanical calculation or a spectroscopy experiment. We can, however, take a chance on predicting 
the order of the energy levels. States of higher spin multiplicity usually fall at lower energy than singlets with 
the same value of L. This is the basis for Hund’s rule of maximum spin multiplicity, which derives from the dif-
ference in the exchange interaction between, for example, singlet and triplet states. Electrons in states having 
higher S experience less Coulombic repulsion, in general, and are of lower energy. The ordering of the L values 
is usually such that for the same S, states with higher L are lower in energy due to less Coulombic repulsion.

Next consider the coupling of two equivalent electrons, such as the two 2p electrons, in the outer shell of 
carbon. There are six ways to place the first electron in the 2p subshell, and five ways to place the second electron 
in the same subshell. Since these two electrons are indistinguishable, there are (6 × 5) ÷ 2 = 15 states associated 
with this configuration. These are depicted in Figure 7.1. As shown in the figure, the total quantum numbers 
M mL l ii

= ∑ ,  and M mS s ii
= ∑ ,  are found by summing the values for the individual electrons. Each term symbol 

that we derive for the 2p2 configuration comprises a set of configurations from that figure, and the number in the 
set is given by the degeneracy of the term: gLS. Some of the above states derived for two inequivalent p electrons 
must be thrown away, because they violate the Pauli exclusion principle. The remaining terms must account for 
all the diagrams in Figure 7.1. It is a good practice to consider the possible terms in order of decreasing S and then 
decreasing L. For example, the 3D term is considered first, but it is impossible for a 2p2 configuration, because 
it would require two electrons to be placed in an orbital with ml = ±1 and with the same spin. A 3P term can be 
achieved, however, by placing the parallel spin electrons in p orbitals having ml = ±1 and ml = 0. For this state 
the net ML would be ±1, as expected for a P state. This 3P term accounts for 3 × 3 = 9 of the 15 states. We should 
therefore cross out the first nine configurations in Figure 7.1, having ML values of 1, 0, −1, and MS values of 1, 0, −1. 
The possible 3S term now has to be discarded because all of the remaining terms have MS = 0 and thus correspond 
to singlet states. So we move on to the 1D term which we expect to contribute because there are configurations in 
Figure 7.1 for which ML = ±2 and MS = 0. We now have 9 + 5 = 14 states accounted for by 3P and 1D, so there is one 
more singly degenerate term, which has to be the 1S state. The 2p2 configuration thus gives rise to the energy levels 
3P, 1D, and 1S. Using the rules of thumb outlined above, we predict the energy level ordering to be 3P < 1D < 1S.
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Figure 7.1 Configurations associated with p2.
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It is not possible to associate each configuration of Figure 7.1 with a particular state, except in special cases. 
In order to write a total wavefunction Ψ which is an eigenfunction of the orbital and spin angular momentum 
operators, we must take particular linear combinations of Slater determinants. The rules for finding these 
combinations are introduced in the next section.

7.2.3 The clebsch–gordan series

When two or more angular momenta are added to get a resulting value, there is a corresponding prescription 
to describe the resulting states as linear combinations of the basis states. Consider the coupling of two angular 
momentum states represented by the ket vectors |j1m1〉 and |j2m2〉, where j1 and j2 can be any kind of angular 
momentum quantum number pertaining to single- or many-electron states. The eigenvalue relations are

 ˆ ( )J j m j j j m2
1 1 1 1

2
1 11= + �  (7.21)

 Ĵ j m m j mz 1 1 1 1 1= �  (7.22)

 ˆ ( )J j m j j j m2
2 2 2 2

2
2 21= + �  (7.23)

 Ĵ j m m j mz 2 2 2 2 2= �  (7.24)

The basis states that span the total angular momentum states are products of |j1m1〉 and |j2m2〉, which we write 
as |j1m1j2m2〉. For each resultant J out of the set spanning j1 + j2, …, |j1 − j2|, we can write the eigenfunction as

 JM j j C j j J m m M j m j m
mm

; ( ; )1 2 1 2 1 2 1 1 2 2

21

= ∑∑  (7.25)

Equation 7.25 expresses the eigenfunction of the combined angular momentum state, having eigenvalues per-
taining to J and M and formed from the combination of states with eigenvalues j1 and j2, as a linear combination 
of the product states |j1m1 j2m2〉. The Clebsch–Gordan (CG) coefficients C(j1 j2 J; m1m2M) are mere numbers. We 
will not concern ourselves here with how to generate them; they can be found in tables (see [1] or [5]). We are, 
however, interested in the following properties. The coefficient C(j1 j2 J; m1m2M) vanishes unless J can be formed 
from adding j1 and j2 according to the triangle rule. Also, the CG coefficient is zero unless m1 + m2 = M, consistent 
with the fact that the z component of the resultant vector 

�
J  is the sum of those for the vectors 

�
j1 and 

�
j2 . Formally, 

the CG coefficient is the projection of the resultant state onto the basis state:

 C j j J m m M j m j m JM j j( ; ) | ;1 2 1 2 1 1 2 2 1 2=  (7.26)

The CG coefficients can be related to the 3j symbols (Appendix A), defined as follows:

 C j j J m m M J
j j J

m m M
j j M( ; ) ( ) ( ) /

1 2 1 2
1 2 1 2

1 2

1 2 11 2= − +










− −  (7.27)

A bar over a quantity signifies a negative sign: m m= − . The 3j symbol is a number represented by the array in 
parentheses in Equation 7.27. The CG coefficients and 3j symbols have some particularly convenient symme-
try properties, which we will exploit in Chapter 8 when rotational selection rules are considered. (Rotational 
states have the same eigenfunctions as orbital angular momentum states.)

Consider, for example, the two-electron configurations listed in Figure 7.1. The 1D state comprises five 
of these configurations. Each of the five 1D wavefunctions is some linear combination of states |1m11m2〉, 
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where m1 and m2 range independently over −1, 0, 1 and add to give ML = 2, 1, 0, −1, −2. Let us use Equation 7.25 
to write a wavefunction which represents the 1D state having ML = 0. This state is a linear combination of three 
basis states, corresponding to the three combinations of m1 and m2 which sum to zero:

 20 11 1 111 111 1 1010; = − + − +a b c  (7.28)

The coefficients a, b, c stand for the appropriate CG coefficients. Including spin in the picture, the basis states 
of Equation 7.28 have to be written as Slater determinants representing singlet states:
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Each of the determinants in Equation 7.29 can be represented by a diagram from Figure 7.1. The linear com-
bination of Equation 7.28 is the wavefunction for which L = 2 and ML = 0. More generally, the states |JM; j1 j2〉 
have the eigenvalue properties

 J�2 1 2
2

1 21JM j j J J JM j j; ;= +( )�  (7.30)

 J�z JM j j M JM j j; ;1 2 1 2= �  (7.31)

The point here is that the quantum mechanical rules for vector addition of angular momentum are formal-
ized by the Clebsch–Gordan series. When figuring out term symbols and the number of states that each one 
comprises, we are accounting for the number of required basis states, which is equal to the number of result-
ing combined states. The total number of states |JM; j1 j2〉 for all possible J’s satisfies

 2 1 2 1 2 1
1 2

1 2

1 2J j j
J j j

j j

+( ) = +( ) +( )
= −

+

∑  (7.32)

In the next section, we consider how the spin–orbit interaction results in coupling of the L and S quantum 
numbers, an effect which can lead to splitting of states corresponding to a given term.

7.2.4 spin–orbiT coupling

A classic experimental demonstration of spin–orbit coupling is provided by the spectrum of sodium atom, 
illustrated in Figure 7.2. The transition responsible for the yellow emission can be described as a jump of a 
single electron from a 3p to a 3s level. In term symbol language, this would be a 2P → 2S transition. Under 
higher resolution, however, it becomes clear that this emission is a doublet of lines separated by about 6 Å. The 
reason is that the higher energy state is actually split into two energy levels: 2P3/2 and 2P1/2. The ground state 
2S1/2 is not split by spin–orbit coupling because it has L = 0, S = 1/2, and only one possible value of J, namely 1/2 
(see Equation 7.33 below). In this section, we examine the physical basis for this effect without going into much 
computational detail.
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If you were an electron riding a quantum mechanical orbit about the nucleus, then from your Ptolemaic 
view of the atomic universe, the nucleus would appear to orbit about you. As such, it would present a magnetic 
field 

�
B  as suggested by the classical analogy of the field due to a current in a loop (see Equations 3.99 and 3.100). 

Now, as an electron, you have a magnetic moment 
�
µΒ  due to your own intrinsic spin, so you would experience 

a “spin–orbit” interaction of energy E BSO B= −
� �
µ · . When this energy is cast in the form of a quantum mechani-

cal operator, it is found to depend on the operator 
� �
L S· , since the field 

�
B  is proportional to the orbital angular 

momentum 
�
L and the magnetic moment 

�
µΒ  is proportional to the spin angular momentum 

�
S . The vectors 

�
L 

and 
�
S  add to give the total angular momentum 

�
J , and the energy of the perturbed states depends on a new 

quantum number J found by applying the triangle rule to the addition of L and S. In other words, each term 
2S+1L is split by spin–orbit coupling into a number of new states indexed by 2S+1LJ, where J is found from

 J L S L S L S= + + − … −, , ,1  (7.33)

The spin–orbit interaction depends strongly on the atomic number of the atom, becoming more important 
for heavier atoms. For a one-electron atom, the perturbation operator for spin–orbit coupling is

 
ˆ ·′ = ( )H

m c r

dV

dr
l sSO

e

1

2 2 2

� �

 
(7.34)

where V = −Ze2/4πε0r is the electron–nucleus potential. For the case of a many-electron atom, the operator 
ˆ ′HSO  is the sum over all the electrons of terms like Equation 7.34. It can be shown that in the many-electron 

case the perturbation operator is proportional to 
� �
L S· ,  and that the magnitude of the spin–orbit perturbation 

is approximately proportional to Z4. This is a strong dependence on atomic number, and leads to the heavy 
atom effect, whereby the mixing of the spin and orbital angular momentum quantum numbers in molecules 
containing heavy atoms is so strong that the usual spin selection rule, ΔS = 0, is called off. (Selection rules for 
many-electron atoms are considered in the next section.)

Let us designate a state corresponding to the term symbol 2S+1LJ by the ket vector |JMJ; LS〉. The nota-
tion for this ket vector is consistent with that used on the left-hand side of the Clebsch–Gordan series in 
Equation 7.25. The notation |JMJ; LS〉 keeps track of the good quantum numbers. The quantum numbers ML 
and MS are no longer good because the state |JMJ; LS〉 is a linear combination of states with different values of 
ML and MS. The operators L̂2, Ŝ2 , and Ĵ 2 commute with ˆ ˆ ˆH H HSO= + ′0 , so L, S and J are all good quantum num-
bers, provided the spin–orbit perturbation is weak compared to the energy separation of different terms. Thus
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Figure 7.2 The yellow emission doublet of the sodium atom.
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This gives us a way to evaluate the spin–orbit splitting, using the following trick:
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The above equation derives from the fact that the total angular momentum 
�
J  is a vector sum of 

�
L and 

�
S . It is 

useful because
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We can now use perturbation theory to find the change in energy due to the spin−orbit interaction. The zero-
order states are the wavefunctions specified by |JMJ; LS〉, and we evaluate the expectation value of Ĥ SO′  with 
respect to this state to get the first-order correction to the energy:
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(7.40)

The spin–orbit coupling constant A has been introduced. It depends on L and S and the electronic configuration, 
but not J. Thus A determines the spin–orbit splitting within a multiplet 2S+1L. It is generally positive for terms 
arising from less than half-filled shells, and negative for shells which are more than half-filled. The former are 
referred to as regular multiplets and the latter are called inverted multiplets. The effect of spin–orbit coupling on 
the energy levels associated with the p2 configuration is shown in Figure 7.3.

We have avoided much quantum mechanical detail in writing this constant A, for it depends on the electron–
nuclear potential and the electronic structure of the atom. For spectroscopic purposes, we consider it to be a 
number which can be determined from experiment. In order to see how, we need to look at selection rules 
for many-electron atoms.
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Figure 7.3 The effect of spin–orbit coupling and an external magnetic field on energy levels derived from a 
p2 configuration.
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7.3 SELECTION RULES FOR ATOMIC ABSORPTION AND EMISSION

7.3.1 e1, m1, and e2 allowed TransiTions

Now that we have a procedure for labeling a state with its good quantum numbers, we need to consider what 
changes are permitted in those quantum numbers for E1, E2, and M1 selection rules. In other words, we 
consider a transition 2 1 2 1S

J
S

JL L+ ′+
′↔ ′  and find which matrix elements 〈 ′ ′ ′ ′JM LS O J M L SJ J; | ;�   are nonzero, 

where Ô is the appropriate operator, such as µ̂  for an E1 transition. Having worked out the rules for the case of 
the one-electron atom, and knowing how to combine one-electron states to get wavefunctions for the many-
electron case, it is straightforward, though tedious, to derive the selection rules. A key idea behind the selec-
tion rules for many-electron atoms is that the dipole moment operator 

� �
μ = − ∑e rii

 is the sum of one-electron 
contributions. Here, we summarize the selection rules (see Table 7.2) and try to make them plausible.

For E1 selection rules, we have ΔL = 0, ±1, except that L = 0 cannot go to L′ = 0 and Δl cannot equal zero 
for the electron that jumps. These selection rules are similar to the one-electron case, with the additional per-
mission for L to change by 0. In the case of a one-electron atom, Δl = 0 would violate conservation of momen-
tum for an E1 transition and is therefore forbidden. Recall that the photon has angular momentum, so an 
absorbed or emitted photon must impart or destroy one unit of angular momentum in the atom. So how does 
a transition having ΔL = 0 become allowed in the many-electron atom? Consider a transition 3P → 3P, where 
one state derives from a configuration s1p1 and the other from p2. The transition dipole moment operator is 
the sum of −eri

�
 for all electrons i. The transition can be thought of as promoting the s electron to a p orbital, 

which does conserve angular momentum and for which the one-electron selection rule Δl = ±1 is satisfied. 
The transition from one S state to another S state remains forbidden; there is simply no way to accomplish this 
if only one electron undergoes a change of Δl = ±1.

The selection rules for J are similar to those for L. For E1 allowed transitions, we have ΔJ = 0, ±1, except that 
J = 0 cannot go to J′ = 0. The reasoning derives from angular momentum considerations as in the preceding 
paragraph. As for spin, the selection rule ΔS = 0 can be considered to be less and less firm as the atomic number 
increases. The reason is that as Z gets larger spin–orbit coupling gets stronger, and the quantum numbers L 
and S become less good. The breakdown in the spin selection rule can be considered to result from mixing of 
the pure spin states. For a light atom such as helium, we expect ΔS = 0 to hold for E1, E2 and M1 transitions. 
One of the strongest lines in the emission spectrum of mercury is that due to the transition 3P1 → 1S0 at 253.7 nm. 
However, the spin-allowed 1P1 → 1S0 transition at 184.9 nm is stronger still. Some of the mercury atom tran-
sitions connecting the ground and valence electron excited states are displayed in the Grotrian diagram of 
Figure  7.4. For comparison, the emission spectrum of a high-pressure mercury vapor lamp is displayed in 
Figure 7.5. The atomic transitions seen there show the effects of pressure broadening, resulting from collisions 
that shorten the excited state lifetime and cause instantaneous shifts in the transition frequency.

The M1 selection rules are also similar to the one-electron case and are based on matrix elements of the 
operators ˆ ˆ ,O Lx=  ˆ ,Ly  and L̂z. The result is that ΔJ = 0, ±1 and ΔL = 0, ±1, except that it is forbidden for J = 0 to 
go to J′ = 0. The E2 selection rules are obtained by consideration of products of E1 matrix elements. This gives 
ΔL = 0, ±1, ±2, and ΔJ = 0, ±1, ±2. As for the E1 case, whether or not ΔS = 0 is a strict selection rule depends on 
the strength of the spin–orbit coupling.

Electric dipole selection rules forbid transitions between states arising from the same configuration, due 
to the condition that Δl must equal ±1 for the electron that makes the transition. Take the previous example 

Table 7.2  Selection rules for transitions of many-electron atoms (See text 
for exceptions)

Allowed transitions

E1 ΔL = 0, ±1 ΔJ = 0, ±1 ΔS = 0

M1 ΔL = 0, ±1 ΔJ = 0, ±1 ΔS = 0

E2 ΔL = 0, ±1, ±2 ΔJ = 0, ±1, ±2 ΔS = 0
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of the carbon atom, where the ground configuration gives rise to the terms 1S0, 3P0, 3P1, 3P2, and 1D2. The spin 
selection rule prevents all but the 1S ↔ 1D transition, but this is forbidden because ΔL = 2 is E1 forbidden. Note 
that the transitions within the 3P multiplet are permitted by M1 selection rules, which allow Δl = 0, but these 
should be quite low in frequency for a light atom such as carbon.

Figure 7.6 shows some of the energy levels and transitions for Ar+, which will be discussed in Section 7.5. 
This example illustrates the selection rules as well as violations thereof. The splittings within each multiplet 
can be used to find the spin–orbit coupling constant A of Equation 7.40, as will be shown in Problem 6.

7.3.2 hyperfine sTrucTure

At still higher resolution than that required to observe spin–orbit coupling, splittings are observed that may 
be attributed to nuclear effects. In atomic samples which contain naturally abundant isotopes of an element, 
fine splittings can be observed which are the result of the effect of nuclear mass. In the case of the hydrogen 
atom, for example, weak companion lines less than 0.2 nm from the main transitions are due to deuterium and, 
in fact, were of historical importance in demonstrating the existence of this isotope of hydrogen. For the one-
electron atom, the small effect of nuclear mass enters into the evaluation of the reduced mass that appears in the 
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expression for the Rydberg constant. For many-electron atoms the effect of nuclear mass is not so easily predicted, 
but experiment bears evidence of its importance. Isotope effects in atomic spectra can also result not just from the 
mass but also from the finite size and nonspherical shape of the nucleus. As an example, the emission spectrum 
of Zn shows a strong line at 621.5 nm due to an electronic transition of 64Zn. Weaker emission lines 0.095 and 
0.189 nm to the red of this line are due to 66Zn and 68Zn, respectively. It is perhaps misleading to refer to these 
isotope effects as “splittings,” since the various lines arise from distinct chemical species.

A nuclear effect which does give rise to splittings is that due to nuclear spin. Many nuclei possess intrinsic 
angular momentum characterized by a nuclear spin quantum number I. Nuclei having even atomic numbers 
Z and even numbers of neutrons have zero spin. As was discussed in Section 3.4.3, intrinsic angular momen-
tum of a charged particle is associated with a magnetic moment, 

�
µmag  . For nuclear spin, this is given by

 

�
µ γmag

N

p
N

g e

m
I I= =

2  
(7.41)

Equation 7.41 contains the nuclear g-factor gN and gyromagnetic ratio γN, introduced in Chapter 3, which 
depend on the atomic number Z and the mass of the proton. The inverse dependence of the magnetic moment 
on mass means that nuclear spin splittings are smaller than electronic spin splittings. The nuclear (I) and elec-
tronic (J) angular momentum can couple according to the triangle rule, resulting in a total angular momentum 
quantum number F = I + J, I + J − 1, …, |I − J|. Transitions between these states must satisfy the selection rules 
ΔF = 0, ±1 except that F = 0 cannot go to F′ = 0. The hyperfine energy correction due to the coupling of electronic 
and nuclear spin is given by
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(7.42)

Note the similarity between Equations 7.42 and 7.40.
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As an example, consider 23Na for which I = 3/2. A high-resolution spectrum of the previously mentioned 
yellow doublet reveals that each of the two lines is actually split into two by 0.022 Å. The hyperfine splitting 
of the lower 2S1/2 state is considerably larger than that of the upper 2P3/2 and 2P1/2 states. (Can you think of a 
reason why this might be so? Hint: Consider the form of the radial wavefunctions Rnl.)

7.4 THE EFFECT OF EXTERNAL FIELDS

The splitting of orbitals having different l and the same n, in many-electron atoms, results from the effect of 
interelectronic repulsion. For lighter atoms, this is a large effect compared to that of the internal magnetic 
field responsible for spin–orbit coupling. Now we consider what happens when an atom is placed in an external 
static field. The result, as we will see, is that some of the degeneracy of the term energies is lifted.

7.4.1 The Zeeman effecT

The Zeeman effect pertains to the spectroscopy of an atom in an external magnetic field. The field is assumed 
to be small enough to constitute a weak perturbation, so we can use first-order perturbation theory to evalu-
ate the effect on the energy levels. The perturbation operator is ˆ ′ = − ⋅H BB mag

� �
μ  where 

�
µmag    is the magnetic 

dipole moment operator and 
�
B  is the magnetic field. We have used a subscript mag to distinguish the magnetic 

dipole moment from the electric dipole moment, but from here on we will drop it in favor of the subscripts 
L, S, and J to label the orbital, spin, and total magnetic moments, respectively.

It is most convenient to decide that whatever the direction of the field in the laboratory, we should call that 
the z direction. The reason is that the z component of total angular momentum is quantized. The projection of 
the net angular momentum J onto the field direction is quantized as in Figure 7.7. The quantum mechanical 
uncertainty in the x and y components of angular momentum is in complete accord with the classical expres-
sion for the torque 

�
T  which is equal to 

� �
µB B× . The torque is always perpendicular to the plane defined by 

the magnetic moment and the magnetic field, so the magnetic moment must precess about the field on the 
surface of a cone. As Figure 7.7 suggests, we can view the L and S vectors as precessing about the direction 
of J, while the net angular momentum J precesses about the direction of the field. The projection of the vector �
J  onto the z direction is M J� , and we need to know the component of the magnetic moment in this direction, 
μz. Here, μz denotes the projection of 

�
µ J   onto the field.

By choosing the z direction to be that of the field, the perturbation operator reduces to ˆ ′ = −H BB zμ . Now, 
from Chapter 3, recall that the orbital and spin components of the magnetic moment are given by
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Figure 7.7 Precession of 
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J about an external magnetic field 
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B.
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� �µS = +( )e
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e
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(7.44)

Because the proportionality connecting the magnetic moment to the angular momentum is different for the 
orbital and spin contributions, and since the net angular momentum J is the vector sum of L and S, the net 
magnetic moment does not have the same direction as J. We need to find the connection between the net angu-
lar momentum and the total magnetic moment 

�
µ J  . This requires what is known as the Landé g-factor. It will 

allow Equations like 7.43 and 7.44 to be written for the total magnetic moment:
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where the Bohr magneton μB, introduced in Chapter 3, has been substituted for e me�/2 . The total magnetic 
moment has a magnitude |μJ|, which can be found by projecting the components due to orbit and spin onto 
the direction of 

�
J :

 µ µ µJ L SL J S J= +cos( , ) cos( , ) (7.46)

where (L, J) represents the angle between the 
�
L and 

�
J  vectors, and similarly for (S, J). Putting the previous 

equations together yields

 g J J L L L J S S S J( ) ( ) cos( , ) ( ) cos( , )+ = + + +1 1 2 1  (7.47)

The cosines can be found as follows:
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Equations 7.48 and 7.49 are obtained with the help of the expression for 
� �
L S·  given in 7.39. Solving for the 

cosines and inserting the resulting expressions into Equation 7.47 gives the Landé g-factor:
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The operator for the total electronic magnetic moment is
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and the z component is
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We can now find the first-order correction to the energy by taking the expectation value of the perturbation 
operator with respect to the zero-order states. The perturbation operator is ˆ ˆ /′ = − =H B g BJB z B zμ μ � .

 
E JM LS JM LS gBMHB J J B JB

( ) ; ;1 = =′� μ
 

(7.53)

Equation 7.53 shows that the degeneracy of the 2J + 1 states having the same J is lifted by the application of 
a magnetic field. It also predicts that the splitting of energy levels increases with field strength. The effect of a 
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magnetic field on states belonging to the 1D and 3P terms is illustrated in Figure 7.3. Figure 7.8 illustrates the 
Zeeman effect for the transition between the 2P1/2 and 2S1/2 states of an alkali metal atom. Transitions between 
the split states adhere to the selection rule ΔMJ = 0, ±1. The splitting of the transition between the 2P3/2 and 
2S1/2 states is left as an exercise. Note that the value of g is different for the upper and lower states, leading to 
a complex pattern in the spectrum. The type of splitting shown in Figure 7.8 was at one time referred to as 
the “anomalous Zeeman effect.” It was not really anomalous, just more complicated than the splitting pattern 
that results when the net spin is zero. When S = 0, J and L are equal and g = 1. We then refer to the “normal” 
Zeeman effect. For the example of Figure 7.9, the 1D2 → 1P1 transition is split into only three lines in the pres-
ence of the magnetic field.

1

–1
–2

2

M
J

∆M

E0

E0

B

µBB

P

0

1

–1
0

1–1 0=
J

1
1

D1
2

Figure 7.9 The ”normal“ Zeeman effect (S = 0, J = L, g = 1).

E
1

E
0

E
1

E
0

no field magneic field

E
1

E
0

g

P2
3/2

P2
1/2

1/2
2
/3

1/2

-1/2

-1/2

S2
1/2

= 2

g =

Figure 7.8 The “anomalous” Zeeman effect for the transition between 2P1/2 and 2S1/2. The effect of the field on 
the 2P3/2 → 2S1/2 transition is left as an exercise.



7.5 Atomic lasers and the principles of laser emission 167

7.4.2 The sTark effecT

The Stark effect refers to the application of an external electric field in spectroscopy. In the case of atomic 
spectra, there is no permanent dipole moment with which an electric field can interact. The field thus inter-
acts with the induced dipole moment and, as such, the perturbed energy levels are accounted for within 
second-order perturbation theory. Choosing the z direction to be that of the external field, the operator 
responsible for the Stark effect is ˆ ′ = −H eE zStark z i iΣ , where the sum is over the z-coordinates of all the electrons 
in the atom. This is similar to the operator which causes E1 transitions, except that the Stark field Ez is static*. 
Since an atom can have no permanent dipole moment, the first-order correction to the energy in the presence 
of the field Ez is zero, except for one-electron atoms. In the hydrogen atom, degenerate states such as 2s and 2p 
are mixed by the perturbation and result in a first-order splitting.

Without going into the theoretical details, it is worth noting that the perturbed energy levels are propor-
tional to the square of MJ. States with the same magnitude but opposite signs for MJ are perturbed in the same 
way. The effect of an electric field on the transitions characterizing the sodium-D emission is illustrated in 
Figure 7.10.

7.5 ATOMIC LASERS AND THE PRINCIPLES OF LASER EMISSION

As was shown in the previous chapter, amplification of light intensity by stimulated emission is possible 
when the excited-level population N2 exceeds the population N1 of the lower energy level. In this section 
we discuss how this population inversion is achieved in some common atomic lasers, and how the design 
of a laser cavity enables light amplification (or “gain”) to be sustained. The end result of laser emission is 
to create light with the following special properties: it is coherent, meaning that the emitted photons are in 
phase with one another; it is collimated, meaning that the emitted photons all share the same propagation 
direction (wave vector); it is intense, much brighter than ordinary sources of spontaneous emission; and 
it is, at least in the case of atomic lasers, very nearly monochromatic, meaning all photons have the same 
color. This tendency for emitted photons to share properties such as wavelength and wave vector is a natural 

* Practical considerations make it preferable that Ez vary in time in order to employ phase-sensitive detection. However, 
the oscillation frequency is quite slow compared to the time scale for electronic motion, so the external field can be con-
sidered constant in time as far as the atom is concerned.
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consequence of the stimulated nature of the emission: the stimulated photons cause photons to be emitted 
with the same properties, and these photons in turn can stimulate other photons with the same properties 
to be emitted, and so on.

Sustained laser emission requires energy input to maintain the nonequilibrium state of a population 
inversion. This is referred to as pumping. The energy to pump a laser can be provided by an electric dis-
charge, an intense source of light, such as a flashlamp, or sometimes by another laser. The optical cavity 
of a typical gas laser is sketched in Figure 7.11. The gas is confined to a plasma tube, so named because the 
electric discharge used to provide the energy input results in a gas of ions. Two mirrors, one of which reflects 
slightly less than 100% of the incident light, permit most of the photons to bounce back and forth within 
the confines of the cavity, while a small portion of them are transmitted by the partially reflecting mirror 
(called the output coupler). The windows of the plasma tube are oriented at Brewster’s angle with respect 
to the long axis of the tube. As discussed in Chapter 2 and shown in Figure 2.7, the vertically polarized 
(i.e., p-polarized) light is completely transmitted by the Brewster window, while the horizontal (s-polarized) 
component is strongly reflected. The result is that horizontally polarized light is rejected by reflections at the 
tube windows, while the vertically polarized light is transmitted and can undergo repeated transits between 
the mirrors. The light emerging from the laser is thus vertically polarized. For continuous laser emission, the 
gain that results from amplification by stimulated emission must exceed the loss of light energy such as that 
due to imperfect reflectivity of the mirrors.

How does one thwart the natural tendency of the state populations to obey Boltzmann’s law? It would not 
be a good idea for only two levels to be involved in the pumping and lasing process. If one tries to achieve a 
population inversion by direct promotion of atoms from the ground to an excited state, eventually the popu-
lations will be equalized, and further net absorption and emission of light will cease. This is why lasers are 
usually based on at least three or four energy levels that participate in the upward (pumping) and downward 
(lasing) transitions. The lifetimes of these levels are of interest, because it is desirable for the lifetime of the 
upper state of the laser transition to exceed that of the lower state, in order to permit the population inversion 
to build up. The following examples of atomic lasers illustrate these ideas.

The helium–neon laser is a very common one; it is frequently used as an alignment laser in optical systems. 
The light emission is in fact due to neon, while helium is present to help to create the requisite population inver-
sion in Ne. Figure 7.12 shows the energy levels of both atoms and outlines some of the important events in the 
operation of the He–Ne laser. The initial excitation (the pump) is provided by an electric discharge. Electron 
impact excitation of electronic states does not adhere to the same selection rules as those imposed on optical 
transitions, so this is somewhat of a brute force approach to creating high-energy excited electronic states. When 
He atoms find themselves in the excited 1S and 3S levels, they are forbidden to return to the ground state by E1 
selection rules and are thus metastable. The lifetime of the excited He 1S state is on the order of a microsecond, 
while that of the 3S state is about 10−4 s. (Note that the spin-forbidden character of the emission from the triplet 
state leads to a longer lifetime than the singlet state, and that the triplet is lower in energy than the singlet.) 
Coincidentally, the 1S and 3S excited states of He are very close in energy to excited electronic states of Ne. Thus 
the excitation energy can be readily transferred from He to Ne. The terminal state of the Ne laser transitions is 
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Discharge
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Figure 7.11 A typical gas laser.
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not the ground state. This makes achieving a population inversion easier than it would be if one had to overcome 
the tendency of the ground state to have the largest population. The lifetime of the initial state of the laser tran-
sition exceeds that of the terminal state, another feature which helps lead to inverted populations.

The energy levels for excited neon atoms exhibit a type of angular momentum coupling which is peculiar 
to rare gas atoms. The configurations giving rise to excited states of Ne are of the type 2p5ns1 and 2p5np1. The 
problem reduces to one of two coupled electrons, since the hole in the 2p subshell contributes the same angular 
momentum as a single electron would. This core hole couples to the ns1 or np1 valence electron according to a 
scheme which reflects the fact that the electron in the excited orbital is only weakly coupled to the core. See [6] 
for a discussion of the pair-coupling scheme adhered to by rare gas atoms. Each 2p5ns1 configuration gives rise 
to four energy levels (and 12 states) while a 2p5np1 configuration comprises ten energy levels (and 36 states).

The lifetimes of the states pertaining to 2p5ns1 configurations are somewhat longer than those which derive 
from 2p5np1. This facilitates achieving population inversions of the 2p5ns1 states with respect to 2p5np1. The He–Ne 
laser is commonly employed to provide red light at 632.8 nm, but several lines in the infrared are also available.

Another laser that is widely employed for spectroscopy is the argon ion laser. The energy levels and laser 
transitions of the argon ion are shown in Figure 7.6. Note that the spin–orbit states are inverted (higher J 
states are at lower energies) as expected, since the p-shell is more than half-filled. The ground state 2P3/2 and 
2P1/2 levels derive from the 3p5 valence configuration. Promotion of one of the 3p5 electrons to higher energy 
orbitals results in doublet and quartet states as shown in Figure 7.6. An electric discharge of 4 to 5 eV provides 
the energy to ionize Ar atoms and populate highly excited states of Ar+. These high-energy states of Ar+ then 
tumble down the energy ladder to levels within the spin–orbit split 2S, 2P, 2D, and 4D multiplets. Two of the 
strongest transitions of the Ar+ laser, the green line at 514.5 nm and the blue one at 488.0 nm, result from 
spin-forbidden transitions from 4D to the 2P ground state! It may be surprising that strong laser lines derive 
from E1-forbidden transitions, but recall the discussion of lifetimes in the previous example. In addition to 
the nine visible transitions shown in Figure 7.6, the argon ion laser can provide several lines in the ultraviolet 
as well. The krypton ion laser operates on the same principles as the argon ion laser, providing wavelengths in 
the red, the most intense being 647.1 nm.

Another widely used laser based on atomic transitions is the neodymium–YAG laser. This laser oscillates 
on a transition of the Nd3+ ion in a matrix of yttrium aluminum garnet (YAG) or Y3Al5O12. Since Nd is a very 
heavy atom, the spin–orbit interaction produces quite large splittings. And since the ground electronic con-
figuration includes the partially filled f orbitals ( f 3), quite high values of L result. Figure 7.13 shows the energy 
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levels relevant to the Nd–YAG laser. The ground state term is 4I, where the letter I indicates that L = 6 for this 
term. This term is split into states with J = 15/2, 13/2, 11/2, and 9/2. The 4I11/2 state is the terminal state in the 
1.06 μm laser transition, and it lies about 2000 cm−1 above the ground state 4I9/2. The laser transition from 4F3/2 
to 4I11/2 is forbidden by E1, M1, and E2 selection rules! Figure 7.13 only shows the energy levels of the free ion, 
and in the crystalline host there are splittings that arise from the local field of the Nd3+ ion.

The Ti:sapphire laser has come to be indispensable in time-resolved and nonlinear optical spectros-
copy experiments. This laser provides tunable emission from the red to the infrared, ranging from about 
650 to 1100 nm. The laser medium consists of the mineral corundum (Al2O3) doped by a small amount 
of Ti3+, on  the order of 0.1% or less. Ti3+ has a d1 outer-shell configuration, hence the free ion has a 2D 
ground state. While spin–orbit coupling does result in splitting of this level, more significant is the so-
called crystal field splitting of the ion resulting from interactions with surrounding ions. Group theo-
retical considerations of the splitting of transition metal ions in metal-ligand complexes are discussed in 
more detail in Chapter 11. Here, we note that Ti3+ substitutes for Al3+ at sites with three-fold symmetry. 
Interactions with the surrounding atoms split the 2D level of Ti3+ into a triply degenerate lower level, with 
group theoretical designation 2T2, and a doubly degenerate 2E level, separated by about 19,000 cm−1. (We are 
referring to the spatial component of the degeneracy here, which is multiplied by two to get the total degen-
eracy.) However, each of these levels is further split by Jahn–Teller interactions which lift the degeneracy 
of orbital- degenerate electronic states via a nontotally symmetric vibration, also discussed in Chapter 11. 
The absorption spectrum of Ti:Al2O3 is further broadened by vibrational transitions as well as Jahn–Teller 
splitting and consists of two maxima at about 490 and 550 nm. Laser emission is initiated by a green pump 
laser, such as an Ar ion laser operating at 514 nm or the frequency-doubled output of a Nd–YAG laser. 
The broad fluorescence spectrum of Ti:Al2O3 peaks at about 760 nm and has a lifetime of about 3.2 μs. 
This fluorescence is the basis for the laser emission. However, the terminal state of the laser transition is not 
the ground state, but a higher lying component of the split 2T2 level. This excited state has a much shorter 
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lifetime than the 3.2 μs lifetime of the initial state, facilitating population inversion. The breadth of the 
laser emission is a key to the tunability of the laser and the ability to generate pulses as short as about 6 fs. 
The latter feature arises from the Fourier-transform relationship between the temporal profile of the pulse 
and its frequency spectrum, to be discussed in Chapter 14.

The boundary conditions presented by a laser cavity, such as the one pictured in Figure 7.11, lead to restric-
tions on the allowed wavelengths and also dictate the intensity distribution of the beam profile. The standing 
waves supported by a cavity of length L are those having nodes at the ends of the cavity. This leads to longi-
tudinal cavity modes, which are the permitted wavelengths λn = 2L/n, where n is an integer. The frequency 
spacing of the longitudinal modes in wavenumbers is therefore ∆ �ν =1 2/ L . For a typical cavity length of one 
meter, the spacing of the longitudinal modes is 0.005 cm−1 or 150 MHz. A typical Doppler width in a gas laser 
might be 1500 MHz, and a typical radiative lifetime of about 10−7 s contributes only 10 MHz to the linewidth. 
Using Equation 6.47 for the Doppler width, this translates into quite a high temperature, as you will show in 
Problem 11. The Doppler profile spans a number of longitudinal modes, and the laser can emit all of these 
simultaneously. For high-resolution work, however, one can select one of these very sharp lines by insert-
ing an etalon in the cavity. An etalon is much like a smaller version of the optical cavity of the laser, in that it 
consists of two partially transmitting mirrors separated by a distance l that is small compared to L. Constructive 
interference is possible only for those wavelengths which satisfy the boundary conditions of the etalon, λn = 2l/n. 
These etalon modes are much more widely spaced than the longitudinal modes of the laser, thus the etalon can 
be tuned to select one of the allowed modes within the Doppler profile.

The transverse modes are intensity profiles that result from the boundary conditions in the two direc-
tions perpendicular to the long axis of the laser. It is usually preferred for a laser to operate in what is called 
TEM00, where TEM stands for transverse electromagnetic mode. TEM00 is also called a Gaussian mode 
because the intensity decreases as exp(−r2) where r is the distance from the center of the beam in the trans-
verse direction, as discussed in Chapter 2. The image of the TEM00 mode is a round spot, while the intensity 
profiles of higher mode TEMlm have nodes. The subscripts l and m indicate the number of these nodes in 
each of the two transverse directions, such that TEM10 and TEM01 images show two spots, TEM11 shows four 
spots, and so on.

Lasers which provide continuous output are referred to as cw (continuous wave) lasers. Of great utility to 
time-resolved spectroscopy are pulsed lasers, which provide laser emission in short pulses of nanosecond, 
picosecond, and femtosecond duration. Pulses which are shorter in time are inherently broader in frequency. 
Pulsed lasers are of interest when high instantaneous powers are desired, since the emitted energy is of very 
short duration. They are therefore used in nonlinear spectroscopy experiments. The technology for producing 
short laser pulses is discussed in [7].

7.6 SUMMARY

In this chapter, we have considered the selection rules for electronic transitions in one-electron and many-
electron atoms. The spectra of common gas-phase atoms and ions have been available for some time, as 
noted in the introduction, but continue to hold our interest. The study of highly excited Rydberg states, for 
which the outermost electron is so far removed from the core that hydrogen-like energy levels result, is one 
example. These Rydberg states may be found in molecules and in nanoparticles such as semiconductor quan-
tum dots, providing further motivation for the study of atomic spectra. The splittings induced by internal 
and external fields are also of interest in molecular spectra, though most of the good quantum numbers of 
this chapter do not apply to molecular electronic states. An exception is the spin quantum number, which is 
a good quantum number in molecules having sufficiently weak spin–orbit coupling. We now proceed to the 
study of molecular spectra, for which the rotational and vibrational states, in addition to electronic, provide 
additional interest and complexity compared to atomic spectra. For more details on atomic spectroscopy, the 
reader is  encouraged to consult [8] and [9].
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PROBLEMS
 1. Compute the transition dipole and oscillator strength for the following hydrogen atom transitions 1s ↔ 3p0 

and 1s ↔ 4p0.
 2. Explain why hydrogen atom E1 transitions having Δl = 0 are forbidden by symmetry.
 3. Compute the three lowest energy transitions in the Lyman series for deuterium and compare to the 

same lines in hydrogen.
 4. Figure out the term symbols associated with the following configurations: (a) s1p5 (b) p3 (c) p1d1 and 

(d) 2p13p2. For each case, decide the order of the term energies, and sketch a diagram showing how each 
term is split by spin–orbit coupling.

 5. Are two-electron transitions permitted by electric dipole selection rules? To arrive at your answer, first 
consider the wavefunction to be a simple product of spin–orbitals. (This is called a Hartree product.) Is 
your conclusion different if the state is represented by one or more Slater determinants?

 6. Refer to the energy level diagram for Ar+ given in Figure 7.6 and find the spin–orbit coupling constant 
A for the ground state 2P and excited state 4D terms. Predict the wavelength of the transition from the 
4D3/2 level to the 2P3/2 level of the ground state term.

 7. The 2P → 2S transition of Li is split by 0.34 cm−1. Find the spin–orbit coupling constant for the 2P multi-
plet and compare to the values found in the previous problem for Ar+.

 8. For each transition in Figure 7.6 state whether or not it is permitted by E1, M1, and E2 selection rules.
 9. Compute the Landé g-factor for the 2P3/2 state of Figure 7.8 and complete the sketch of the field-induced 

splittings. Calculate the splittings, in wavenumbers, for a magnetic field of 1.50 Tesla.
 10. Sketch the effect of a 10 kG magnetic field on the transition responsible for the 514.5 nm line of the 

argon ion laser. Compute the wavelengths of the allowed transitions.
 11. Compute the effective temperature of Ne atoms emitting at 632.8 nm if the Doppler broadening is 1500 MHz.
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8

Rotational spectroscopy

8.1 INTRODUCTION

The rotational energy levels of molecules are active in microwave and far-infrared (IR) spectroscopy and in 
light scattering experiments. The absorption or emission of light due to rotational motion is allowed only 
for polar molecules, although nonpolar ones can absorb weakly through induced moments. Light scattering 
due to rotations is permitted whenever the polarizability is anisotropic. In this chapter, we discuss two types 
of pure rotational spectra, microwave/far-IR and rotational Raman scattering. With these techniques, it is 
possible to resolve quantized rotational energy levels for freely rotating (gas phase) molecules. Rotational 
spectroscopy is often applied to the determination of structure and dipole moments of small molecules, the 
latter through the use of the Stark effect. Being more closely spaced than vibrational and electronic energy 
levels, rotational quantum levels can contribute to fine structure in vibrational and electronic spectroscopy 
of gases. In addition to rotational motion of the entire molecule, some molecules undergo internal rotation 
about single bonds, which ranges from being quite hindered to relatively free. Molecules in liquids do not 
rotate freely, as a rule, and their reorientational motion is more difficult to treat quantum mechanically and 
does not lead to discrete spectral lines. An exception to this rule is discussed in Section 8.4, where the rota-
tional Raman spectrum of H2 dissolved in water is analyzed. Still, there are spectroscopic manifestations of 
reorientational motion in liquids, which will be considered in the discussion of depolarized Rayleigh scatter-
ing. (See also Chapter 5.)

8.2 ENERGY LEVELS OF FREE RIGID ROTORS

The quantum mechanical solution to the rigid rotor problem is an example of a model for which the Schrödinger 
equation is exactly solvable. In this section, we review the treatment for a diatomic molecule and extend it to 
the case of polyatomic molecules having different degrees of symmetry. There are two important caveats to the 
treatment of this section. The first is that it applies to rigid molecules, while real molecules undergo vibrational 
motion, even at absolute zero. What is derived for rigid rotors is a good approximation provided the amplitude 
of vibrational motion is small. The second point to keep in mind when comparing theory to reality is that a 
free rotor experiences no angular dependent forces (torques), so what is predicted by theory does not apply for 
liquids, solids, or even dense gases where intermolecular interactions come into play.

The first mathematical chore at hand is to separate the external motion of the molecule (translation) from 
the internal motion (vibration and rotation). This can be accomplished without approximation and will be 
described for the simplest case, that of a diatomic rotor. The further separation of vibration (to be treated 
later) from rotation is exact only for the rigid rotor.

8.2.1 Diatomics

Imagine a diatomic molecule as two masses, MA and MB, connected by a rigid rod and moving in a laboratory 
frame of reference (XYZ) as shown in Figure 8.1.

The kinetic energy operator is given by
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M M
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A
A

B
B= − ∇ − ∇

� �2
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2
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2 2  
(8.1)
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where ∇ = ∂ ∂ + ∂ ∂ + ∂ ∂A A A AX Y Z2 2 2 2 2 2 2  operates on the lab-frame coordinates of atom A and similarly ∇B
2  

operates on those for atom B. The subscript N on the operator stands for nuclear motion (we ignore the 
electrons for now), which comprises translation, rotation, and vibration. Equation 8.1 is correct but not con-
venient, because the two nuclei do not move independently of one another. So imagine a second coordinate 
system (xyz) which is parallel to the lab-frame Cartesian directions, but has as its origin the center of mass of 
the molecule. The position of the center of mass, which translates with the molecule, is given by

 

� � �
R

M R M R

M M
CM

A A B B

A B

=
+
+  

(8.2)

The internal coordinate system embedded in the molecule is more easily treated in polar coordinates, 
x y z R, , ( , )( ) ⇒ θ ϕ, , with the radial coordinate designated as the internuclear distance:

 
� � �
R R RA B= −  (8.3)

As will be shown in Problem 1, we can transform the kinetic energy operator from the coordinate system (XA, 
YA, ZA, XB, YB, ZB) to one that depends on the internal coordinates and the position of the center of mass. The 
result is

 
T̂

M
N CM int= − ∇ − ∇

� �2
2

2
2

2 2µ  
(8.4)

where the reduced mass is

 
µ =

+
M M

M M
A B

A B  
(8.5)

and the total mass is M = MA + MB. The operators ∇CM
2  and ∇int

2  operate on the center of mass and internal 
coordinates, respectively.

The importance of Equation 8.4 is that the external and internal coordinates have been separated. The 
first term applies to the translational motion of the molecule as a whole, which behaves as if the total mass M 
were concentrated at the center of mass. We are not interested in this at the moment, although translational 
motion has spectroscopic consequences (such as Doppler broadening). We concentrate instead on the second 
term. If we were inclined to treat vibrational motion at this point, we could add to the operator for internal 
kinetic energy one that represents the potential energy as a function of internuclear distance, V(R). But since 
our rotor is rigid, this is a constant which we take as zero for convenience. The problem of converting the 
operator ∇int

2  from Cartesian to polar coordinates is an exercise that may be familiar because it is encountered 
in the solution to the Schrödinger equation for the hydrogen atom or any other two-body problem. We will 
just refer to the result of that exercise:
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Figure 8.1 Internal and external coordinate systems.
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For the rigid rotor, we take R = Re, the equilibrium internuclear distance. Since this is constant, the deriva-
tives with respect to R can be dropped, leaving us with the last term, which contains the square of the angular 
momentum operator:

 
ˆ

sin
sin

sin
L2 2

2

2

2

1 1
= −

∂
∂

∂
∂







 +

∂
∂









�

θ θ
θ

θ θ ϕ  
(8.7)

The eigenfunctions of the L̂2 operator are the ubiquitous spherical harmonic functions, YJM(θϕ), which arise 
in problems having spherically symmetric potential energy. The important thing to recall is that YJM(θϕ) can 
be separated into a product of two functions: a function of θ (one of the associated Legendre polynomials, 
a power series in cosθ), and a simple function of ϕ, eiMϕ. The quantum number J (compare to the quantum 
number l for the hydrogen atom problem) pertains to the magnitude of the angular momentum, while M 
designates the Z component of angular momentum in the laboratory frame. The eigenvalue relationships are

 
ˆ ( ) ( )L Y J J YJM JM

2 2 1θϕ θϕ= +( )�  (8.8)
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The quantum number J can equal 0, 1, 2, …, ∞, and for each value of J, M ranges from −J to J in integral steps. 
It is now straightforward to express the Hamiltonian for the rigid rotor:
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where the moment of inertia I Re e= µ 2 has been introduced. Thus the rotational energy levels are given by
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and the degeneracy of each level, gJ = 2J + 1, is equal to the number of allowed values of M. This degen-
eracy reflects the fact that the energy does not depend on the orientation of the angular momentum in the 
lab frame. The rotational constant for a diatomic molecule is defined as Be = h/(8π 2Ie) in s−1. Alternatively, 
�B h I ce e= / ( )8 2π  in cm−1, so the energy can be expressed as Erot = hBe J(J + 1) or E hcB J Jrot e= +� ( )1 . The sub-
script e reminds us that the expressions hold for R = Re. Sometimes, we will drop the subscript to be more 
general. The spectroscopic determination of the rotational constant enables the bond length of a diatomic to 
be calculated. We shall see that a vibrating molecule in its lowest vibrational state has an average value of R 
which exceeds Re, due to anharmonicity, causing the observed rotational constant for a nonrigid rotor to be 
less than Be.

8.2.2 Polyatomic rotations

The specification of the orientation of a nonlinear molecule requires three angles, and thus three rotational 
quantum numbers are associated with the wavefunctions. (Compare to two angles and two quantum num-
bers for a linear molecule.) The orientation is most conveniently expressed in terms of the Euler angles (ϕθχ) 
as shown in Figure 8.2.
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Again, the coordinate system designated by uppercase letters (XYZ) represents the space-fixed or labo-
ratory frame, while the lowercase letters (xyz) refer to a coordinate system fixed in the molecule. If the 
molecule has some symmetry, we would be smart to take the z direction as one of the symmetry axes, for 
example the n-fold rotation axis of a molecule belonging to a Cnv point group. The orientation of the mol-
ecule with respect to the lab is envisioned in terms of the three-step process of rotating (XYZ) into (xyz) 
as follows: 

Step 1. Imagine that both coordinate systems coincide at the start, and rotate the molecule-fixed system by 
the angle ϕ about the Z axis. This takes (XYZ) into (X′Y′Z′).

Step 2. The (X′Y′Z′) frame is rotated about the Y′ axis by the angle θ, which results in the frame (X″Y″Z″). 
If we were dealing with a linear molecule, we would be done at this point, but a nonlinear one requires 
one more step.

Step 3. Rotation by the angle χ about Z″ takes (X″Y″Z″) into (X″′Y″′Z″′) = (xyz).

In order to appreciate the Euler angles, it may be necessary to stare at Figure 8.2 for a while. The following 
conclusions have physical significance in the discussion of angular momentum: the angles θ and ϕ are the 
polar angles which specify the direction of the molecule z axis, in the spaced-fixed frame, and the angle χ is 
the angle of rotation of the molecule frame about its own z axis. Angular momentum operators for rotations 
about the specific axes are
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Components of the angular momentum along directions other than Z, z and Y′ are slightly more compli-
cated. For example, the two remaining components in the molecule frame are
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The magnitude of the total angular momentum does not depend on the coordinate system in which it is 
expressed. The sum of the squares of the three components is the same in either frame of reference:
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Figure 8.2 The Euler angles.
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The operators L̂2, L̂Z
2 , and L̂z

2  commute with one another, so they share a set of common eigenfunctions, known 
as the Wigner rotation functions (Appendix A):

 D DMN
J

MN
J( ) ( )Ω = θϕχ  (8.16)

We employ the shorthand notation (Ω) = (θϕχ) to designate the Euler angles. The Wigner functions are gen-
eralizations of the spherical harmonics. In fact, when either quantum number M or N is zero, the D’s reduce 
to Y’s. The form of the Wigner functions is

 D e d eMN
J iM

MN
J iN( ) ( )θϕχ θϕ χ= − −

 (8.17)

where dMN
J ( )θ  is a real function whose form will not concern us here. (See [1], where many useful properties 

of the Wigner functions are discussed.) The eigenvalue equations are
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The quantum numbers N and M each range independently from −J to J in integral steps. As eigenfunctions of 
Hermitian operators, the Wigner functions form a complete orthonormal set, although they are not normal-
ized to unity, as shown by the relationship:

 
d D D

J
MN
J

M N
J

NN MM JJΩ Ω Ω( ) ( )∗
′ ′

′
′ ′ ′∫ =

+






8

2 1

2π δ δ δ
 

(8.21)

Equation 8.21 employs the following shorthand notation for the triple integral:
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Equations 8.18–8.20 clarify the physical meaning of the quantum numbers associated with DMN
J ( )Ω . J is asso-

ciated with the total angular momentum, and M gives the Z component in the lab frame. The quantum num-
ber N determines the z component of the angular momentum in the frame of the molecule, so it represents 
the molecule spinning about its own symmetry axis (if it has one, otherwise, the z direction is arbitrary).

The inertia of a three-dimensional figure is actually a second-rank tensor, with components Ixx, Ixy, etc., 
but a proper choice of axes diagonalizes the tensor:
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The moments of inertia, Ia, Ib, and Ic, one for rotation about each of three mutually perpendicular axes that 
intersect at the center of mass, are given by
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where Rai is the perpendicular distance of atom i from the a axis of rotation and similarly for the b and c com-
ponents. By convention, Ia ≤ Ib ≤ Ic. The inertia of a generally shaped molecule can be visualized with the help 
of its ellipsoid of inertia, as shown in Figure 8.3. The lengths of the axes of this ellipsoid are proportional to 
the inverse square root of the inertia for rotation about that axis. (How would you picture the inertial ellipsoid 
for a linear molecule?) We will classify the rotational behavior of nonlinear molecules based on the symmetry 
of the inertial ellipsoid.

The classical expression for angular momentum about the i-th axis is Li = IiΩi, where Ωi is the angular 
velocity in radians per second. The kinetic energy of rotation is
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Now we have what we need to write the rotational Hamiltonian for a generally shaped molecule; we just 
replace the classical functions for the squared angular momentum with the corresponding operators:
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For molecules having two or three equal moments of inertia, the eigenfunctions of Ĥrot  are readily found. 
Unfortunately, many molecules of interest are asymmetric rotors, and only approximate solutions to the 
eigenvalue problem can be obtained. Let us look at symmetric molecules first. Spherical tops have three equal 
moments of inertia, so naturally the inertial ellipsoid is a sphere. Symmetric tops have two equal moments 
of inertia, a property shared by all molecules having at least threefold rotation symmetry or two twofold 
rotation axes. There are two types of symmetric tops, prolate symmetric tops, for which the unique moment 
of inertia is the smallest, and oblate symmetric tops, for which the unique moment of inertia is the largest. 
Examples of symmetric tops are illustrated in Figure 8.3. A symmetric top may or may not have a dipole 
moment, but when one exists its direction must coincide with the symmetry axis. It is convenient to define 
rotational constants corresponding to each inertial axis:
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Sometimes, these constants are expressed in units of cm−1, �A A c= / , etc.
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Figure 8.3 Inertial ellipsoid of (a) a prolate top, CH3CN and (b) an oblate top, C6H6.
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8.2.2.1 SPHERICAL TOPS

Spherically symmetric molecules, such as those belonging to the Td or Oh point group, have Ia = Ib = Ic ≡ I. CCl4 
and SF6 are spherical tops. The rotational Hamiltonian is
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The rotational eigenfunctions are the previously introduced Wigner functions: ψ θϕχJMK MK
JD( ) ( )= Ω . The 

rotational energy expression is identical to that for a diatomic molecule, E J J Irot = +( )1 22� / , but the degener-
acy is greater because both M and K take on values from −J to +J. Thus the degeneracy is gJ = (2J + 1)2. Spherical 
tops never have permanent dipole moments, so they are microwave inactive. In addition, the polarizability of 
a spherical top is isotropic, so pure rotational Raman scattering is forbidden.

8.2.2.2 PROLATE SYMMETRIC TOPS

For these molecules, the inertial components satisfy Ia < Ib = Ic. A cigar-shaped object serves as a caricature of 
the shape of a prolate top molecule. Axially symmetric molecules such as CH3CN and NH3 are prolate tops; 
it is easier to spin the molecule about the symmetry axis than about the two equivalent perpendicular axes. 
The Hamiltonian simplifies as follows:
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We can find the eigenfunctions of this Hamiltonian with the help of Equations 8.18–8.20. The symmetry axis 
of the prolate top is the molecule frame a-axis, which plays the role of the z axis in Equation 8.20. By conven-
tion, the quantum number pertaining to rotation about the symmetry axis is called K, so the eigenfunctions 
of 8.31 are written DMK

J , and the eigenvalues are found to be
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Note that compared to the previous example the lowered symmetry leads, as expected, to some lifting of 
the degeneracy. The energy levels of the symmetric top depend on two, rather than one, quantum numbers. 
Because the energy depends on K2, there is a twofold degeneracy associated with each level having K ≠ 0, in 
addition to the 2J + 1 factor that arises from the range of values for M. The degeneracy of states having the 
same absolute value of K reflects the fact that the rotational energy is independent of the sense of rotation 
about the molecular axis. The total degeneracy is gJ = 2J + 1 for K = 0 and gJ = 2(2J + 1) for K ≠ 0. Notice that, 
since Ia < Ib, the energy increases with K2, as shown in Figure 8.4.
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Figure 8.4 Energy level diagrams for symmetric tops, showing allowed absorption transitions.
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8.2.2.3 OBLATE SYMMETRIC TOPS

For these molecules, Ia = Ib < Ic. An oblate top molecule is disk shaped; benzene is an excellent example. The 
mathematics of finding the energy levels is identical to the prolate top problem, so we will skip the details and 
present the result:
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The degeneracies of the energy levels are of course the same as for the prolate top. However, since Ic > Ib, the 
energy levels decrease as K2 increases. Equation 8.33 could also have been written EJK = hBJ(J + 1) + K2h(C − B), 
and Equation 8.32 as EJK = hBJ(J + 1) + K2h(A − B). Figure 8.4 shows the energy level scheme for prolate and 
oblate tops. The arrangement of the energy levels anticipates the selection rule ΔK = 0, which will be derived 
in Sections 8.5 for microwave and 8.6 for Raman scattering spectra. In the meantime, it should be logical that 
rotation about the symmetry axis is both microwave and Raman inactive, since such motion has no effect on 
the lab-frame component of dipole moment or polarizability. This leads to the question: How can the moment 
of inertia about the symmetry axis be determined?

8.2.2.4 ASYMMETRIC TOPS

Even a molecule as simple as H2O is classified as an asymmetric rotor, for which Ia ≠ Ib ≠ Ic. There is nothing 
we can do to simplify the rotational Hamiltonian expressed in Equation 8.26. Since the operators L̂a

2 , L̂b
2 , and 

L̂c
2  do not commute with one another, they do not share a set of common eigenfunctions. Approximate solu-

tions to the problem take the Wigner functions as a basis (they form a complete set) and express a wavefunc-
tion for the asymmetric rotor as a linear combination of wavefunctions with different values of K:
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Since the operators L̂2 and L̂Z both commute with L̂a, L̂b, and L̂c , J and M are still good quantum numbers, but K 
is no longer a good quantum number. Each approximate wavefunction is a linear combination of 2J + 1 rotational 
wavefunctions with the same values of J and M, but different values of K. Some molecules with less than threefold 
rotational symmetry can have two inertial components which are close, making them “accidental” symmetric 
tops. The deviation of a molecule from being a symmetric top is quantified by the asymmetry parameter κ:
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The value of κ ranges from −1 for a prolate top to +1 for an oblate top. The asymmetry parameter can be 
used to qualitatively estimate the energy levels for a molecule with the help of the correlation diagram of 
Figure 8.5. This diagram displays the energy of the prolate rotor on the left side and that of the oblate rotor on 
the right, connected by lines that sketch how the energy varies with κ.

8.2.2.5 LINEAR MOLECULES

Linear polyatomic molecules, regardless of the number of atoms, have rotational energy levels just like those 
of diatomics. The moment of inertia is found using Equation 8.24, which for a linear molecule gives Ia = 0 and 
Ib = Ic. Linear triatomics such as CO2 and HCN have moments of inertia that depend on two bond lengths. In 
the case of a symmetric triatomic like CO2, a single measurement of B would allow the bond distance to be 
determined. For HCN, however, the inertia depends on two different bond lengths, so one measurement alone 
cannot determine the structure. The measurement of B for different isotopic derivatives, however, permits the 
bond lengths to be determined, as you will show in Problem 6. The invariance of bond length to isotopic sub-
stitution is a consequence of the Born–Oppenheimer approximation, to be discussed in Chapter 9.
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8.3  ANGULAR MOMENTUM COUPLING IN NON-1Σ 
ELECTRONIC STATES

In Chapter 11, we will consider the electronic angular momentum of diatomic molecules. Term symbols of 
the type 2S+1Σ, 2S+1Π, etc. will be introduced to designate the orbital and spin angular momentum of an elec-
tronic state. The uppercase Greek letter designates the orbital angular momentum, as described below. The 
term symbol also corresponds to the symmetry species of the electronic wavefunction in either the D∞h or C∞v 
character table, for homonuclear and heteronuclear diatomics, respectively. Closed-shell states of diatomics 
have no net electron spin or orbital angular momentum and are designated by the symbol 1Σ. In these states, 
the only component of the angular momentum is that due to motion of the nuclei.

Let us now look at diatomic molecules having term symbols other than 1Σ. Molecules such as O2 in its 
triplet ground state, all molecules having odd numbers of electrons, and many excited states of closed-shell 
molecules provide examples of non-1Σ species. The angular momentum due to electronic motion can couple 
(add vectorially) to that due to rotation, and the resulting effects show up in electronic or rotational spectra. 
In very high resolution spectroscopy, the coupling of the nuclear spin to other angular momenta (the hyper-
fine effect) must also be considered. The discussion here will be limited to the coupling schemes for electronic 
and rotational angular momenta that are commonly referred to as Hund’s cases (a) through (d). The calcula-
tion of angular momentum coupling in diatomic molecules is a job for perturbation theory, and it is possible 
to have strong enough coupling that “good” quantum numbers are lost. The range of various interactions 
among angular momenta leads to different mental pictures on which the process of coupling vectors is based. 
The four Hund’s cases (and a fifth one not discussed here because of its physical improbability) are idealiza-
tions which result when certain matrix elements of the coupling Hamiltonian can be neglected. In what 
follows, we will call J the total angular momentum, excluding nuclear spin, and O will represent the angular 
momentum due to rotation of the nuclear framework. Since the nuclei are point masses and we are treat-
ing linear molecules, the vector O is always perpendicular to the bond. Bold typeface will designate  vector 
quantities and regular typeface the corresponding quantum numbers. For example, the absolute value of J is 

J J( )+1 �. The cones shown in Figure 8.6 represent precession, consistent with our uncertainty of the com-
ponents of the vector perpendicular to the rotation axis, as discussed in Chapter 7.

To review electronic angular momenta in diatomics, recall that although the electronic wavefunctions 
are not eigenfunctions of L̂2, the angular momentum about the bond is quantized. (L precesses about the 
bond axis.) We say that ML is a good quantum number, and we designate it by term symbols Σ, Π, Δ, Φ, 
…, corresponding to ML = 0, ±1, ±2, ±3,…. The symbol Λ is used to designate the absolute value |ML|. 
Energy levels having ML ≠ 0 have twofold orbital degeneracy, because the energy of the electronic state is 
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Figure 8.5 Correlation diagram for energy levels of asymmetric rotors.
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independent of the sense of rotation of the electrons about the internuclear axis. If the molecule also has spin 
angular momentum, S ≠ 0, this can couple to the orbital motion, through spin–orbit coupling, as discussed 
in Chapter 7 for atoms. This causes the electronic spin S to couple to the internuclear axis, as shown in 
Figure 8.6a, where the components along the bond are designated by Σ = S, S − 1, …, −S. (It is an unfortunate 
convention to use the symbol Σ to represent the z component of total spin angular momentum as well as 
the term symbol for states having |ML| = 0.) The quantum number Ω, the z component of the total angular 
momentum, is equal to Λ + Σ. It represents the result of spin–orbit coupling and takes on integral and half-
integral values for even and odd numbers of electrons, respectively.

Hund’s case (a) occurs when the coupling of electronic and nuclear angular momentum is weak. In this 
case, as shown in Figure 8.6a, spin–orbit coupling causes the spin vector to precess about the bond along with L. 
The total angular momentum about the bond is  = Λ + Σ. The total angular momentum J is the vector sum 
of  and O. The rotational energies are given by

 E hBJ J h A Brot = + + −( ) ( )1 2Ω  (8.36)

where B is the usual rotational constant, and A is related to the spin–orbit coupling constant. Equation 8.36 
resembles the expression for a prolate symmetric top, with Ω replacing K. Indeed, the problem is just like that, 
except that the inertia about the bond is entirely due to electrons. If A is visualized to be of the same form as 
the rotational constant, then it must be inversely proportional to something akin to an electronic moment of 
inertia; hence A is much larger than B. The allowed values of J are Ω, Ω + 1, Ω + 2,…, since the magnitude of 
the vector J cannot be any less than that of . The value of J can be half-integral when there is an odd num-
ber of electrons. For example, a 2Π1/2 state, where the subscript designates that Ω = 1/2, has a series of doubly 
degenerate rotational states corresponding to J = 1/2, 3/2, 5/2, …, etc. The ground state of NO is 2Π1/2. If the 
electronic motion couples strongly to the rotation of the nuclear frame, this degeneracy will be lifted. The 
splitting, referred to as Lambda-type doubling, is typically quite small, much less than one cm−1.

Hund’s case (b) applies either when Λ = 0 or when spin–orbit coupling is very weak, as in light atom 
diatomics such as the OH radical, which has a 2Π state. The spin vector S is no longer coupled to the bond axis, 
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as it is for cases (a) and (c). We imagine adding the vectors Λ and O to get K. The quantum number associated 
with this vector is K = Λ, Λ + 1, Λ + 2,…, and so on. (Some authors refer to this quantum number as N rather 
than K.) The total angular momentum J results from adding S and K, and the associated values of J range 
from K + S to |K − S|. Rotational levels having K ≥ S are split into 2S + 1 components.

Hund’s case (c) is similar to case (a) except that the spin–orbit coupling is much stronger than the cou-
pling of the orbital motion to the bond axis. This means that the quantum numbers Λ and Σ are no longer 
good. We imagine a total electronic angular momentum Jel that would be obtained by coupling L and S. The 
projection of Jel onto the bond axis is , which adds to O to give the total angular momentum J. The energy 
levels are the same as for Hund’s case (a), but the constant A is much larger. The rotational energies can be 
expressed as Erot = hB[J(J + 1) − Ω2], since the A part can be incorporated into the electronic energy. Hund’s 
case (c) behavior is observed for heavier diatomics, for example excited states of I2.

Hund’s case (d) is found in highly excited electronic states known as Rydberg states. In these states, the 
excited electron is so far removed from the nuclei that the orbital angular momentum L is no longer quan-
tized along the internuclear axis, and the excited electronic state resembles that of a one-electron atom. The 
vectors L and O are added, and if spin is present, the vector S is added to that result to give the total angular 
momentum K. The coupling between S and K is usually weak. The rotational levels are split into 2L + 1 
closely spaced levels.

8.4  NUCLEAR STATISTICS AND J STATES OF 
HOMONUCLEAR DIATOMICS

The rotational spectra of symmetric molecules, and notably homonuclear diatomics, display the quantum 
mechanical constraints imposed on wavefunctions for indistinguishable particles. In this section we dis-
cuss the nuclear statistics of homonuclear diatomics and their effect on the statistical weights of rotational 
levels. The basic ideas also apply to symmetric polyatomics, for example, the equivalent hydrogens in CH4 
or CH3Cl, but the analysis is more complicated, so only diatomics will be considered. A mixed isotope 
species such as HD would not be subject to the constraints discussed here, because the two nuclei are 
distinguishable.

Recall the Pauli exclusion principle, which requires electronic wavefunctions to be antisymmetric with 
respect to exchange of any two electrons. As discussed in Chapter 1, there are two kinds of particles in nature, 
fermions and bosons. Fermions, such as electrons and nuclei having odd mass numbers, have half-integral 
spin, and bosons, such as nuclei with even mass numbers, have integral spin. The wavefunctions for fermions 
and bosons differ in their symmetry with respect to exchange of equivalent particles. Using the symbol P̂12 to 
denote the result of exchanging two particles, the symmetry constraint on the total wavefunction is

 P̂12Ψ Ψ= ±  (8.37)

where the plus sign holds for bosons and the minus sign for fermions. (There is no reason why the wavefunc-
tion should not change sign or phase as a result of a symmetry operation, since it is Ψ*Ψ which has a physi-
cal meaning.) The wavefunctions of homonuclear diatomics are required be eigenfunctions of the exchange 
operator P̂12. If the nuclear spin quantum number I is integral, then the plus sign of Equation 8.37 applies. 
Conversely, nuclei having half-integral values of I require that the wavefunction be antisymmetric with respect 
to P̂12. The wavefunction of Equation 8.37 is the total wavefunction: Ψ = ψelψvibψrotψnuc. The vibrational wave-
function is always symmetric with respect to P̂12 because ψvib depends on the displacement of the nuclei from 
equilibrium (to be discussed in Chapter 9), and not on the coordinates of the two nuclei. We therefore concern 
ourselves with the other contributions to the total wavefunction. ψnuc here represents the nuclear spin function, 
which may be either symmetric or antisymmetric with respect to relabeling of the nuclei.

For a given quantum number I, as for any other angular momentum quantum number, there are 2I + 1 
values of the projection of the spin onto the Z direction. For spin-1/2 particles, this gives just two orientations 
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commonly called α (spin up) and β (spin down). More generally, there are a total of (2I + 1)2 ways to combine 
the spins on the two nuclei, to generate different nuclear spin wavefunctions ψnuc. Some of these wavefunc-
tions are symmetric and the rest are antisymmetric with respect to nuclear exchange. It turns out that the 
numbers are given by

 

( ) ( )( ) ( )2 1 2 1 1 2 12I I I I I+ = + + + +

= +total symmetric antisymmetric  
(8.38)

For example, the 1H nucleus has spin I = 1/2. Using Equation 8.38 for diatomic hydrogen, we find three sym-
metric spin functions and one antisymmetric spin function. The three symmetric ones, analogous to the 
electronic spin functions for a triplet state, are α(1)α(2), β(1)β(2), and α(1)β(2) + β(1)α(2). These correspond 
to a form of hydrogen called ortho-hydrogen. The antisymmetric spin function, α(1)β(2) − β(1)α(2), which is 
analogous to a singlet electronic state, corresponds to para-hydrogen. In nature, these two forms of H2, which 
differ in their magnetic properties, exist in a 3:1 equilibrium. We shall use these two forms of hydrogen to 
illustrate the consequences of nuclear spin on rotational energy levels.

To perform the interchange of the two nuclei, it might seem that a mere Ĉ2  operation would do the job, 
but that would rotate the electrons as well. We just want to exchange the nuclei and swap their spin functions. 
The P̂12 operation can in fact be achieved by the four-step process depicted in Figure 8.7. The first step is a 
Ĉ2  rotation of the molecule, which rotates the electrons and the nuclei. This operation affects the rotational 
wavefunction as follows:

 
ˆ ( )C rot

J
rot2 1ψ ψ= −  (8.39)

To convince yourself of the validity of Equation 8.39, recall that the wavefunctions for J = 0, 1, 2, 3, … have 
the symmetries of the s, p, d, f, … orbitals. The next two steps operate only on the electronic coordinates: îel  
inverts the electronic coordinates through the center of symmetry, and σ̂ el reflects them through a plane 
perpendicular to the twofold rotation axis. The effects of these two operations are deduced from the elec-
tronic term symbol. The molecule H2 has a 1Σg

+ ground electronic state, as does any closed-shell homonuclear 
diatomic, where the subscript g indicates that the wavefunction is symmetric with respect to inversion, and 
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Figure 8.7 Four-step process equivalent to P̂12.
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the + superscript reveals the symmetry on reflection. (Symmetry species for electronic states of diatomics are 
discussed in more detail in Chapter 11.) Consequently, the 1Σg

+ electronic wavefunction is preserved by the 
second and third steps, and thus ψel is symmetric with respect to the P̂12 operation. A ground electronic state 
having the term symbol 1Σu

− would also be symmetric with respect to this operation, while 1Σu
+ and 1Σg

− wave-
functions would change sign. The final step in Figure 8.7 is the application of the P̂ex  operator, which swaps 
the nuclear spin functions. The effect of this operator is to change the sign of ψnuc if the nuclear spin function 
is antisymmetric, and preserve it if ψnuc is symmetric.

The net effect of these four operations on the ortho and para forms of H2 is summarized in Table 8.1. For 
the ortho form, the symmetric nuclear spin functions must be combined with odd J states in order for the 
overall wavefunction to be antisymmetric with respect to exchange. Conversely, the para form of H2 has only 
even J states. The rotational Raman spectrum of an equilibrium mixture of ortho- and para-H2 reveals the 
effects of quantum statistics in the approximately 3:1 ratio of alternate lines. The selection rules for rotational 
Raman, to be discussed in Section 8.6, happen to allow ΔJ = ±2, so each form of H2 undergoes transitions 
within its own manifold of even or odd J states.

Figure 8.8 shows the pure rotational Raman spectrum of H2 dissolved in water, taken from [2]. Molecules 
in the liquid phase do not generally rotate freely, owing to the torques exerted by the solvent. However, in this 
example the cavities in the water structure are large enough compared to the size of H2 to permit rotational 
Raman transitions comparable to, but much broader than, those observed for H2 in the gas phase. The nuclear 
spin statistics discussed above, combined with spectroscopic constants presented in Table 9.2, enable the 
frequency shifts and relative intensities of the transitions shown in Figure 8.8 to be accounted for, as you will 
do in Problem 10 of this chapter.

As a final example, consider the diatomic formed by two 12C atoms. Like the hydrogen molecule, the 
ground electronic state is 1Σg

+. The nuclear spin of 12C is zero, so there is a single nuclear spin function and it 
is symmetric. Since the overall wavefunction must be symmetric, we conclude that odd J states do not exist. 
Any homonuclear diatomic composed of spin-zero nuclei will have either even or odd rotational states, but 
not both.
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Figure 8.8 Pure rotational Raman spectrum of H2 dissolved in water at 200 psi (broad bands), compared to 
that of gas phase H2 at 2000 psi (sharp bands). (Reprinted from D. G. Taylor III and H. L. Strauss, The rotational 
Raman spectrum of H2 in water, J. Chem. Phys. 1989, 90, 768, with the permission of AIP Publishing.)

Table 8.1 Symmetry of ortho- and para-H2 wavefunctions under nuclear exchange

Symmetry under P̂12 Ψtot ψel ψvib ψrot ψnuc Allowed J

Ortho-H2 (weight 3) − + + − + 1,3,5,7,…

Para-H2 (weight 1) − + + + − 0,2,4,6,…
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8.5 ROTATIONAL ABSORPTION AND EMISSION SPECTROSCOPY

Microwave spectroscopy provides a powerful approach for determining the structures and dipole moments 
of gas-phase molecules. The typical frequency range of interest is about 3 to 300 GHz (0.1 to 10 cm−1). A great 
experimental advantage is that the source used in a microwave spectrometer, an electronic tube called a 
klystron, provides tunable, monochromatic, coherent radiation at frequencies accurate to fractions of a MHz. 
In Stark-modulated spectroscopy, a square-wave voltage is applied to the cell to shift the absorption lines in 
and out of resonance with the source, and the signal is detected with a lock-in amplifier. The amplitude of 
the Stark field is varied to permit highly accurate measurement of the dipole moment. Even the small dipole 
moments (on the order of 0.01 to 0.1 D) of saturated hydrocarbons have been measured. Conventional chemi-
cal applications employ microwave absorption, though astronomers use microwave emission to observe mol-
ecules in interstellar space. Microwave spectra can also be used to determine barriers to internal rotation 
(Section 8.8). Practical applications of microwave spectroscopy are limited to the study of rather small mole-
cules. This drawback results from the requirement that the sample be volatile and free from the complications 
posed by numerous low frequency vibrational states. Microwave spectroscopy has been applied to determine 
the structure of weakly bound complexes of small molecules known as Van der Waals complexes.

Pure rotational transitions may also be observed in the far-IR. The rotational constants for diatomic hydrides, 
for example, are larger than those for heavier molecules. The first 14 transitions in the rotational absorption of 
HCl, for example, span the frequency range from about 20 to 300 cm−1. The rotational constant of HCl is about 
10.4 cm−1, which is rather large due to the low inertia. For comparison, that of CO is about 1.9 cm−1. Rotational 
transitions involving larger values of J also appear in the far-IR, even for heavier molecules. The far-IR absorp-
tion spectrum of CO is shown in Figure 8.9. In this section, we derive the selection rules for pure rotational 
absorption and emission, and we see how transitions such as those in Figure 8.9 may be assigned.

Before moving on to consider selection rules and spectral analysis, it is worthwhile to mention an impor-
tant caveat. The structural parameters that are extracted from microwave data are always averages over the 
appropriate vibrational states; ordinarily the ground vibrational state. So it is not Be which is obtained directly, 
but rather B0, where the zero subscript indicates the ground vibrational state. Still, B0 does not directly reveal 
the internuclear distance averaged over the ground vibrational state, R0. That is because B0 is proportional to 
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Figure 8.9 Pure rotational spectrum of CO. (Reproduced with permission from G. W. Chantry ed., Modern 
Aspects of Microwave Spectroscopy, Academic Press, New York, 1979.)
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<1/R2 >, which is not the same as 1/<R>2, where the brackets indicate an average over the zero-point vibration. 
In the next chapter, we will consider how to find Re from vibration–rotation spectroscopy.

Consider a diatomic molecule going from initial state i to final state f. The wavefunction for each state 
is written in the form of a product of electronic and nuclear (rovibrational) parts: Ψ = ψelψvJM. (The nuclear 
spin wavefunction is dropped because we are considering spectra for which the nuclear spin state remains 
constant.) In this Born–Oppenheimer form,* it is implied that the electronic wavefunction depends para-
metrically on the geometry of the nuclear framework. The rovibrational part is further separated into vibra-
tional and rotational functions: ψ χ θ ϕv vJM JMq Y= ( ) ( , ), where q ≡ R − Re is the displacement of the bond length 
from its equilibrium value. Let us examine E1-allowed rovibrational transitions, vJM → v′J′M′, within a given 
electronic state, usually the ground state. The transition moment as usual is given by μ ψ μψ τif i f d= ∗∫ ˆ . This 
takes the form

 
μ ψ ψ μψ τ ψ τ τif JM el el el J M nuc eld d d= 





∗ ∗
′ ′ ′∫ ∫v v

ˆ
 

(8.40)

The integrals in Equation 8.40 are nested to represent first finding the expectation value of the dipole moment 
in a particular electronic state, then taking the matrix element of this with respect to two rovibrational states. 
The dipole moment in a particular electronic state is some function of the internuclear distance μ(q) and 
also depends on the orientation in the lab frame. If we knew this function, we could substitute for the inner 
integral and then perform the outer integration over nuclear coordinates. Unfortunately, the function μ(q) is 
not generally available, but if we are justified in starting out from the rigid rotor picture, then the amplitude 
of vibration is small and maybe we can get away with another truncated Taylor series approximation. The 
magnitude of the dipole moment is expanded about the value at the equilibrium internuclear distance, q = 0:
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The first term is the permanent dipole moment. Its magnitude is constant, but its orientation in the lab frame 
is not. Clearly, the operator μ0 cannot connect two different vibrational states, due to the orthogonality of 
vibrational wavefunctions. However, due to its dependence on orientation, the dipole operator does con-
nect different rotational states within a vibrational level. The permanent dipole moment is thus responsible 
for pure rotational transitions. The second term, a function of the dipole moment derivative with respect to 
internuclear distance, permits vibrational transitions. We shall examine these in later chapters and concern 
ourselves here with pure rotational spectra. Keeping only the first term in Equation 8.41, then, the dipole 
moment is specified in a space-fixed coordinate system:

 
�
µ µ µ µ0 = + +X Y Zi j kˆ ˆ ˆ

 (8.42)

 
� � � �µ µ θ ϕ θ ϕ θ0 0= + +(sin cos sin sin cos )i j k  (8.43)

In the absence of an external electric field (such as that employed in Stark effect experiments), the X, Y, and Z 
directions in the lab are equivalent. The three components of the dipole operator, which allow absorption by 
radiation polarized in the corresponding directions, are given by
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* The Born–Oppenheimer approximation is discussed in more detail in Chapter 9, where it is shown that it enables the 
electronic and nuclear wavefunctions to be factored.



188 Rotational spectroscopy

The first obvious requirement for an allowed transition is a nonvanishing dipole moment: microwave activity 
requires that a molecule possess a permanent dipole moment. To derive the selection rules, we consider what 
values of JM → J′M′ result in a nonzero value for any of the three integrals in Equation 8.44. These selection 
rules were discussed in the previous chapter, where the spherical harmonic functions constituted the angu-
lar part of the hydrogen atom wavefunction. Proceeding in the same way, the selection rules for microwave 
transitions of diatomics are found:

 μ0 0 1 0 1≠ = ± = ±∆ ∆J M ,  (8.45)

These selection rules apply to linear polyatomics as well. For linear molecules having net electronic angular 
momentum, the selection rules are amended to include ΔJ = 0, which is meaningful in vibration–rotation, but 
not pure rotation spectra. The origin of this exception is revealed below. The selection rule for M is unimport-
ant unless an external field is applied to lift the degeneracy of states with different M, as in Stark spectroscopy. 
The rotational absorption spectrum consists of a series of lines corresponding to J → J + 1, one for each ther-
mally populated initial J state, at frequencies 2 1�B J( )+ . Thus the pure rotational spectrum exhibits a series 
of lines at frequencies 2 4 6� � �B B B,, , . . .. In the rigid rotor approximation, the spacing of adjacent lines in the 
microwave absorption or emission spectrum is predicted to be constant, ∆ � �ν = 2B . On closer inspection, the 
spacing ∆ �ν  is not constant; it decreases slightly with increasing initial J. We return to this issue in Section 8.7.

It is sometimes erroneously stated that the intensities of the lines in a pure rotational spectrum are propor-
tional to the populations of the initial states. There are several reasons why this is incorrect. First, as shown in 
Chapter 6, the absorption coefficient depends on the population difference of the initial and final states. Since 
rotational levels are closely spaced compared to thermal energy, kBT, it is not permissible to neglect the popula-
tion of the J + 1 level compared to that of the J level. In addition, the absorption strength is proportional to the 
frequency of the transition and the square of the transition moment, both of which vary with J. As shown in [3], 
the transition dipole should be summed over all the M components as well as the three directions:
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The transition dipole for downward and upward transitions works out to be
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These two transition moments are not equal because the degeneracies of the two levels are not the same. When 
the degeneracies are factored in, it is apparent that the inherent rates of upward and downward transitions are 
equal:

 g g JJ J J J J Jµ µ µ→ + + + →= = +1
2

1 1
2

0
2 1( )  (8.49)

When all the variables are considered, the intensity of an absorption line is found to be approximately pro-
portional to (J + 1)2exp(−EJ/kBT), compared to the Boltzmann population of the initial energy level,* which is 

* It is important to use the word “level” rather than “state” in this discussion; e.g., the J = 2 level comprises five different 
states.
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proportional to (2J + 1)exp(−EJ/kBT). To illustrate the difference, consider the rotational spectrum of HCl at 
room temperature, where the value of J that maximizes the absorption strength is 3.7, making the transition 
J = 4 → J = 5 the strongest. The value of J which maximizes the population, however, is about 2.7, so the J = 3 
level is most populated. It turns out that the line intensities roughly follow the populations of initial states, 
but not in exact proportion.

The selection rules of Equation 8.45 hold for symmetric tops as well, along with an additional selection 
rule on ΔK. The dipole moment operator μ0 is expressed as in Equation 8.43, where the angles θ and ϕ orient 
the symmetry axis of the molecule, along which the dipole moment must lie, if it exists. The selection rules 
are straightforward to derive if we exploit the properties of the Wigner rotation functions, which are the sym-
metric top eigenfunctions. The equation that we need here is
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The right-hand side of Equation 8.50 is a product of two Clebsch–Gordan (CG) coefficients (Appendix A), 
C(l1l2l3; m1m2m3). As discussed in Chapter 7, the properties of the CG coefficients form the basis for rules for 
adding two quantum mechanical vectors, such as spin and orbital angular momentum. The triangle rule 
results from the fact that C(l1l2l3; m1m2m3) vanishes unless l3 takes on one of the values l1 + l2, l1 + l2 − 1,…, 
|l1 − l2|. The coefficient is also zero unless m1 + m2 = m3, which just means that the z component of a vector 
sum is the sum of the z components of the vectors added. To use Equation 8.50 to derive selection rules, 
we will use the trick of expressing the components of the dipole moment vector as Wigner functions. To 
get the matrix element of μZ connecting two states, we use the fact that cosθ = D00

1 . The matrix elements 
of μX and μY can be set up by recognizing that both sinθcosϕ and sinθsinϕ are linear combinations of 
D10

1  and D−10
1 . The result is that the selection rules for the transition J, K, M ↔ J′K′M′ are based on the 

condition:
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where N = 0 for the Z component and ±1 for X and Y. Comparing this to Equation 8.50 and using what is 
known about the CG coefficients, the selection rules are found to be

 μ0 0 0 1 0 1 0≠ = ± = ± =∆ ∆ ∆J M K, ,  (8.52)

The rule for the change in J results from the triangle condition, J′ = J + 1, J, J − 1, where all three values of J′ 
can result only when J ≥ 1. The coefficient C( j1 j2 j3;000) vanishes whenever j1 + j2 + j3 is odd. This leads to the 
caveat that ΔJ = 0 is forbidden when J = 0. This is of no consequence in pure rotational spectroscopy but it mat-
ters when vibration–rotation spectra are considered. As in the case of linear molecules, the Z component of 
the dipole operator gives ΔM = 0 and the X and Y components permit ΔM = ±1. Note that for linear molecules 
we can put K = 0 in the above analysis and recover the previously described selection rules. However, when 
there is electronic angular momentum (as in open-shell diatomics), then the angular momentum quantum 
number K is not zero, and transitions having ΔJ = 0 are allowed. This will be illustrated by  vibration–rotation 
spectra to be presented in Chapter 9.

The spectra of asymmetric rotors are more complicated than those of symmetric ones. The selection rules 
on J and M are still valid, but K is no longer a good quantum number. The notation J K K−1 1  is used to label the 
energy levels of asymmetric rotors, where K−1 and K1 are the limiting values of K as the asymmetry parameter 
κ goes to −1 and 1, respectively. (See Figure 8.5.) When the direction of the dipole moment coincides with one 
of the inertial axes (as in H2O for example), selection rules on ΔK−1 and ΔK1 result. When the dipole moment 
has projections onto more than one inertial axis, the selection rules are more liberal and the spectra are more 
complex. See [4] for a discussion.



190 Rotational spectroscopy

8.6 ROTATIONAL RAMAN SPECTROSCOPY

Raman spectroscopy is another approach to the measurement of pure rotational spectra. The Raman inten-
sity depends on the induced electric dipole moment, and since all molecules are polarizable, it might be 
reasonable to conclude that all molecules are active in rotational Raman. As we shall see, however, what is 
required is anisotropic polarizability. The recalcitrant spherical tops do not show pure rotational scatter-
ing or absorption spectra, although rotational structure can be observed, in some cases, as fine structure in 
vibrational Raman and infrared spectra, to be discussed in the next chapter. For now, we concentrate on the 
rotational Raman spectra of linear molecules and symmetric tops, both of which can be classified as axially 
symmetric molecules as far as polarizability is concerned. We want to know the selection rules for rotational 
transitions, the appearance of the spectra, and so forth. To a first approximation, rotational Raman spectra, 
like rotational absorption and emission spectra, consist of a series of equally spaced lines, but is the frequency 
spacing 2B or not 2B?

The polarizability, like the dipole moment, is a function of molecular geometry and, as such, can be 
expanded in a Taylor series about the equilibrium geometry. For rotational transitions, we only need the 
first term, the polarizability of the molecule in its equilibrium geometry, which is a diagonal tensor in the 
frame of the molecule. Except in cases of accidental symmetry, the form of α reflects the same symmetry as 
the inertial tensor. For example, spherical tops have isotropic polarizability; αxx = αyy = αzz. Both symmetric 
tops and linear molecules have axially symmetric polarizability: αxx = αyy ≠ αzz. As usual, asymmetric tops, 
for which αxx ≠ αyy ≠ αzz, are more difficult to treat. The observed light scattering depends indirectly on the 
molecule frame polarizability, and directly on the lab-frame induced moments. Just as the molecular dipole 
moment was projected onto the X, Y, and Z directions in the laboratory, the molecular polarizability must 
also be projected onto the lab frame.

The selection rules for rotational Raman can be derived by considering the Kramers–Heisenberg–Dirac 
expression for an element of the polarizability tensor, (αρσ)if. The notation at hand specifies a particular ele-
ment of the tensor, where ρ and σ are Cartesian components, in the lab frame, and i and f as usual specify the 
initial and final states. The quantum mechanical expression (the KHD formula) is
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The initial, intermediate, and final states are specified as follows:

 
i e JKM n e J K M f e J K M≡ ≡ ′ ′ ′ ′ ′ ≡ ′′ ′′ ′′v v v, ,

 
(8.54)

We let K = 0 when linear molecules are considered. The sum over intermediate states includes all possible 
electronic (e′), vibrational (v′), and rotational (J′K′M′) levels. Looking more closely at one of the transition 
dipoles, let us consider first taking the matrix element with respect to the electronic states, for example,

 i n JKM J K Meeμ μρ ρ= ′ ′ ′ ′′v v( )  (8.55)

The electronic transition moment ( )μρ ee ′, like the permanent dipole moment responsible for microwave 
absorption, is considered to be evaluated at the equilibrium geometry of the ground electronic state. (This is 
called the Condon approximation, and we will elaborate on it in Chapters 11 and 12.) So now we see how a 
homonuclear diatomic can be Raman active, through the transition dipoles for allowed electronic transitions. 
A linear or symmetric top molecule, whether polar or nonpolar, has two kinds of allowed excited electronic 
states: nondegenerate ones polarized along the bond (or symmetry axis) and doubly degenerate ones polar-
ized perpendicular to the bond. The electronic transition moment is projected onto the lab frame to get the 
components ( )μX ee′, ( )μY ee′, and ( )μZ ee′. Therefore, the matrix elements of the electronic transition dipole, con-
necting initial rotational states with intermediate rotational states, or intermediate with final states, are the 
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same ones previously considered in the analysis of microwave selection rules. To get an allowed rotational 
Raman transition, JMK → J″M″K″, the following must hold:
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where the angle brackets represent integration over the Euler angles, and N and N′ can be 0 or ±1 depending 
on which components of the lab frame polarizability are under consideration.

Since ΔJ = 0, ±1 to get nonzero values of each of these matrix elements, the net selection rule for Raman 
scattering is ΔJ = 0, ±1, ±2, except that ΔJ = ±1 is forbidden when K = 0 or when J = 0. Recall that C(j1 j2 j3; 
000) is zero whenever j1 + j2 + j3 is odd. Thus ΔJ = ±1 is forbidden for linear molecules, which have K = 0. For 
symmetric tops, we also obtain the rule ΔK = 0, as we did for microwave absorption. The Stokes side of the 
spectrum is associated with scattered light shifted to lower frequency than that of the incident radiation, due 
to transitions having positive ΔJ, while the anti-Stokes transitions have negative ΔJ and lead to positive fre-
quency shifts. The result is a series of lines, on either side of the excitation frequency, referred to as the R and 
S branches, for which the frequency shift of the scattered light is

 for ∆ ∆J B J JR= ± = + = …1 2 1 1 2 3, ( ), , , ,ν ∓  (8.57)

 for ∆ ∆J B J JS= ± = + = …2 2 2 3 0 1 2, ( ), , , ,ν ∓  (8.58)

The quantum number J in Equations 8.57 and 8.58 is the lower value. Linear molecules lack transitions having 
ΔJ = ±1. For rigid symmetric tops, the S series consists of equally spaced lines at frequency shifts of 6B, 10B, 
14B,… and the R series consists of lines at 4B, 6B, 8B, 10B,…. The coincidence of every other R branch  line 
with an S branch line leads to an intensity alternation that is not a consequence of nuclear statistics. (For a 
discussion of nuclear statistics in symmetric tops, see [3] or [4].)

The Raman spectra of homonuclear diatomics, on the other hand, are subject to the constraints of nuclear 
exchange symmetry. The pure rotational Raman spectrum of N2 ( . )�Be = −1 998cm 1  is shown in Figure 8.10. The 
nuclear spin of 14N is I = 1, so Bose–Einstein statistics apply to nuclear exchange. Following the procedures 
of Section 8.4, we find that the even J states carry twice the statistical weight of odd J states, resulting in the 
observed alternating intensities of the Raman spectrum. The frequency separation of the first Stokes and anti-
Stokes transitions, on either side of the excitation line, can be compared to that of adjacent lines in the Stokes 
or anti-Stokes branch. This ratio takes on the value 12B/4B = 3 if both even and odd J states exist, the value 
20B/8B = 5/2 in the case where only odd J states exist, and the value 12B/8B = 3/2 when only even J states exist. 
Thus the rotational Raman spectrum is diagnostic of nuclear exchange symmetry.
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Figure 8.10 Rotational Raman spectrum of N2.
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What does the preceding analysis have to say about spherical tops? They have allowed electronic transi-
tions, which could permit Raman scattering. The problem is that the allowed electronic states of octahe-
dral and tetrahedral molecules belong to triply degenerate representations. This means that the x, y, and z 
(molecule frame) components of μee′  are all equal, so there is no dependence of the transition dipole on the 
orientation in the lab frame. So pure rotational scattering is forbidden. In other words, their polarizability 
ellipsoids are spherical, so the induced dipole moment is independent of molecular rotation. In vibrational 
Raman scattering of nontotally symmetric modes, rotational fine structure is possible due to the symmetry 
lowering induced by the vibrational motion.

There is an alternative way to look at rotational Raman spectra, and it is one that is more convenient for 
discussing scattering by liquids, where the quantum numbers J, K, and M no longer apply. Let us assume 
that all we know is the form of the molecular polarizability, and recall the two experimental arrangements 
that permit the measurement of polarized and depolarized scattering (see Figure 6.5). The incident light is 
imagined to propagate along the X direction with polarization vector in the Z direction. Scattered light is 
viewed in the Y direction, with the electric field vector pointing either in the Z direction (the polarized or VV 
spectrum) or in the X direction (the depolarized or VH spectrum). In the time-domain picture (Chapter 5), 
these two spectra are Fourier transforms of time-correlation functions involving the appropriate lab-frame 
components of the polarizability:
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The problem is to relate the lab-frame polarizabilities, αZZ and αXZ, to the molecule-frame components, αxx, 
αyy, and αzz. The orientation dependence of this relationship contributes to the time dependence of the cor-
relation functions. One could use direction cosines to project the polarizability onto the lab frame, but it is 
much more elegant to use spherical rather than Cartesian polarizability tensors and then take advantage 
of their transformation properties. (See Appendix A for a general discussion of spherical tensor transfor-
mations.) Spherical tensor elements of the polarizability are expressed as αM

J , where M ranges from J to −J 
in integral steps. The equations for converting Cartesian tensor components to spherical components [6] 
are given in Table 8.2. Although we have used uppercase subscripts for the Cartesian tensor components, 
the same expressions connect molecule frame Cartesian and spherical tensors. However, the off-diagonal 

Table 8.2 Formulas for spherical tensor components of the polarizability
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 molecule-frame elements such as αxy, αyz, etc., are all zero, in the case of a pure rotational transition. The 
reason for this is that the polarizability is that of the nonvibrating molecule, and the tensor thus reflects the 
molecular symmetry.

Consider first the polarized spectrum, for which the required tensor component is
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(8.61)

The lab-frame values of αM
J , designated by αM

J L( ), are functions of the orientation, as follows:
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where αM
J B( ) is the body (molecule) frame polarizability and the Wigner rotation functions depend on the 

orientation Ω of the body with respect to the lab. The value of αM
J B( ) is constant; it is the time dependence of 

the orientation which is of interest. Combining Equations 8.61 and 8.62 and introducing the time dependence 
of Ω, we have
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The correlation function that we need is thus
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Note that D00
0 =1. The absence of cross-terms proportional to α α0

0 2
M  is due to the fact that DMN

J
t( )Ω = 0, 

except when J = M = N = 0. Equation 8.64 states that the polarized light scattering depends in part on the iso-
tropic polarizability (through α0

0) and in part on the anisotropy of the polarizability (through αM
2 ). Our next 

task is to recast the above correlation function in terms of the change in orientation as a function of time, δΩt. 
This is done with the help of the addition theorem for Wigner functions of successive rotations. If the Euler 
angle Ωt is viewed as the result of starting at the initial orientation Ω0 and rotating through δΩt, then, using 
the addition theorem of Appendix A, we have
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This expression would seem to complicate things when it is inserted into the previous version of the cor-
relation function. But there is a trick, of course. In a collection of randomly oriented molecules, the initial 
orientation Ω0 can be averaged over all possible values. The average is performed by integrating the function 
of Ω0 over all Euler angle space and dividing by d∫ =Ω 8 2π . Then the orthogonality of the rotation functions,
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results in our final version of the correlation function for VV scattering:
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Equation 8.67 is quite general. If we limit consideration to axially symmetric molecules, it is further simplified:
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The isotropic part, the first term in Equation 8.67 or 8.68, is independent of orientation, so it does not con-
tribute to rotational Raman scattering. Turning next to the depolarized scattering, we require the lab-frame 
component α α αXZ = −+ −1 2 1

2
1

2( ). Proceeding as we did above:
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(Note that the bar over the subscript integer specifies a negative value.) The correlation function is then 
obtained:
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This is considerably simplified using our previous tricks. The result is
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And, for axially symmetric molecules,

 
C t B DVH t( ) ( ) ( )= 1

10
0
2 2

00
2α δ Ω

 
(8.72)

The depolarized spectrum is a function of the anisotropy of the polarizability, which vanishes in the case that 
α is spherically symmetric. We again conclude that pure rotational transitions of spherical tops are inactive 
in light scattering. We have further shown that there is a rotationally invariant contribution to the scattering, 
which survives even for spherical tops, called the isotropic scattering. This orientation independent part of 
the polarizability contributes to quasi-elastic light scattering. Referring to the depolarized scattering as the 
anisotropic part, we have derived two of the key equations for light scattering:

 
I I IVV iso anis= +

4

3  
(8.73)

 I IVH anis=  (8.74)

These expressions follow from the fact that the integrated intensity is equal to the correlation function at zero 
time; they are obtained by putting t = 0 in Equations 8.67 and 8.71. Equations 8.73 and 8.74 also hold true 
in subsequent discussions of vibrational Raman scattering. The practical consequences of these results are 
of great value in the study of condensed phases. The measurement of both VV and VH spectra enables the 
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reorientational contribution to be extracted, as discussed in Chapter 5. Fourier transformation of the aniso-
tropic spectrum for a symmetric top molecule results in
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8.7 CORRECTIONS TO THE RIGID-ROTOR APPROXIMATION

There are two physical reasons why real molecules cannot be true rigid rotors. The first is that vibrational 
motion alters the geometry and thus the inertia. Second, the rotational motion itself tends to fling the 
nuclei apart and change the average geometry. In this section, some of the steps of making corrections to 
the harmonic oscillator-rigid rotor approximation are discussed for diatomic molecules, and briefly gener-
alized to the case of symmetric tops. In order to treat the problem at hand, we need to consider vibrational 
and rotational energy at the same time. The vibrational problem will be considered in more detail in the 
next chapter.

The harmonic oscillator approach to vibrational motion results from approximating the potential func-
tion as a parabola, V q kq( )=1 2 2, where q = R − Re and k is the force constant. Adding the vibrational and rota-
tional energies together gives the zero-order approximation to the vibration–rotation energy of a diatomic:
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V(Re) is the energy at the bottom of the well, which can be taken to be zero for convenience. The rotational 
constant B h Re e= /( )8 2π µ 2  applies to a molecule having a fixed internuclear distance, Re. The quadratic form of 
the potential energy results from truncating a Taylor series expansion of V(R) about Re:
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Note the first derivative term is absent because the slope is zero at the minimum in V(R). The second deriva-
tive term,
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is the force constant k. Perturbation theory calculations that include the third, fourth, etc. derivatives make 
corrections for anharmonicity. These will be considered further in Chapter 9. To go beyond the rigid-rotor 
approximation, we also need to correct the rotational kinetic energy operator (Equation 8.10) by allowing the 
internuclear distance R to be flexible:
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For small amplitude vibrational motion, q << Re, Equation 8.79 can be expanded about Re:
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The details of calculating the perturbed vibration–rotation energy are tedious, so we cut to the result. (See [7] 
or [8] for details.) The energy, corrected to second order, is
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Let us explore the physical significance of the correction terms. The first correction term, h xe eν ( )v + 1 2 2, 
allows for anharmonicity. The value of xe is a function of the third and fourth derivatives of the potential. It is 
generally positive, and, if perturbation theory is justified, small compared to one. It has the effect of causing 
the separation of vibrational energy levels to decrease as vibrational energy increases, as they should since the 
vibrational energy levels of a real molecule must converge as the dissociation limit is approached. The next 
correction allows for vibration–rotation coupling. It is easiest to see the effect of this coupling by defining a 
new rotational constant which depends on the vibrational state:
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The rotational energy (neglecting centrifugal distortion) is E B J Jrot = +v ( )1 , where Bv is a function of the aver-
age value of 1/R2 in vibrational state v:
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Since the vibration–rotation coupling constant αe is generally positive, the rotational constant Bv decreases 
with increasing vibrational energy due to the increase in average internuclear distance and thus increase in 
inertia.

The final term in Equation 8.81 allows for the effect of centrifugal distortion, the tendency of the internu-
clear distance to increase as the rotational velocity increases. The centrifugal distortion constant is given by
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Since rotational energies are typically small compared to vibrational energies, this is a small correction. 
Nevertheless, it has the observable effect of causing the separation of adjacent lines in microwave spectra to 
decrease at higher values of J. For pure rotational absorption, where J → J + 1, the corrected transition frequen-
cies are found from νJ→J+1 = (Ev, J+1 − Ev, J)/h:

 ν J J eB J D J→ + = + − +1
32 1 4 1v ( ) ( )  (8.85)

Typical centrifugal distortion constants are about 10−4 the size of the rotational constant. The effect on the 
spacings of pure rotational transitions is thus rather small. The influence of vibration–rotation coupling is 
more significant, but it is not observed in pure rotational transitions, except to modify the rotational con-
stant. We will explore the effect of vibration–rotation coupling in Chapter 9.

Corrections to the rigid rotor-harmonic oscillator model are more complex for larger molecules. For 
example, the vibrationally averaged effective rotational constant depends on all 3N − 6 normal modes:
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where [v] represents a set of vibrational quantum numbers [v1, v2,…,v3N−6] defining the vibrational state. There 
are also vibration–rotation coupling constants αi

A and αi
C for making corrections to the A and C rotational 

constants. Similarly, there is an anharmonicity correction factor xi for each normal mode, as well as coupling 
terms which allow for the interaction of normal modes due to anharmonicity. For a symmetric top, centrifu-
gal distortion depends on the quantum numbers J and K, leading to this expression for the rotational energy 
of an oblate top [8]:
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8.8 INTERNAL ROTATION

In addition to the effects described in the previous section, many molecules deviate from the rigid rotor 
model by virtue of their fluxional behavior. These “floppy molecules” have more than one stable conforma-
tion, separated by energy barriers which are not insurmountable. The possibility of multiple conformations 
increases with molecular size, but even small molecules can display these effects.

Consider a molecule such as ethane, which can undergo hindered rotation about the C–C single bond. 
This torsional motion is actually one of the 3N − 6 = 18 normal modes of the molecule and, as such, we could 
postpone discussion of internal rotation until Chapter 10. We prefer to discuss hindered rotation in this chap-
ter because the frequency of this type of motion can be quite low compared to the frequency of other normal 
modes, and indeed it can sometimes be observed in the microwave spectrum.

Figure 8.11 pictures two conformations of a molecule such as ethane, staggered and eclipsed, for which 
the potential energy as a function of torsional angle is respectively a minimum or maximum. Let us define 
the torsional angle as ϕ, where ϕ = 0 corresponds to the staggered and ϕ = π to the eclipsed conformation. 
One mathematical form of the potential energy which has the correct threefold symmetry is the following:
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where n = 3 in this case but more generally is equal to the number of equivalent configurations achieved dur-
ing one full rotation about the bond. The form of this function is sketched in Figure 8.12. V0 is the barrier 
height, that is, the energy of the eclipsed configuration relative to the staggered. Equation 8.88 is really only the 
lead term in a Fourier series expansion of the n-fold potential, and more exact treatments of hindered rotation 

ϕ = 0(a) (b)

ϕ

ϕ = π

Figure 8.11 (a) Staggered and (b) eclipsed geometries.
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would include more terms in the series. We will use the simple form of V(ϕ) in order to examine the physical 
aspects of the problem. Depending on the height of the barrier compared to the thermal energy kBT, internal 
rotational motion ranges from freely spinning in the low-barrier limit to harmonic torsional oscillation, in the 
high-barrier limit. We solve the Schrödinger equation in these two limiting cases. The Hamiltonian for torsion 
about a bond is
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where the reduced moment of inertia about the bond is a function of the inertia of the two attached groups:
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8.8.1 Free rotation limit, kBT >> V0

When the thermal energy greatly exceeds the barrier to rotation, the molecule barely sees the ripples in the 
bottom of the potential well. We might as well replace the true potential function by a constant, say the aver-
age value, V (ϕ) ≈ V0/2. The Schrödinger equation then takes the form:
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The solution to Equation 8.91 is
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The boundary condition is ψ(ϕ + 2π) = ψ(ϕ), which restricts k to integer values. The energy levels are therefore,
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Free internal rotation results in a series of doubly degenerate (except for k = 0) energy levels. Equation 8.93 is 
not valid unless the first term is much larger than the second. Notice how the energy levels resemble those of 
a free rotor, since for large J, J(J + 1) ≈ J2, but the degeneracy is not the same since the internal rotor has only 
one degree of freedom. As you might expect, this rotational motion is microwave active only if the internal 
rotation changes the direction of the dipole moment.

0 3 3 3
2π5π4π2ππ π

3
0

V0

V
(ϕ

)
ϕ

Figure 8.12 Potential energy for internal rotation.
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8.8.2 Harmonic oscillator limit, kBT << V0

When the thermal energy is small compared to the barrier height, the system finds itself close to the bottom 
of one of the wells pictured in Figure 8.12 and undergoes only small excursions from the angle for which the 
energy is a minimum. This permits the potential function to be expanded about ϕ = 0. Taking cos nϕ ≈ 1 − 
n2ϕ2/2, the Schrödinger equation takes the form:
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Equation 8.94 is identical to the Schrödinger equation for a harmonic oscillator; the usual variables have 
merely been renamed. The angle ϕ is analogous to the coordinate q, the reduced inertia replaces the usual 
reduced mass, and the force constant, ordinarily given by k = 4π2μν 2, is in this case equal to n2V0/2. Thus the 
harmonic frequency of torsional motion is
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and the energy levels are E hv v= +ν ( )1 2  with v = 0, 1, 2, …, ∞. In this infinite barrier limit, the groups 
attached to the bond undergo harmonic torsional oscillations of small amplitude, and one would expect to 
observe transitions in the far-IR or Raman scattering spectrum. Measurement of the frequency of torsional 
oscillation permits the barrier height to be calculated. For example, the torsional frequency of Cl3C–CCl3 is 
68 cm−1, implying a 45 kJ/mol rotational barrier. This barrier should be compared to room temperature ther-
mal energy, about 2.5 kJ/mol.

There is of course no such thing as an infinite barrier, and we must admit the possibility that a given 
torsional angle of, say, a threefold symmetric molecule could find the system in any of the three equiva-
lent potential wells. Let us refer to the wavefunctions centered on each of these wells as ψ1, ψ2, and ψ3. If 
these wavefunctions did not interact, the v = 0 state would be triply degenerate, and we could picture three 
Gaussian wavefunctions, one in each well. But harmonic oscillator wavefunctions tunnel into the classically 
forbidden area outside the potential well, and this enables the three functions to interact with one another. 
The correct wavefunctions are linear combinations of the three localized ones:
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The tunneling interaction partially lifts the degeneracy and causes the torsional oscillator levels to split into 
one nondegenerate and one doubly degenerate level.

A classic example of tunneling splitting is provided by the inversion of ammonia. Although this is not 
a case of rotation about a bond, the quantum mechanical considerations are similar. Inversion in this case 
refers to the ammonia molecule turning inside out, going through a planar geometry at the transition state. 
The potential function for this motion is pictured in Figure 8.13. The barrier to inversion is 24 kJ/mol, or about 
2000 cm−1. This represents the energy of trigonal planar ammonia (0 in Figure 8.13) relative to either of the 
two equivalent pyramidal forms (I and II). This barrier is not huge compared to kBT/hc ≈ 200 cm−1 at room 
temperature, so the tunneling splitting is considerable. For each zero-order state with quantum number v, 
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the tunneling interaction lifts the twofold degeneracy. The new wavefunctions for these split states are sym-
metric and antisymmetric combinations of the two localized wavefunctions, Ψ s I II= +ψ ψ  and Ψa I II= −ψ ψ . 
The tunneling splitting increases with increasing energy, until, as you might expect, a series of equally spaced 
levels results at high energy. Well above the barrier, the ammonia molecule interconverts between the two 
forms and is in fact planar on the average (Figure 8.13).

The tunneling splitting of the v = 0 level is 0.794 cm−1, or 2.38 × 1010 Hz, in the microwave region of the 
spectrum. It represents the frequency of interconversion of the two forms. The first maser (microwave laser) 
was based on transitions between these tunneling states.

8.9 SUMMARY

We have examined the rotational transitions of molecules in absorption and scattering. For linear and sym-
metric top molecules, the rigid-rotor approximation and the selection rules result in pure rotational spectra 
consisting of a series of equally spaced lines. The relative intensities of these lines are dominated by the 
Boltzmann populations of the initial states, but also reflect the J-dependence of the transition moment and 
transition frequency. The rotational spectra of asymmetric rotors are more complex, but can be interpreted 
using perturbation theory. Numerous perturbations may influence rotational spectra. Electronic spin and/
or orbital angular momentum can couple to the rotational angular momentum, leading to splittings not 
observed in closed-shell molecules. Exchange symmetry in molecules containing equivalent nuclei influences 
the statistical weights of even and odd J states. When the rigid rotor and harmonic oscillator approximations 
are relaxed, we find perturbations to the spacing of adjacent rotational transitions, resulting from the rota-
tional- and vibrational-state dependence of the inertia. We have also seen that nonrigid molecules present 
the interesting possibility of internal rotation, and other potentially microwave active transitions such as the 
inversion tunneling in ammonia.

The considerations of this chapter carry over to the study of vibrational and electronic spectra, since 
rotational transitions contribute to the fine structure. To the extent that the rotational wavefunction 
can be separated from the electronic and vibrational wavefunctions, the selection rules derived in this 
chapter also apply to the analysis of this rotational substructure. The difference is in the gross selection 
rule. For example, in infrared absorption, the permanent dipole moment of microwave spectroscopy will 
be replaced by the dipole moment derivative with respect to the vibrational coordinate (the “normal coor-
dinate” to be presented in Chapter 10). In electronic spectroscopy, the nonvanishing electronic transition 

0

H
H
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H
H

H
N N

I II

> 0.794 cm-12000 cm-1
950 cm-1

V

> 36.5 cm-1

Figure 8.13 Inversion potential of ammonia.
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dipole moment provides the basis for the gross selection rule. Fortunately, vibrational and electronic 
spectroscopy often permit the observation of rotational transitions of molecules for which pure rotational 
absorption or scattering is forbidden. We will keep this in mind as we proceed.

PROBLEMS
 1. This problem illustrates the separation of internal and external motions for a one-dimensional rigid 

rotor. Consider a diatomic molecule consisting of masses m1 and m2 at positions x1 and x2. Using 
the notation �x dx dt≡ / , show that the kinetic energy T m x m x= +1 2 1 21 1

2
2 2

2� �  can be expressed as 
T Mx xcm= +1 2 1 22 2� �µ , where xcm is the position of the center of mass, x = x2 − x1, M is the total mass, 
and μ is the reduced mass.

 2. The rotational constant �Be for 12C16O is 1.93127 cm−1 in the ground electronic state and 1.3099 cm−1 in 
the excited triplet electronic state. Calculate the bond length of CO in both the ground and excited 
electronic states.

 3. Calculate the rotational constant for 13C16O in its ground electronic state.
 4. The barrier to rotation about the C–C bond in CH3CH2Cl is about 15 to 20 kJ/mol. Estimate the 

torsional frequency and predict how it could be observed experimentally. (Consult a table of bond dis-
tances in order to estimate the moment of inertia.)

 5. In this problem you will calculate the Stark effect on the rotational spectrum of a symmetric top mol-
ecule. The perturbation operator for a dipole μ0 in an electric field E is ˆ ·H E′ = −

� �
μ0 . Take the direction of 

the field as Z, and note that the dipole moment direction coincides with that of the angular momentum 
vector K for spinning about the symmetry axis. Show that the first-order correction to the energy W of a 
rotational state is
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 Make a sketch showing how the transition J = 1, K = 1 → J = 2, K = 1 would be split by a 100 V/cm field, 
for a molecule having a dipole moment of 1 D.

 6. The rotational constants B0 have been determined for three isotopic derivatives of  chloroacetylene: 
H–C≡C–37Cl, 5572.3 MHz; D–C≡C–37Cl, 5084.2 MHz; and H–C≡C–35Cl, 5684.2 MHz. Assume that 
the carbon isotope is 12C in all cases. Calculate the three bond distances in  chloroacetylene. What 
approximations or assumptions do you have to make to work this problem with the  information 
given?

 7. The ground electronic state of O2 is 3Σg
− , and the nuclear spin of 16O is I = 0. The rotational constant �Be is 

1.4456 cm−1 and the vibration–rotation coupling constant αe is 0.0158 cm−1. Sketch the rotational Raman 
spectrum of O2 in the ground vibrational state. Label the transitions with the initial and final rotational 
quantum numbers and indicate the separation of adjacent lines in cm−1. Neglect centrifugal distortion 
and coupling of the rotational and spin angular momenta.

 8. The rotational constants for HF are �Be = −20 956. cm 1, �αe = −0 796. cm 1 , and D hce/ .= −0 022 cm 1. (a) Find 
the initial J value and the frequency for the most intense rotational transition taking place in the ground 
vibrational state at room temperature. (b) What wavenumber accuracy would be required in order to 
discern the effect of centrifugal distortion in the vicinity of this transition? Repeat the problem for CO, 
for which �Be = −1 9313. cm 1, �αe = −.0 0175 cm 1, and D hce/ .= × − −6 2 10 6 cm 1.

 9. Prove that the moments of inertia Ia and Ib (see Figure 8.3) are equal for the benzene molecule. You 
do not need to know the bond distances, just invoke the hexagonal symmetry, and for simplicity, just 
consider the carbon atoms.

 10. Assign the H2 pure rotational transitions in Figure 8.8, using data from Table 9.2 to calculate the 
predicted frequencies. Assuming the spectra were taken at room temperature, account for the  relative 
intensities of each transition.
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9

Vibrational spectroscopy of diatomics

9.1 INTRODUCTION

The vibrational motion of molecules as probed by infrared (IR) absorption and Raman scattering can be ana-
lyzed to determine molecular structure. In gas-phase studies of fairly small molecules, the rotational substruc-
ture reveals bond lengths and angles. In the solid and liquid phases, this rotational structure is generally lost, 
but molecular symmetry and the presence of various functional groups can still be obtained from vibrational 
spectra. In this chapter, we consider diatomic molecules in order to examine the basic principles of rovibrational 
spectra, many of which apply to polyatomic molecules as well. The study of polyatomic vibrational spectra will 
be undertaken in Chapter 10, where it will be shown how the 3N − 5 or 3N − 6 vibrational degrees of freedom* 
can be represented by a set of collective atomic displacements known as normal modes. By using this represen-
tation, the otherwise intractable overall vibrational motion of a large molecule can be decomposed into a set of 
one-dimensional coordinates, each of which is analogous to that for a diatomic vibrator. Thus our motivation for 
studying diatomics is quite strong; in doing so we prepare to understand more complex molecules.

The Born–Oppenheimer approximation is a powerful concept on which much of the material in the next 
few chapters is based. It provides a physical picture in which nuclear motion takes place on potential energy 
curves (or surfaces, for polyatomics) belonging to distinct electronic states. The interesting spectroscopic 
consequences of the breakdown in this approximation will be considered in Chapters 11 and 12. A further 
approximation to be made is that of the harmonic oscillator (HO) model, which provides potential energy 
surfaces which are quadratic functions of the vibrational coordinate. The HO model provides a point of depar-
ture for considering more realistic potential functions. These more appropriate potentials are said to account 
for anharmonicity. Using diatomics as the simplest possible examples, some of the interesting consequences 
of anharmonicity are illustrated. The study of polyatomics reveals additional signatures of these effects.

9.2  THE BORN–OPPENHEIMER APPROXIMATION AND ITS 
CONSEQUENCES

The vibrational problem of a diatomic is simplified by the fact that there exists only a single normal mode, 
the displacement of the internuclear distance† R from its equilibrium value Re. The first question of inter-
est is the form of the potential function that governs the vibrational motion, V(R), and how it can be 
obtained in a quantum mechanical calculation. The full Hamiltonian for the molecule is represented by 
ˆ ˆ ˆ ˆ ˆ ˆH T T V V VN e ee eN NN= + + + + , where the first two terms are the kinetic energy operators for the nuclei and 

the electrons, respectively, and the last three terms are the potential energy operators for the Coulombic inter-
actions: electron–electron, electron–nuclear, and nuclear–nuclear. The problem in finding the eigenfunctions 
of this Hamiltonian is that the coordinates of the electrons are not separable from those of the nuclei: the 
operator V̂eN  prevents these variables from being separated exactly. The Born–Oppenheimer approximation, 
however, allows the total wavefunction to be written as a product of the electronic and nuclear wavefunctions. 
It is based on a very reasonable physical picture, in which the nuclear motion is several orders of magnitude 
slower than that of the electrons. Thus, for the purpose of finding the electronic energy, we consider the 

* An N-atom molecule has 3N − 5 vibrational degrees of freedom if linear and 3N − 6 if nonlinear.
† In this chapter, we use an uppercase letter R to represent the internuclear distance and a lowercase r to signify the 

 positions of the electrons.
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nuclear positions fixed. The operator T̂N (Equation 8.1) is then neglected (as if the nuclear masses were infi-
nite) and the potential VNN is considered a constant. The electronic Schrödinger equation then involves the 
Hamiltonian ˆ ˆ ˆ ˆ :H T V Ve e ee eN= + +

 ˆ ( ; ) ( ) ( ; )H r R E R r Re i i iψ ψ=  (9.1)

Since the electron–nuclear potential energy depends on the fixed positions of the nuclei, the wavefunction for 
the electronic state i depends explicitly on the electronic coordinates r and parametrically on the internuclear 
distance R. Imagine finding the solution to Equation 9.1 for a large number of different values of R. This 
generates an electronic energy Ei(R) which can be added to the nuclear repulsion energy VNN(R) to generate a 
potential function Vi(R) for the nuclear motion in electronic state i:

 V R E R V R E R
Z Z e

R
i i NN i

A B( ) ( ) ( ) ( )= + = +
2

04πε
 (9.2)

where ZA and ZB are the atomic numbers of the two nuclei. It is physically reasonable to imagine Ei(R) to 
decrease as two atoms approach one another, since the electrons begin to experience simultaneous attrac-
tion to both nuclei. Clearly, the internuclear repulsion VNN opposes this attraction. If a bond forms, there 
is a distance at which the energy is minimum and beyond which further decrease in internuclear distance 
causes Vi(R) to rise sharply. The electronic state is then said to be bound, and the distance at which Vi(R) is 
a minimum is the bond length, Re. A dissociative electronic state, on the other hand, is characterized by a 
potential energy curve which does not have a minimum at finite internuclear distance, but continues to rise 
as the nuclei are brought together.

The idea that to each electronic state corresponds a unique potential energy curve (or surface) is an impor-
tant consequence of the Born–Oppenheimer approximation. Figure 9.1 shows a number of potential energy 
curves for C2, for which many spectroscopic measurements and theoretical calculations have been made. The 
changes in the potential function for different electronic states, as exemplified by the data for C2, are quite 
important in electronic spectroscopy. In this chapter, we emphasize vibrational transitions within one elec-
tronic state, usually the ground state. 

Several physical properties are readily obtained from Vi(R). The equilibrium separation (i.e., bond length) 
Re is the distance for which the potential energy is a minimum. The curvature at the bottom of the potential 
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C–C distance (angstroms)
321

Figure 9.1 Potential energy curves for C2. (Reprinted from P. F. Fougere, and R. K. Nesbet, Electronic Structure 
of C2, J. Chem. Phys. 44, 285 (1966), with the permission of AIP Publishing.)



9.2 The Born–Oppenheimer approximation and its consequences 205

well is called the force constant k, and it is one measure of the strength of the bond. Another such measure is 
the bond dissociation energy De, shown in Figure 9.2 as the energy required to take the system from its equi-
librium position to infinitely separated atoms. The experimental dissociation energy is always less than De 
because the uncertainty principle requires the molecule to have a finite zero-point energy, the lowest pos-
sible vibrational energy. The energy required to dissociate the molecule from the ground vibrational level is 
called D0. It is the maximum energy required for dissociation; at higher temperatures dissociation also takes 
place from excited vibrational levels. In Figure 9.2, a typical ladder of quantum vibrational levels is super-
imposed on the sketch of V(R). Notice that the spacing between adjacent levels decreases with increasing 
vibrational energy, converging to zero at the dissociation limit, where the energy levels become continuous. 
This behavior is in accordance with the Bohr correspondence principle, which states that quantum mechanics 
yields to classical mechanics for large quantum numbers. 

In solving Equation 9.1, the nuclear kinetic energy is omitted from the Hamiltonian, so the resulting potential 
energy function does not depend on the mass of the nuclei. This means that once Vi(R) has been found for a given 
molecule, for example H2, it applies to all isotopic variations, such as HD and D2. Isotopomers therefore have the 
same bond length within the Born–Oppenheimer approximation. Similarly, they share the same value of De, but 
have different values of D0, since D0 depends on the vibrational frequency and thus the reduced mass. Generalizing 
to polyatomics, we conclude that isotopic substitution preserves the overall geometry. This is very useful to remem-
ber, as it allows the isotopic dependence of spectroscopic constants to be readily predicted. It is often possible to 
exploit isotopic substitution to determine bond lengths and force constants from spectroscopic data.

We next consider how vibrational energy levels and wavefunctions are obtained. We seek to solve the 
Schrödinger equation for nuclear motion within a particular electronic state. The nuclear Hamiltonian is the 
sum of the potential energy Vi(R) and the nuclear kinetic energy operator:

 ˆ ˆ ˆ ( )H T V RN N i= +  (9.3)

The eigenvalues of this Hamiltonian are the vibration–rotation energies. Within the rigid rotor approximation, 
the vibrational and rotational wavefunctions factor: ψvib/rot = ψvibψrot. The vibrational wavefunction is referred 
to as χv

i , where the superscript i labels the electronic state and the subscript v is a vibrational quantum number. 
The total Born–Oppenheimer wavefunction for a vibronic (i.e., vibrational plus electronic) state is

 Ψi i
ir R r R Rv v( ; ) ( ; ) ( )=ψ χ  (9.4)

Equation 9.4 represents what is called the adiabatic approximation. The word adiabatic is used to describe 
nuclear motion that takes place on a single potential energy surface pertaining to a particular electronic state. 
In the more drastic crude Born–Oppenheimer approximation, the electronic part of the wavefunction is eval-
uated at the equilibrium internuclear distance: Ψi i e

ir R r R Rv( ; ) ( ; ) ( )≅ψ χ v . In this case all the R dependence 
arises from the vibrational wavefunction. For the remainder of this chapter, we concentrate on the vibrational 
wavefunctions χv

i R( ), and we omit the superscript, and the subscript on Vi(R), when vibrational levels within 
a single electronic state are under consideration.

R

V
(R

)

D0 De

Figure 9.2 Potential energy function and vibrational energy levels for a diatomic molecule.
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9.3 THE HARMONIC OSCILLATOR MODEL

The wavefunctions χv ( )R  are eigenfunctions of the Hamiltonian of Equation 9.3. To find them requires a 
 functional form for the potential energy V(R). Near the equilibrium position, it is reasonable to expand the 
potential in a Taylor series about Re. Introducing the displacement q = R − Re, this series takes the form:

 V q V
dV

dq
q

d V

dq
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dq
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= +
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Equation 9.5 is equivalent to Equation 8.77, with a change in notation. The energy at the minimum V(0) can 
be taken as zero, and the slope of the potential at the minimum is automatically zero, so the first nonzero term 
in the above series is the quadratic term. If we drop the cubic, quartic, and all higher terms, the potential is 
said to be harmonic and can be expressed as

 V q
d V

dq
q kq( ) =
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2
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2 2 (9.6)

Equation 9.6 defines the force constant k as the second derivative of the potential energy evaluated at the 
minimum energy position. The harmonic potential of Equation 9.6 is a good approximation to the true poten-
tial for energies near the bottom of the well, corresponding to small displacements q, and becomes poorer as 
the energy increases. One big failing of the harmonic approximation is that it does not permit dissociation 
because the walls of the confining potential rise to infinity. Figure 9.3 compares the harmonic oscillator 
potential function to a more realistic anharmonic potential energy curve.

The kinetic energy operator that is needed was derived in the previous chapter, where the internal 
( vibration–rotation) and lab-frame (translation) degrees of freedom were separated (see Equation 8.4). The 
kinetic energy operator for internal motion was found to be

 ˆ
ˆ

T
R R R

L

R
N = − ∇ = − + −
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where μ is the reduced mass as defined in Equation 8.5. In the rigid rotor approximation used in Chapter 8, 
R was a constant and the two derivatives in Equation 9.7 were discarded. Now we want to retain them, 
along with the orientation dependent term. The angular momentum operator L̂ depends on the angles θ 
and ϕ, so T̂N includes the kinetic energy of both vibration and rotation. When the potential energy V(R) = 
V(q + Re) is added to the kinetic energy operator, the result is the Hamiltonian whose eigenvalues are the 
 vibration– rotation energies Evr:

 ˆ ( )H V R EN rΨ Ψ Ψ Ψ= − ∇ + =�2
2

2μ int v  (9.8)
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Figure 9.3 Comparison of harmonic (dashed) and anharmonic (solid) potential curves.
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We have already solved the rigid rotor problem. Since the commutator [ , ]H LN
� � 2  is zero, the two operators 

share a set of common eigenfunctions. The trick of separation of variables enables the total wavefunc-
tion to be factored into a product of two terms which depend separately on the vibrational and rotational 
coordinates:

 Ψ( , , ) ( ) ( , )R R YJMθ ϕ ψ θ ϕ=  (9.9)

By substituting Equation 9.9 into Equation 9.8 and using the fact that the spherical harmonics YJM(θ, ϕ) are 
eigenfunctions of L̂2, we can cancel the YJM’s and obtain an equation that depends only on the vibrational 
coordinate:

 − ∂
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Next, we make the substitution χ(q) ≡ Rψ(R), and use
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∂
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to reduce Equation 9.10 to
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We have made the switch from partial derivatives to ordinary derivatives, since the vibrational wavefunction 
χ(q) depends only on the variable q. As it stands, Equation 9.12 is the Schrödinger equation for the vibration–
rotation energies of a nonrigid rotor. For small enough displacements, q << Re, the rigid-rotor model permits 
us to make the approximation:
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The rigid-rotor approximation results in the total energy being the sum of vibrational and rotational parts, Evr = 
Evib + Erot. The term Erot χ(q) can be subtracted from both sides of 9.12, leaving
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This is the vibrational Schrödinger equation in the rigid-rotor approximation. It remains to replace V(q) by 
the harmonic expression ( )1 2 2kq  to obtain the harmonic oscillator (HO) Hamiltonian:

 Ĥ
d

dq
kqvib =

−
+

�2 2

2
2

2

1

2µ
 (9.15)

The solutions to the quantum mechanical HO problem are well known. (See Chapter 1.) The method for 
finding the eigenfunctions and eigenvalues of the HO Hamiltonian is discussed in most introductory books 
on quantum mechanics, so we will just summarize them here. The eigenvalues are

 E h ev v= +( )
1

2
ν  (9.16)

where the vibrational frequency νe = ωe/2π is related to the force constant k through k e e= =4 2 2 2π µν µω . The 
energy in Equation 9.16 is Evib, henceforth we will identify it with the subscript v, the vibrational quantum 
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number. Boundary conditions permit integral values of the quantum number v ranging from 0 to ∞. The 
harmonic oscillator eigenfunctions are given by

 χ α αv v v( ) exp ( )/q N
q

H q=
−









2
1 2

2
 (9.17)

where α µω≡ /�, and the Hermite polynomial Hv(y) contains only even or odd powers of y ≡ α 1/2q, according 
to whether v is even or odd, up to yv. See Table 9.1 for a list of the first few Hermite polynomials. The energy 
levels and wavefunctions for the harmonic oscillator are illustrated in Chapter 1 (Figure 1.8). The alternating 
symmetries of the wavefunctions, which are even functions of y for v = 0, 2, 4,… and odd functions of y for 
v = 1, 3, 5,…, are important in the consideration of selection rules. For example, an operator which is an even 
function of y can only connect two HO states if they are both even or both odd, while an odd function of y 
can connect even and odd states. As will be shown, further restrictions may apply. The Hermite polynomials 
can be generated by means of the recursion formula:

 H y yH y H yv v v 1v+ −= −1 2 2( ) ( ) ( ) (9.18)

Note that the order of the Hermite polynomial is the quantum number v, and thus there are v nodes in the 
wavefunction. The normalization constant for the harmonic oscillator wavefunctions is given by

 N v v v
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In many problems, it is possible to find matrix elements of harmonic oscillator states without using the wave-
functions: one can employ Dirac notation for the eigenstates and harmonic oscillator raising and lowering 
operators, discussed in Chapter 1. We shall see an example of this in the next section.

9.4 SELECTION RULES FOR VIBRATIONAL TRANSITIONS

9.4.1 Infrared spectroscopy

The analysis of gas-phase vibration–rotation spectra requires matrix elements of the dipole moment opera-
tor with respect to vibration–rotation wavefunctions. Using the harmonic oscillator-rigid rotor approxima-
tion, we can represent the rovibrational wavefunctions as |vJM〉 = χv(q)YJM(θ, ϕ). To deduce the selection 
rules for a transition vJM → v′J′M′, consider the transition moment 〈vJM|μ|v′J′M′〉 ≡ μif, where the usual 
subscripts denote initial and final states. The dipole moment operator μ is a vector operator; it depends on 
the orientation of the molecule in the lab frame. It also depends on the coordinate q, which for the diatomic 
molecule presently under consideration is just the bond length displacement. The IR activity of a molecule 
derives from the q dependence of the permanent dipole moment. Think about a polar molecule such as CO in 
its ground electronic state. As the distance between the atoms increases, perhaps the dipole moment will also 
increase, since it is proportional to the charge separation. But this trend cannot continue at large displace-
ments, because the molecule dissociates to neutral atoms and the dipole moment must go to zero. Similarly, 
we expect the dipole moment to decrease to zero as the internuclear distance shrinks to zero. On going from 
R = 0 to R = ∞, we expect the dipole moment to increase from zero and then decrease back to zero, but, in the 
absence of a calculation, that is really all we know about the function μ(q).

As in our previous treatment of pure rotational selection rules (Section 8.5), we expand the operator for 
the magnitude of the dipole moment about its value at the equilibrium position: µ µ µq q q( ) = + ∂ ∂( ) +0 0

/ �. 

Table 9.1 Some Hermite polynomials

H0 (y) = 1 H3 (y) = 8y3 − 12y
H1 (y) = 2y H4 (y) = 16y4 − 48y2 + 12

H2 (y) = 4y2 – 2 H5 (y) = 32y5 − 160y3 + 120y
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As shown in Chapter 8, the first term is responsible for microwave activity. Since μ0 does not depend on q, it 
cannot connect different vibrational states, because they are orthogonal, and thus μ0 does not contribute to IR 
activity. As shown below, it is the second term which permits vibrational transitions in which Δv = ±1. The transi-
tion from v = 0 to v = 1 is referred to as the fundamental. When the initial populations of states having v ≠ 0 
are significant, hot bands such as 1 → 2, 2 → 3, etc., are observed. The higher order terms in the expansion of 
μ(q), proportional to q2, q3, etc., permit overtones, for which Δv = ±2, ±3,…, etc. The dipole moment derivative, 
defined as (∂μ/∂q)0 ≡ μ′, is the slope of μ(q) at the equilibrium position. The intensity of an IR transition scales 
as the square of the dipole moment derivative.

With the wavefunction expressed as a product of vibrational and rotational contributions, we can now 
evaluate the matrix elements of the operator 

� � � �μ μ θ ϕ θ ϕ θ′ = ′ + +q i j k( sin cos sin sin cos ). The transition 
moment factors into a product of two terms:

 μ χ μ χ
θ ϕ
θ ϕ

θ
if JM J Mq Y Y= ′
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sin sin

cos
 (9.20)

Vibrational selection rules come from the first matrix element, χ μ χv v′ ′q , and the rotational structure 
within a vibrational transition derives from the matrix element of the spherical harmonics. Using the raising 
and lowering operators of Section 1.3.3 and the notation |χv〉 = |v〉, we have

 ′ =






+ + ′ + ′ −v v v vv v v vq
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1 2

1 1μω
δ δ
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, ,  (9.21)

(See Equation 1.45.) We have factored out the dipole moment derivative μ′, which is just a number, albeit an 
important one through the gross selection rule μ′ ≠ 0. The dipole moment must change during the vibration, 
thus, only heteronuclear diatomic molecules can be IR active. (Note that when this analysis is extended to 
polyatomics in Chapter 10, the existence of a permanent dipole moment is no longer required for IR activity, 
since a vibrating molecule may experience a change in dipole moment even if there is no dipole moment in 
the equilibrium geometry.) Equation 9.21 leads to the selection rule Δv = ±1. Note that the same selection rule 
could be derived using the recursion formula of Equation 9.18 and the fact that the HO wavefunctions are 
orthonormal. The plus and minus signs of Δv of course correspond to absorption and emission. Ignoring the 
rotational energy for the moment, the frequency of this transition is the harmonic vibrational frequency νe. 
Next let us see how the second matrix element in Equation 9.20 determines the rotational substructure within 
a vibrational transition.

The rotational part was evaluated in Chapter 8, where it was shown to lead to the microwave selection 
rules ΔJ = ±1 and ΔM = 0, ±1. In addition, transitions having ΔJ = 0 are permitted for diatomic molecules with 
nonzero electronic angular momentum. Although such transitions are of no interest in the discussion of pure 
rotational spectra, they are possible in vibration–rotation spectra and are referred to as the Q branch of the 
spectrum.* In the absence of an external field the selection rules on M can be neglected, so the selection rules 
on J will decide the rotational structure. For the fundamental transition in IR absorption, the selection rules 
ΔJ = −1, 0, +1 lead, respectively, to transitions at frequencies less than, equal to, and greater than the funda-
mental frequency νe. These are referred to as the P, Q, and R branches, respectively. With the energy levels 
expressed as E h hB J JJ e ev v= + + +( ) ( )1 2 1ν , the frequencies of the lines in the vibration–rotation spectrum, 
in the rigid rotor-harmonic oscillator approximation, are determined to be
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* In the absence of vibration–rotation coupling, the Q branch is not really a branch, but rather a line corresponding to all 
transitions having ΔJ = 0.
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Note that J is the initial rotational quantum number, and the vibrational state dependence of the rotational 
constant B ≈ Be has been neglected. Figure 9.4 shows a typical rotationally resolved vibrational spectrum 
for a diatomic molecule, CO. As in pure rotation spectra, the initial state populations of a number of the 
lowest J states within the initial vibrational level are significant, so the P and R branches consist of a series of 
lines separated by twice the rotational constant. The intensity of each line is proportional to the Boltzmann 
 population of the initial state. (Though the absorption intensity is in general proportional to the initial state 
population minus that of the final state, the latter is negligible for frequencies νe that are large compared to 
kBT/h.) The intensities also depend on the frequency and on the square of the J-dependent rotational transition 
moment. The transition moment is expressed as in Equations 8.47 and 8.48, except that the dipole derivative μ′ 
replaces the permanent dipole moment μ0. Note that for the same initial value of J the R branch line is stronger 
than the P branch line.

As in microwave spectra, the bond lengths of gas phase diatomics can be determined from the spacing 
of the rotational lines in the IR. The prediction that this spacing be constant is a consequence of the rigid 
rotor and harmonic oscillator approximations. Close inspection of Figure 9.4 reveals that the spacing of 
adjacent lines in the P branch increases at higher J values, while the R branch lines move closer together at 
higher J. In Section 9.5, we show how a more realistic approach to the vibration–rotation problem explains 
this picture.

Carbon monoxide is a closed-shell molecule and therefore the Q branch is forbidden. In contrast, the IR 
absorption spectrum of NO, shown in Figure 9.5, displays some interesting features that are not observed 
in closed-shell molecules. The electronic angular momentum about the bond in NO introduces a rotational 
quantum number analogous to K for a prolate symmetric top. The selection rules of Equation 8.52 apply, 
and the ΔJ = 0 transitions are allowed except for J = 0. The ground state of NO is a doublet, having the term 
symbol 2Π. This term is split by spin–orbit coupling into two states, 2Π1/2 and 2Π3/2, separated by about 
120 cm−1. Each of these states displays angular momentum coupling intermediate between Hund’s cases 
(a) and (b), resulting in half-integral rotational quantum numbers. Interaction of the rotational angular 
momentum with the electronic angular momentum lifts the orbital degeneracy of either Π state through 
a process called Lambda-type doubling. This leads to a very small splitting, on the order of 0.01 cm−1 for 
NO, which increases with rotational quantum number. This splitting is much less than the resolution of 
Figure 9.5 and is not responsible for the structure observed there. However, at room temperature the popu-
lation of the  higher-energy 2Π3/2 state is a little more than half that of the ground 2Π1/2 state. Each electronic 
state has its own vibrational frequency and rotational constant, and therefore the spectrum of Figure 9.5 is 
a superposition of the rovibrational spectra of the 2Π1/2 and 2Π3/2 states. Note the poorly resolved Q branch 
lines which are permitted in this molecule. Vibration–rotation coupling causes the Q branch frequencies to 
depend on J, as shown in Section 9.5. 
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the transitions.
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9.4.2 raman scatterIng

The selection rules for vibration–rotation Raman scattering can be derived from the Kramers–Heisenberg–
Dirac expression of Equation 8.53. This is a useful starting point for describing resonance Raman spectra, where 
the incident laser is resonant with an allowed electronic transition, and we will employ it in Chapter 12. Here, 
we take a view of Raman scattering that is appropriate for nonresonance Raman scattering. We find that the 
gross selection rule in Raman scattering is like that for IR absorption with the polarizability replacing the dipole 
moment. Since vibrational activity in Raman scattering depends on the change in polarizability during vibra-
tion, both homonuclear and heteronuclear diatomics are active.

Once again, we expand the quantity of interest about its value at the equilibrium position: 
α α α= + ∂ ∂( ) +0 0

/ q q �. The first term, which cannot connect different vibrational states, leads to Rayleigh 
scattering or pure rotational Raman, while the second is the one of interest here. Recognizing that the 
polarizability derivative α′ ≡ (∂α/∂q)0 is a constant, the vibrational selection rules for Raman scattering 
depend on the ability of the operator q to connect vibrational states that differ by one quantum. The gross 
selection rule in Raman scattering is more liberal than that for IR spectra: both homonuclear and hetero-
nuclear diatomics are active in the Raman because (∂α/∂q)0 ≠ 0. As in IR spectra, the selection rule for ordi-
nary Raman scattering is Δv = ±1, corresponding to Stokes (Δv = +1) and anti-Stokes (Δv = −1) transitions. 
For incident light of frequency ν0, the scattered light due to the fundamental transition is centered at ν0 − νe 
for the Stokes transition and ν0 + νe for the anti-Stokes transition. The latter are less intense than the former 
due to the lower Boltzmann population of the initial state, typically v = 1 in the anti-Stokes case and v = 0 
for Stokes scattering.
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Figure 9.5 Vibration–rotation spectrum of NO. (Reprinted with permission from Infrared Spectra for 
Quantitative Analysis of Gases, P. L. Hanst, and S. T. Hanst. Copyright 1992, Infrared Analysis, Inc.)
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To derive the rotational substructure, we need only combine the preceding selection rules with those 
derived in Chapter 8 for pure rotational transitions. Transitions having ΔJ = −2, −1, 0, +1, +2 belong, respec-
tively, to the O, P, Q, R and S branches. Diatomics and linear polyatomics lack P and R branches, because 
ΔJ = ±1 is forbidden. Note that the Q branch is permitted for closed-shell molecules in Raman scattering 
(see the discussion of Section 8.6 to verify this statement), as is apparent in the example spectrum of H2 
shown in Figure 9.6. The bond length can be determined from the rovibrational Raman spectrum, a feature 
that is especially useful in the case of homonuclear diatomics as they are silent in the IR and microwave. 

The Raman spectrum of O2, shown in Figure 9.7, displays the effects of nuclear spin statistics discussed 
in Chapter 8. The nuclear spin of 16O is I = 0, and the ground state term symbol is 3Σg

− . Using the analysis 
discussed in Section 8.4, we conclude that only odd J states of 16O2 exist. The spacing of adjacent lines in the 
O or S branch is thus 8 �B, where �B  is 1.446 cm−1 for O2. As in the case of pure rotational Raman scattering, the 
spacing of the nearest Stokes and anti-Stokes transitions, relative to the separation of adjacent lines in either 
branch, reveals whether even or odd J states, or both, are present.

The analysis so far has been based on the rigid rotor-harmonic oscillator (RR-HO) model, but the 
spectra of Figures  9.4–9.7 show evidence of more complex behavior. To better understand experimental 
spectra, we need a more realistic approach. How indeed can a rigid rotor have any vibrational motion at all? 
And since real molecules always vibrate (even at absolute zero), what is the effect of this vibration on the rota-
tional energy levels? In the next section, we examine how the selection rules and transition frequencies are 
altered for nonrigid rotors and anharmonic oscillators.
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Figure 9.6  Q branch lines of H2 Raman spectrum at 460 bars. (Courtesy of Dr. Frank Baglin, Department of 
Chemistry, University of Nevada, Las Vegas.)
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Figure 9.7 Vibration–rotation Raman spectrum of O2 in air at atmospheric pressure. The initial quantum 
 numbers of the O and S branch lines are indicated, and the Q branch is off-scale.
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9.5  BEYOND THE RIGID ROTOR-HARMONIC OSCILLATOR 
APPROXIMATION

In this section we discuss some effects of anharmonicity from the point of view of diatomic molecules. The 
qualitative features of this discussion also apply to the case of anharmonicity in polyatomics, but we postpone 
the discussion of anharmonic effects unique to polyatomics until Chapter 10.

The vibrational absorption spectrum of a molecule is generally dominated by the fundamental transition 
when it is allowed, but it often happens that weak transitions having Δv = 2, 3, 4,… are also observed. These 
are called overtones, and usually the first overtone, Δv = 2, is stronger than the second overtone, Δv = 3, which is 
in turn more intense than the third overtone, and so on. There are two ways such overtones can appear, and 
they may be called mechanical and electrical anharmonicity.

Mechanical anharmonicity, or just plain anharmonicity as it is usually referred to, means that the potential 
function V(q) is not a quadratic function, but rather a more realistic potential function! To appreciate how 
anharmonicity allows overtones to become active, we can treat some of the higher terms in the Taylor series 
of Equation 9.5, for example the cubic and quartic terms, as perturbations. The effect of the perturbation on a 
particular harmonic state |v〉 is to mix in some of the nearby states. Just as the operator q connects states which 
differ by one vibrational quantum, q3 and q4 can connect states which differ by up to three or four quanta. (This 
is the kind of statement that is readily proven using raising and lowering operators, as shown in Problem 5.) 
The perturbation treatment of the anharmonic oscillator is considered in more detail in the next section. Here, 
we note that this mixing of the zero-order states allows the operator q (from the transition moment operator 
μ′q) to connect states whose zero-order descriptions differ by more than one vibrational quantum.

The Taylor series expansion of the dipole operator may be carried out beyond the linear term: 
µ µ µ µq q q q q( ) = + ∂ ∂( ) + ∂ ∂( )0 0 0

/ /2 2 2�. The second derivative of the dipole moment, for example, per-
mits transitions between states differing by two quanta, and higher order derivatives allow still higher 
overtones. This effect is called electrical anharmonicity. When an overtone is observed, the relative con-
tributions made by electrical and mechanical anharmonicity are not readily apparent. However, mechani-
cal anharmonicity leads to decreasing spacing between adjacent vibrational levels as the quantum number 
increases. For example, the frequency of the first overtone is less than twice the fundamental frequency. 
We examine two quantitative approaches to interpreting this anharmonicity: perturbation theory and the 
phenomenological Morse oscillator.

9.5.1 perturbatIon theory of vIbratIon–rotatIon energy

In this approach, terms are added to the Hamiltonian to account for both nonrigid rotor and anharmonic 
effects. The first correction improves upon the approximation made in Equation 9.13. Rather then neglecting 
q compared to Re, we expand the term in a power series in the ratio q/Re and keep the first two terms beyond 
the rigid-rotor approximation:
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This gives a perturbation Hamiltonian of the form ˆ ′ = +H aq bqrot
2 , where
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At the same time, we correct for anharmonicity by considering a vibrational perturbation of the form 
ˆ ′ = +H cq dqvib

3 4 , where the cubic and quartic force constants are defined as follows:
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The first-order correction to the v-th vibrational level is found by evaluating E aq bq cq dqJv v v( )1 2 3 4= + + + . 
Notice that, due to the fact that χv = Rψ(R), we can replace the integral ψ ψ∗∫ ( ) ( )R O R R dR� 2   by χ χv v

∗∫ ( ) ( )q O q dq� . 
The limits of the integral over q really ought to be from −Re to ∞, but there is a little error in replacing the lower 
limit with −∞, since the wavefunction is negligibly small for q less than −Re. The linear and cubic terms do not 
contribute to E Jv

( )1  because of the symmetry of the wavefunctions. Alternatively, one can use raising and lower-
ing operators to write q and q3 and prove that these operators are nondiagonal (meaning that they only connect 
states with different v). The quadratic and quartic terms do contribute to the first-order correction, and the 
second-order correction depends on all four perturbation terms. The details of obtaining the  vibration–rota-
tion energy levels through second order are shown in [1] and are explored further in Problem 9. Here, we state the 
result and discuss its physical implications. When the perturbed energy is expressed as E E E EJ J J Jv v v v≅ + +( ) ( ) ( )0 1 2 , 
the final expression is

 
E h hB J J x h

h J J hD J

J e e e e

e e

v v v

v

= + + + − +

− + + −

( ) ( ) ( )

( ) ( )

1

2
1

1

2

1

2
1

2

2

ν ν

α (( )J + 1 2

 (9.28)

Equation 9.28 introduces three corrections to the RR-HO model. The first of these (third term on the right-
hand side) is the correction for anharmonicity. The anharmonicity constant xe depends on the cubic and 
quartic force constants:
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The sign of xe is usually positive, so the result of the anharmonic correction is to bring the vibrational energy 
levels closer and closer together as the energy increases. This is as it should be, but since it is a perturbation 
calculation, we should not be surprised to reach a maximum value of v where the energy levels turn around 
and start to decrease with increasing quantum number. This is an artifact and indicates that we are outside 
the regime where the cubic and quartic force constants suffice to correct for anharmonic effects.

The fourth term in Equation 9.28 represents vibration–rotation coupling, which was mentioned in Chapter 8. 
The result of this correction term is to cause the rotational constant to depend on the vibrational quantum 
number: B Be ev v= − +α ( / )1 2 . The physical significance of this term was considered in Chapter 8, where it 
was noted that the effective rotational constant decreases as vibrational energy increases. Here, we present the 
expression for the vibration–rotation coupling constant αe (not to be confused with the polarizability):
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The sign of Ve
( )3  is typically negative, and since the first term in parentheses generally outweighs the second, 

the net result is a vibration–rotation coupling constant which is positive, causing the rotational constant Bv 
to decrease as v increases. Notice that even a harmonic oscillator, for which Ve

( )3  vanishes, exhibits vibration–
rotation coupling, but the coupling constant turns out to be negative. (See Problem 4.)
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The last term in Equation 9.28 accounts for centrifugal distortion, the tendency of the average internuclear 
distance to increase as J increases. The centrifugal distortion constant, also discussed in Chapter 8, is found to be

 D
B

e
e

e

=
4 3

2ν
 (9.31)

Following Levine [2], a bar has been placed over this symbol to distinguish it from the dissociation energy 
defined previously. The centrifugal distortion term is generally small compared to the perturbation from 
vibration–rotation coupling.

Assuming that the selection rules derived for the RR-HO model still apply,* we now look at the influence 
of vibration–rotation coupling on the spectrum, neglecting the smaller contribution from centrifugal distor-
tion. Taking De = 0, the frequencies of the P, Q, and R branches of the fundamental (0 → 1) transition are 
found to be

 ν ν α αP e e eB J J= − −( ) −01
22 2  (9.32)

 ν ν αQ e J J= − +01 1( ) (9.33)

 ν ν α αR e e eB J J= + −( ) +( ) − +01
22 2 1 1( )  (9.34)

where J is the initial quantum number. The frequency ν01 = νe − 2xeνe is that of the pure vibrational transition 
(v = 0, J = 0 → v = 1, J = 0). By taking the difference in the frequencies of adjacent lines, we obtain the line 
spacing as a function of rotational quantum number:
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These equations indicate that the separation of adjacent lines increases with increasing J for the P branch and 
decreases with increasing J for the R branch. This effect can be observed in the spectra shown in the previous 
section. Equations 9.35 and 9.36 suggest that the rotational constants αe and Be can be obtained from a plot of 
line spacing versus J. Spectroscopic constants for some diatomic molecules are given in Table 9.2.

* The reader should try to justify the statement that the selection rules on J still apply to the perturbed system.

Table 9.2 Spectroscopic constants for diatomics in the ground electronic state

�νν e, cm−1 x e e�νν , cm−1 �Be, cm−1 αe, cm−1 Re, Å D0, eV
12C2 1641.35 11.67 1.6326 0.01683 1.3117 3.6
12C16O 2170.21 13.46 1.9313 0.01896 1.1281 10.96
1H2 4395.20 117.9 60.80 2.993 0.7416 4.476
1H35Cl 2989.74 52.05 10.59 0.3019 1.2746 4.430
127I2 214.57 0.6127 0.03735 0.000117 2.6666 1.5417
14N2 2359.61 14.456 1.998 0.01731 1.094 7.373
16O2 1580.36 12.073 1.4456 0.01579 1.20739 5.080
16O1H 3735.21 82.81 18.871 0.714 0.9706 4.35
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9.5.2  the morse oscIllator and other anharmonIc potentIals

The Morse function is an empirical potential that has the general appearance of the anharmonic potential for 
a real molecule. It is given by

 V R D ee
a R Re( ) ( )= − 

− −1
2
 (9.37)

This function has the following desirable features: V(R) goes to zero at Re, approaches the dissociation energy 
De at large R and takes on a very large (though finite) value as R goes to zero. There are three adjustable param-
eters, De, Re, and a, which are chosen to get agreement with experimental data. The parameter a can be fixed 
by equating the force constant with the second derivative of the potential evaluated at Re, k = 2a2De. Since the 
force constant is related to the frequency, k e= 4 2 2π µν , the result is

 ν
π µe

ea D
=

2

2  (9.38)

Having only three adjustable parameters does not make the Morse function flexible enough to accurately model 
the potential function for a real molecule over the complete range of V(R). However, this potential function has 
the attractive feature that the vibrational eigenfunctions can be found exactly. These turn out to be

 E h x he e ev v v= + − +( ) ( )
1

2

1

2
2ν ν  (9.39)

The anharmonicity constant is given by
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Note that xe is inversely proportional to the number of harmonic oscillator states that would fit into the poten-
tial well. The Morse function provides a convenient way to estimate the anharmonicity from the knowledge 
of the vibrational frequency and dissociation energy.

A very general expression for the energy levels of an anharmonic oscillator is the series 
E h x h y he e e e ev v v v= + − + + + + ⋅⋅⋅( ) ( ) ( )1 2 1 2 1 22 3ν ν ν . The anharmonicity constants xe, ye,… can be deter-
mined from experimentally observed overtone frequencies.

A numerical approach for determining the potential energy function V(R) from spectroscopic data is the 
Rydberg–Klein–Rees (RKR) procedure. The method is based on the Bohr–Sommerfield quantization condi-
tion. This early version of quantum theory, also used to derive the Bohr model of the atom, was based on 
quantization of the “action integral,” pdq nh=∫� , where p is the momentum conjugate to the position q, n 
is an integer, and the integration is over a period of motion with fixed energy E. Applying this to the case of 
vibration of a diatomic, this condition gives

 ( ) ( ) [ ( )]/ /v v+ = −∫1

2
2 2 1 2 1 2

1

2

h E V R dR

R

R

μ  (9.41)

where Ev is the (spectroscopically determined) energy of a particular level, and R1 and R2 are the inner and 
outer turning points, where the potential energy becomes equal to the total energy Ev. The RKR method 
permits these turning points to be determined numerically from Equation 9.41. The potential energy V(R) 
is then generated by drawing a smooth curve through the turning points. For more details on the RKR 
method, see [3].
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An example of using vibrational overtone data to derive the potential energy curve is provided in [4] 
and depicted in Figures 9.8 and 9.9. Branigan et al. measured the resonance Raman spectrum of liquid Br2 
and observed as many as 30 overtones! As will be discussed in Chapter 12, the selection rules for resonance 
Raman spectroscopy, which uses laser excitation within the electronic absorption band, permit overtones that 
are not necessarily the result of mechanical and electrical anharmonicity. Figure 9.8 shows a portion of the 
overtone progression observed on exciting the Raman spectrum of liquid Br2 at a wavelength within the opti-
cal absorption spectrum. The authors used Equation 9.41 to find the turning points for each vibrational level. 
The potential function V(R − Re) was then fit to a Morse function for R < Re and to a fifth-order polynomial 
for R > Re. As seen in Figure 9.9, the potential function in the liquid phase is softer than that of the gas phase 
for vibrational quantum numbers larger than about v = 10, which the authors attribute to an attractive solvent 
cage. The dissociation energy of Br2 was found to be considerably lower in the liquid than in the gas phase.

Branigan et al. also extracted vibrational dephasing times from the widths of the Raman bands, after 
accounting for isotope shifts and the instrumental linewidth. They found T2 to range from about 25 ps 
for the v = 0 → v = 1 transition to about 2.4 ps for the v = 0 → v = 25 transition. Recall that the dephas-
ing rate includes population relaxation (with time scale T1) as well as pure dephasing (T2

*) from frequency 
fluctuations. We have seen (Chapter 6) that radiative decay rates at IR frequencies are slow. Thus, excited 
vibrational levels (within the ground electronic state in the example here) decay radiationlessly via resonant 
energy transfer to degrees of freedom of the surroundings (the “bath”). In the liquid phase, this transfer is 
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Figure 9.8 Resonance Raman spectrum of liquid Br2, excited at 405 nm, showing the fundamental and the first 18 
overtones. Three of the bands are enlarged in the inset to reveal the isotopic structure. (Reprinted from E. T. Branigan, 
et al., Solidlike Coherent Vibronic Dynamics in a Room Temperature Liquid: Resonance Raman and Absorption 
Spectroscopy of Liquid Bromine, J. Chem. Phys. 132, 144503 (2010), with the permission of AIP Publishing.)
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derived from analysis of the vibrational overtones observed in the resonance Raman spectrum (Figure 9.8). 
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et al., Solidlike Coherent Vibronic Dynamics in a Room Temperature Liquid: Resonance Raman and Absorption 
Spectroscopy of Liquid Bromine, J. Chem. Phys. 132, 144503 (2010), with the permission of AIP Publishing.)
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envisioned to take place by converting one quantum of the vibrational energy of the solute to an overtone 
of something akin to an intermolecular vibrational mode of the liquid. As we have seen in Chapter 5, the 
intermolecular vibrational and reorientational motion of liquids takes place over a range of frequencies 
in the far-IR. For higher frequency solute vibrations, increasingly higher order overtones of solvent vibra-
tions are required to soak up the energy given off by population relaxation, and the efficiency of energy 
transfer decreases. Theory and experiment suggest that the rate of energy transfer falls off exponentially 
with increasing vibrational frequency. This exponential trend is reflected in the level-dependent relaxation 
times reported in [4]. The vibrational frequency of Br2, 317 cm−1, is comparable to kBT at room tempera-
ture, permitting facile vibrational population relaxation via one-quantum jumps that transfer energy to 
the bath degrees of freedom. As the vibrational quantum number increases, the energy difference of these 
one-quantum jumps decreases as a result of anharmonicity, and the population relaxation rate increases. 
The large quadrupole moment of diatomic bromine was concluded to favor a herringbone local alignment of 
molecules similar to what is seen in the solid phase.

9.6 SUMMARY

This chapter has examined the basic features of vibration–rotation spectra of diatomic molecules. Along the 
way, we have introduced some topics which apply to polyatomic molecules as well. The Born–Oppenheimer 
approximation is a key concept on which the discussion of electronic states of molecules is based, and we 
return to it in Chapters 11 and 12. The rotational structure of vibrational absorption or Raman scattering spec-
tra is readily observed in gas-phase samples, and diatomic molecules present opportunities for the straight-
forward analysis of rotational constants from vibration–rotation spectra. Vibration–rotation coupling causes 
the spacing of adjacent lines in the P branch (ΔJ = −1) of the IR spectrum to increase as J increases, while 
those in the R branch (ΔJ = +1) move closer together. The effects of anharmonicity (mechanical or electrical) 
show up in the appearance of overtone transitions. Mechanical anharmonicity results in decreasing spac-
ing of adjacent vibrational energies with increasing quantum number v. The Morse function is an empirical 
function which is capable of accounting for this anharmonicity. In Chapter 10, we will begin our discussion 
of vibrations in polyatomics with the harmonic approximation, and then we shall see that anharmonicity 
introduces additional interesting effects compared to those observed in diatomics.

PROBLEMS
 1. The vibrational frequency of 1H79Br is �ν e = −2649 7. cm 1 and the anharmonicity is xe e�ν = −45 2. cm 1. Find 

the frequencies of the fundamental, first overtone and second overtone for 1H79Br, 2H79Br, and 1H80Br.
 2. Use the data given in Table 9.2 for 1H35Cl to estimate the cubic and quartic force constants: V(3) and V(4).
 3. Use the data given in Table 9.2 to find the dissociation energies �De and �D0  (in units of cm−1) for 2H35Cl.
 4. According to Equation 9.30, the vibration–rotation constant for a harmonic oscillator is not zero and 

is in fact negative. Consider the rotational constant for the v = 0 state of a harmonic oscillator, which is 
proportional to the expectation value 1

0
R

v=
. Show that this expectation value is greater than 1 2Re , thus 

B0 for a harmonic oscillator is greater than Be, resulting in a negative vibration–rotation coupling constant.
 5. Use the harmonic oscillator raising and lowering operators to derive the selection rules for vibrational 

transitions that result from electrical anharmonicity in the form ( / )∂ ∂2 2
0

2µ q q .
 6. The vibrational frequency of NO is 1890 cm−1, the bond length is 1.1508 Å, and the dissociation energy 

is D0 = 6.5 eV. Use this information to find the Morse function for NO. Make a sketch of the Morse 
potential and the vibrational energy levels.

 7. Estimate the radiative lifetime of a diatomic molecule in the v = 1 vibrational state, given a dipole 
derivative ( / )∂ ∂µ q 0 of about 10 D/Å and a vibrational frequency of 2000 cm−1.

 8. Using data from Table 9.2, find the force constants k for O2, I2, and N2. Is there a physical explanation 
for the relative magnitudes of these values?
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 9. Calculate the first-order correction to the energy of a harmonic oscillator, Ev
( )1 , using the perturbation 

operator Ĥ bq dq′ = +2 4  as defined in Section 9.5. Compare your result to that obtained using perturba-
tion theory to second order, Equation 9.28.

 10. Use the data in Table 9.2 to assign the Q branch lines in Figure 9.6. Account for the relative intensities.
 11. The two naturally occurring isotopes of Br are 79Br (50.7%, 78.928 amu) and 81Br (49.3%, 80.916 amu). 

In [4], the vibrational frequency �ν e  was found to be 317.52 cm−1 for the 79Br81Br isotopomer. For each 
of the isotopomers 79Br81Br, 79Br2 and 81Br2, calculate the percentage in a natural sample. Find the 
 vibrational frequency �ν e  of 79Br2 and of 81Br2. Can you account for the fine structure in the inset of 
Figure 9.8? See [4] for an explanation.
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10

Vibrational spectroscopy of polyatomic 
molecules

10.1 INTRODUCTION

In this chapter, we explore how infrared (IR) absorption and Raman scattering spectra may be applied to 
elucidate molecular structure. Group theoretical analysis of selection rules makes the combination of Raman 
and IR data especially useful for deducing symmetry. The method of normal coordinate analysis enables the 
characterization of vibrational modes and their frequencies, based on a set of force constants and structural 
information.

Anyone who has survived an undergraduate class in organic chemistry can probably identify the character-
istic frequencies of, say, a carbonyl group (about 1700 cm−1) or a C–H bond (about 3000 cm−1). But what makes 
these stretches appear where they do in the spectrum, and what determines their intensity? And what is really 
meant by the terms “group frequency” and “normal mode?” These concepts are examined in detail in this chapter. 
The unsophisticated use of the group frequency concept can lead to erroneous conclusions about molecular 
structure, and the breakdown of the normal mode approximation can result in unexpected spectral features. 
To make the best use of spectral information, we must examine the models on which the working principles of 
vibrational spectroscopy are based.

Suppose that you could actually view a vibrating polyatomic molecule. What would you see? Could the 
normal modes be identified? As an aid to this thought experiment, consider an ORTEP* representation of 
a molecule as determined from X-ray diffraction, for example the structure shown in Figure 10.1. The ellip-
soids centered at each atom represent the average root-mean-square deviation of the atom from its equilib-
rium position. The sizes of these ellipsoids increase with temperature as the amplitude of vibrational motion 
increases. If you visualize each atom jiggling about within the volume of each little ORTEP ellipsoid, the 
concept of normal modes is hardly apparent. The normal modes are a set of 3N − 6 collective atomic displace-
ments which may be superimposed to describe the overall vibrational motion of the molecule.† They represent 
a way of resolving the total vibrational motion (the ORTEP picture) into independent modes of motion. If the 
motion in one of these normal modes is mostly concentrated in a particular bond or part of the molecule, 
then the idea of a characteristic group frequency is valid. More generally, a normal mode is a combination of 
motions involving all the atoms to varying degrees. The set of atomic displacements that characterizes the 
normal mode is a normal coordinate, which we call Qi for the i-th normal mode. This decomposition of the 
overall motion into 3N − 6 normal modes is made possible by the harmonic oscillator approximation, which 
allows the total potential energy for a given electronic state to be expressed as a sum of 3N − 6 quadratic func-
tions of the normal coordinates. A harmonic potential written in terms of a set of coordinates other than 
the normal coordinates would contain mixed quadratic terms. The normal coordinates allow separation of 
variables to be employed, greatly simplifying both the classical and quantum mechanical treatments. The 
assumption is made that the forces between atoms are harmonic; that is, they obey Hooke’s law. Hooke’s law 
states that the restoring force of the spring is proportional to its displacement from equilibrium, the propor-
tionality constant being the force constant k. The stronger the bond is, the stiffer the “spring” and the larger 
the force constant. So the cartoon picture of a molecule with bonds represented by little springs, such as the 
one in Figure 10.2, is at the heart of the matrix algebra which gives us the normal mode picture!

* ORTEP stands for Oak Ridge thermal ellipsoid plot.
† For the sake of brevity, we will use 3N − 6 to refer to the number of vibrational degrees of freedom of a general molecule. 

In the case of a linear molecule, this would be replaced by 3N − 5.
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Surely this idea of little springs connecting atoms is only an approximation, and we should not be too 
surprised when experiments reveal effects which would be unexpected for a harmonic oscillator. We refer to 
such effects as resulting from anharmonicity, and we use perturbation theory to account for them. There are 
some common motifs associated with anharmonic vibrational motion, such as the appearance of overtones 
and combination bands, Fermi resonance, and the Coriolis effect, to be discussed in Section 10.7.

10.2 NORMAL MODES OF VIBRATION

In this section we set up the problem of finding the frequencies and coordinates of the normal modes of a 
polyatomic molecule. The first task at hand is to derive the classical equations of motion for the normal coor-
dinates. The normal coordinates are expressed as linear combinations of the Cartesian atomic displacements. 
Then the quantum mechanical operators can be substituted for the corresponding classical expressions for 
positions and momenta, and a set of 3N − 6 independent, one-dimensional equations is obtained, each of 
which is a familiar harmonic oscillator Schrödinger equation. The outcome of performing the normal mode 
analysis is a set of normal mode frequencies that depend on the masses of the atoms and the force constants 
for the bonds which connect them. We presume that these force constants can be known and used as input 
into the calculation. In practice, they are not available from experiment except to the extent that they can be 
determined by fitting the calculated to the observed vibrational frequencies. The validity of this fitting pro-
cedure depends on the existence of a sufficient number of isotopic derivatives, for which the force constants 
are the same within the Born–Oppenheimer approximation. Force constants may also be determined from 
quantum mechanical calculations of the energy of a given electronic state (most often the ground state) as a 
function of molecular geometry or from gradient methods, which avoid the need to make calculations at a 
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Figure 10.2 The harmonic oscillator model considers atoms to be connected by springs that obey Hooke’s law.
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Figure 10.1 ORTEP plot of a molecular structure determined using X-ray diffraction. (Reproduced with permis-
sion from Lanthanide and asymmetric catalyzed syntheses of sterically hindered 4-isoxazolyl-1,4-dihydropyridines 
and 4-isoxazolyl-quinolines, S. A. Steiger et al., Tet. Lett. 57, 423 (2016).)
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large number of geometries. The practicality of performing such calculations, or obtaining a sufficient num-
ber of isotopomers, becomes more limited as the size of the molecule increases. It is often necessary to call 
on chemical intuition to estimate normal mode frequencies of large molecules, for example by assuming the 
transferability of the stretching force constants of certain bonds in a series of chemically similar compounds.

10.2.1 ClassiCal equations of motion for normal modes

We begin by setting up a classical expression for the total energy, kinetic plus potential, of a collection of N 
atoms. The equilibrium position of each atom is at the origin of a Cartesian coordinate system embedded in 
the atom. Then, at any instant in time, the geometry of the system is specified by a set of 3N atomic displace-
ment coordinates indexed by a number which specifies the atom: {x1, y1, z1, …, xN, yN, zN}. An example of such 
a scheme is shown in Figure 10.3 for the ammonia molecule. The kinetic energy is

 T m x y z T T Ti

i

N

i i i= + +( ) = + +
=

∑1

2
1

2 2 2� � � trans rot vib  (10.1)

Note that this kinetic energy comprises the translational, rotational, and vibrational degrees of freedom. The 
potential energy, as you might expect, is expanded in a series which is truncated after the quadratic term:
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Without making any approximation, we can discard the terms on the right hand side of the first line, since 
V0 can be taken as zero and the first derivatives vanish at the equilibrium geometry. The second line contains 
diagonal quadratic terms and third and fourth lines contain the nondiagonal quadratic terms. Our goal is to 
eliminate the nondiagonal terms by a suitable coordinate transformation.

It is convenient to express the above energies in mass-weighted Cartesian coordinates. These ensure that 
the normal coordinates that we obtain preserve the position of the center of mass. They are defined by

 η η η η η1 1 1 2 1 1 3 1 1 4 2 2 3= = = = … =m x m y m z m x m zN N N, , , , ,  (10.3)
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Figure 10.3 Atomic Cartesian coordinates for the ammonia molecule.
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This allows the kinetic and potential energies to be expressed as
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�η  (10.4)
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Equation 10.5 defines the bij, which are the elements of the force constant matrix B. To illustrate the book-
keeping associated with the B-matrix, here is an example element:
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There are 3N classical equations of motion for this system, each of the form
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Equation 10.7 gives the force on atom i in the x direction. In terms of mass-weighted Cartesian coordinates 
and the force constants bij, the equations of motion are

 d
dt

bi ij

j

j�η η+ =∑ 0 (10.8)

The dot over xi or ηi indicates differentiation with respect to time, so we have a set of second-order differential 
equations to solve. Since we expect the motion to be harmonic for a quadratic force field, let us try a solution 
of the form

 η η λ δi i t= +( )0 sin  (10.9)

where λ πν ω≡ =2 , ηi
0 is the amplitude and δ the phase of the oscillation. We do not yet know the vibra-

tional frequencies ν , and ηi
0 and δ are constants of integration that depend on the boundary conditions. On 

substituting Equation 10.9 into 10.8, the result is

 − + =∑λη ηi ij

j

jb0 0 0 (10.10)

for i = 1 to 3N. These 3N equations can all be written as one matrix equation:

 ( )B I− =λ η0 0 (10.11)

where I is the identity matrix: a matrix with ones along the diagonal and zeros elsewhere. η0 is a column 
vector containing the amplitudes of the mass-weighted Cartesian coordinates. A nontrivial solution to the 
set of equations expressed by Equation 10.11 exists only if the determinant of the square matrix is zero: 
det(B − λI) = 0.
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In matrix notation, the potential energy is succinctly expressed as V T= ( )1 2 η ηB , where ηT is the trans-
pose of η. We now seek to diagonalize the potential energy by means of the transformation to normal coor-
dinates, Qi, where

 Q li ki

k

N

k=
=

∑
1

3

η  (10.12)

Equation 10.12 expresses each normal coordinate as a linear combination of the mass-weighted Cartesian 
coordinates. The lki’s are coefficients to be determined. The 3N transformations of the type given in Equation 
10.2 can be expressed in one matrix equation.

 Q L= Tη (10.13)

where Q is a column vector containing the normal coordinates and LT is the transpose of L. If the elements lki 
are considered to form the columns of a matrix L, then they constitute the rows of LT. We seek the matrix L 
which diagonalizes the force constant matrix, as follows:

 L BLT = =























Λ

λ
λ

λ

λ

1

2

3

3

0 0 0
0 0 0
0 0 0

0 0 0

�
�
�

� � � � �
� N

 (10.14)

L is a unitary matrix, meaning its inverse is equal to its transpose: LT = L−1. Thus the matrix equation Q = LTη 
can be rearranged to give η = LQ. The potential energy in terms of the normal coordinates is then
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2Q L BLQ Q QΛ λ  (10.15)

The identity (LQ)T = QTLT has been used. It is significant that the potential energy is now diagonal and 
depends on the normal mode frequencies through λ πνi i= 2 . By rewriting Equation 10.4 in terms of the 
normal coordinates, it is seen that the kinetic energy is still diagonal as well.:
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The uncoupled equations of motion are now solved by Q Q ti i i= +( )0 1 2sin /λ δ . That is, each normal coordinate 
oscillates independently.

10.2.2 example: normal modes of a linear triatomiC

The procedure for finding the normal coordinates and their frequencies begins by solving det(B − λI) = 0. The 
3N roots to this equation include five or six zero-frequency (λ = 0) roots, for linear and nonlinear molecules, 
respectively, corresponding to rotation and translation. Each value of λ can then be substituted into Equation 10.11 
to find the amplitudes of the normal coordinates expressed as linear combinations of mass-weighted Cartesian 
coordinates. The details of the matrix algebra and some of the chemical intuition employed to simplify the problem 
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will be illustrated in the following example. We consider for simplicity a symmetric linear triatomic A–B–A in one 
dimension, as shown in Figure 10.2. The simplest harmonic function that we can write for this molecule would 
depend on a single force constant k for each A–B bond.

 V k x x k x x= − + −
1

2

1

2
2 1

2
3 2

2( ) ( )  (10.17)

A more accurate and still harmonic potential would contain a cross-term of the type k′(x2 − x1)(x3 − x2), but 
we will omit this term to make the problem more tractable. Comparing Equations 10.17 and 10.6, it is seen 
that the elements of the B matrix are
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The determinant takes the form
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This can be expanded to give b b b b11
2

22 11 122−( ) −( ) − −( ) =λ λ λ 2 0 . The roots of this equation are
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and a third root, λ3 = 0, corresponding to the zero-frequency translational motion. As we shall see, the first 
and second roots correspond to the symmetric and asymmetric stretching modes, respectively. Note that 
the latter is higher in frequency than the former, a common occurrence in modes involving symmetric and 
asymmetric stretches of equivalent bonds. Now, each root can be substituted into Equation 10.11 in order to 
solve for the vector η corresponding to a particular normal mode. This will be illustrated for the first root.
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On substituting the appropriate values of b11, b22, b12, and λ1, we find that η2
0 0=  and η η1

0
3
0= − . By imposing 

normalization of the l vector, lkik
2 1∑ = , we get the result

 l1 1 2 0 1 2= −( ) (10.26)
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Thus the normal coordinate for the symmetric stretch is Q1 = (mA/2)1/2(x1 − x3). Notice that the mass and 
position of the central atom B do not contribute to this coordinate. It is a general feature of normal modes 
that the motion preserves the position of the center of mass, so in this case that means that atom B does not 
move during symmetric stretching.

The calculation can be repeated using the roots λ2 and λ3 in place of λ1. The reader should verify that the 
results are

 l m M m M m MB A B2
1 2 1 2 1 22 2 2 2= −( )( / ) ( / ) ( / )/ / /  (10.27)

 l m M m M m MA B A3
1 2 1 2 1 2= ( )( / ) ( / ) ( / )/ / /  (10.28)

where M = 2MA + MB is the total mass. The negative sign on the middle element of the l2 vector in Equation 
10.27 means that the displacement of the central atom is in the direction opposite to that of the end atoms. 
This is the asymmetric stretch. In the third mode, all atoms move in the same direction, representing transla-
tional motion. (Not being a normal mode, the center of mass does move during translation.)

As an illustration, the normal coordinates and frequencies of CO2 are shown in Figure 10.4. The two 
bending vibrations are degenerate, as expected from symmetry, and the symmetric and asymmetric stretches 
explored in the one-dimensional example are now expressed as in-phase and out-of-phase combinations of 
the internal coordinates for the C=O bonds. The four vibrational degrees of freedom expected for this mole-
cule are spanned by two nondegenerate normal modes and one doubly degenerate normal mode. CO2 belongs 
to the D∞h point group, and the symmetry labels Σg

+, Πu, and Σu
+ are irreducible representations of this group. 

Group theoretical labels for normal modes will be considered in Section 10.4.
The starting point for the above approach was the definition of the mass-weighted Cartesian coordinates 

for each individual atom. This is not a very appealing coordinate system from a chemical point of view, since 
we think of atoms as moving concertedly rather than independently. In the next section, we briefly describe a 
point of view which takes advantage of molecular symmetry and bonding patterns.

10.2.3 the Wilson f and G matriCes

This approach begins by defining the symmetry coordinates of the molecule in terms of 3N − 6 bond lengths 
and angles. Let us return to the linear triatomic of the previous example and consider its vibrational motion 
in three dimensions. We could set up the problem in terms of nine atomic coordinates, realizing that five of 
the nine calculated vibrational frequencies would be zero anyway. Instead, we begin with a set of four internal 
coordinates representing displacements in the two bond lengths and bending in two orthogonal directions. 
We call the vector containing these internal coordinates R, and for this example we write RT = (Δr1, Δr2, Δθ1, 
Δθ2). The Δ’s represent the displacements of the coordinates from their values at equilibrium. The internal 
coordinates can be expressed as linear combinations of the mass-weighted Cartesian coordinates, and the 
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Figure 10.4 Normal modes of CO2.
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transformation is defined as R = Dη. The matrix D is not square, but rather of dimension (3N − 5) by (3N). 
Note that it has elements with the dimensions of the inverse square root of mass. The procedure for writing 
internal coordinates is discussed in detail in [1].

The potential energy, written with the help of chemical intuition, might look like the following:

 V k r k r k kr r= + + +
1
2 1

2
2
2

1
2

2
2( )∆ ∆ ∆ ∆θ θθ θ  (10.29)

This is the simplest harmonic potential function that we could write. A more flexible one would add terms such 
as krrΔr1Δr2 and krθΔr1Δθ1, and the following procedure would be the same. Together with the internal coor-
dinates, Equation 10.29 defines the force constant matrix F such that 2V = ηTBη = RTFR. The kinetic energy 
expression of Equation 10.16 can also be recast to give 2 1T T T T= = −� � � �η η R DD R( ) . The G matrix (G stands for 
geometry), the calculation of which is a major step in the Wilson FG approach, is defined by

 G DD= T  (10.30)

which leads to 2 1T = = −� � � �η ηT TR G R. The G matrix contains elements which depend on the inverse atomic 
masses and bond lengths and angles pertaining to the equilibrium geometry. After some manipulation, the 
previous expression, det(B − λI) = 0, gives way to the new one:

 det( )FG I− =λ 0  (10.31)

The roots of this equation and the corresponding normal coordinates can be found using computer calcula-
tions. The elements of the G matrix are somewhat tedious to find. Fortunately, there are convenient tables that 
can be used to construct the G matrix, for example, see [2].

A great advantage of this approach is obtained by starting with particular linear combinations of the 
internal coordinates which conform to the symmetry species of the molecular point group. When these sym-
metry coordinates are used as a basis, the (3N − 6) by (3N − 6) dimensional F and G matrices can be broken 
down into smaller blocks corresponding to different irreducible representations of the group. For a very read-
able account of how to use symmetry to set up the F and G matrices, see [2]. Symmetry coordinates will be 
considered in Section 10.4.

10.2.4 Group frequenCies

In general, normal modes are indeed combinations of motions of all atoms in a molecule. Nevertheless, some 
types of bonds and functional groups give rise to characteristic frequencies which are remarkably constant from 
one molecule to the next, regardless of the nature of the rest of the molecule. This gives rise to the powerful 
concept of group frequencies. In the qualitative analysis of organic molecules, for example, common functional 
groups can be readily determined from vibrational spectra. For example, the CH2 group of aliphatic hydrocar-
bons gives rise to symmetric and asymmetric stretches observed at about 2850 and 2930 cm−1, respectively, in a 
wide range of compounds. Carbonyl groups, C=O, on the other hand, can be found anywhere from about 1540 
to 1870 cm−1. Why is the methylene group vibration more predictable than that of the carbonyl group? When 
a characteristic vibrational frequency is referred to as a group frequency, that means that most of the potential 
energy of that mode is concentrated in a particular bond or group. In the case of C–H stretches, the high 
frequency of the local vibration of the C–H bond tends to uncouple that motion from that of the rest of the 
molecule. If you picture a large molecule as being connected by springs at every chemical bond and imagine that 
each spring has a similar force constant, then it is easy to see that plucking one spring will set the entire molecule 
in motion. On the other hand, if one spring between two atoms is of much higher force constant than the others, 
then that bond can vibrate separately from the rest of the system, and the motion can be called a local mode. 
The C–H group, like the hydroxyl group, O–H, observed at 3580 to 3650 cm−1, has a rather high local mode 
frequency because of the small mass of hydrogen. The group frequency referred to as the “carbonyl stretch,” on 
the other hand, is much more likely to involve motion of atoms other than the C=O group. In addition, the bond 
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strength and hence the force constant of a nominal C=O bond can vary greatly from one molecule to the next. 
For example, conjugated carbonyl bonds can be viewed in terms of contributions from resonance structures 
in which the carbon and oxygen are connected by single bonds, and this leads to lower frequencies (1600 to 1625 
cm−1) for the carbonyl stretching frequency. For comparison, the carbonyl stretch in acetone is found at 1707 
cm−1 in the neat liquid and 1723 cm−1 in the gas phase. The frequency of the carbonyl stretch is also quite solvent 
dependent, red-shifting by tens of wavenumbers on going from a nonpolar to polar solvent. The rather large 
dipole moment derivative of a typical C=O stretch (about 2 D Å−1 amu−1/2) makes the vibrational frequency very 
sensitive to the polarity of the solvent.

Table 10.1 lists the common ranges of some of the group frequencies of organic compounds. The table does 
not indicate how much of the total potential energy of a normal mode is actually invested in that group or 
bond. This information must be obtained from a normal mode calculation for a particular molecule.

10.3 QUANTUM MECHANICS OF POLYATOMIC VIBRATIONS

Up to this point, our discussion of normal modes has employed the language of classical mechanics. A fortu-
nate outcome of normal coordinate analysis is an exactly solvable vibrational Schrödinger equation, thanks 
to separation of variables. The vibrational Hamiltonian in terms of normal coordinates is
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This is the sum of one-dimensional harmonic oscillator Hamiltonians. Thus the total wavefunction is a prod-
uct of harmonic oscillator terms,

 ψ χ χ χvib ( , , ) ( ) ( ) ( )Q Q Q Q Q QN NN1 2 3 6 1 2 3 61 2 3 6… …− −= −v v v  (10.33)

and the total energy is a sum.:
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Table 10.1 Characteristic group frequencies of organic compounds

Group Frequency range, cm−1

C–H stretch 2700–3100

C–H3 bend 1375, 1450

C–H2 scissor 1465

C–H2 rock 720

C–H2 wag, twist 1150–1350

C=C (unconjugated) 1640–1670

C≡C 2100–2260

C–H (aromatic, in plane bend) 1000–1300

C–H (aromatic, out of plane bend) 675–900

Skeletal vibrations of aromatics 1400–1500, 1585–1600

O–H stretch (nonhydrogen bonded) 3580–3650

O–H bend 1330–1420

C–O (alcohols, phenols) 1000–1260

C=O 1540–1870
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Each one-dimensional harmonic oscillator wavefunction χvi Qi( ) is of the form

 χ α αv v vi i iQ N H Q Qi i i i i( ) ( )exp( / )/= −1 2 2 2  (10.35)

where N iv  is a normalization constant, H Qi i iv ( )/α1 2  is a Hermite polynomial, and α πνi i= 2 /� (see Equation 9.17). 
A vibrational state can be designated by specifying all 3N − 6 quantum numbers, (v1, v2, …, v3N−6), each of which 
varies independently over the range 0, 1, 2, …, ∞. The raising and lowering operators defined previously can also 
be employed, where the commutator relationship is amended to give a ai j ij, +[ ] = δ , and the labels i and j designate 
normal modes.

The existence of degenerate normal modes, as in CO2, leads to degenerate vibrational states. A vibrational 
state of this molecule could be designated by (v1, v2a, v2b, v3) or by (v1, v2, v3), where the total number of quanta 
in the degenerate bend is v2 = v2a + v2b. Thus a state having, for example, v2 = 2 is actually triply degenerate, 
since the same total energy can be achieved by the three possible combinations: (v2a, v2b) = (1, 1), (2, 0), or (0, 2). 
As will be seen in a later section, anharmonic couplings have the potential to remove this type of degeneracy.

In order to consider selection rules and the possibility of anharmonic mixing, the symmetries of vibra-
tional states need to be determined. The determination of these symmetries requires the group theoretical 
tools discussed in the next section.

10.4 GROUP THEORETICAL TREATMENT OF VIBRATIONS

10.4.1 findinG the symmetries of normal modes

The calculation of normal mode frequencies for large molecules is conveniently handled by computer code 
and can provide a powerful tool for assigning observed vibrational frequencies. In this section we discuss a 
pencil-and-paper approach, based on group theory, for predicting the symmetries, and thus the Raman and 
IR activity, of the normal modes. Such an approach can be extremely useful in combination with the output 
of a normal coordinate calculation, or even in the absence of computational results. As an example, consider 
the ammonia molecule NH3, which has enough symmetry (a threefold rotation axis) to illustrate the occur-
rence of degenerate normal modes. If the reader is unfamiliar with the language and practice of group theory, 
it would be a good idea to review the material in Appendix C before proceeding.

NH3 belongs to the C3v point group, whose character table is reproduced in Table 10.2. This is a group of 
order h = 6. There are thus six symmetry operations: the identity operation ˆ ,E  two Ĉ3 rotations, and three σ� v 
reflections. It can be checked that the sum of the squares of the dimensions li of the irreducible representa-
tions (ir. reps., for short), A1, A2, and E, is l l l1

2
2
2

3
2 2 2 21 1 2 6+ + = + + = , which is equal to the order h of the group 

as required by theory. As per the usual notation, the doubly degenerate ir. rep. is labeled E, which should not 
be confused with the identity operation Ê .

The two rightmost columns of a character table (see Appendix C) list some important functions that trans-
form according to particular ir. reps. under the operations of the group. These functions provide useful informa-
tion in the consideration of selection rules. Table 10.2 lists these functions for the C3v point group. We now seek 
to find the characters of the reducible representation, Γred, given in the last line of Table 10.2. The basis for this 
reducible representation is the set of 12 Cartesian coordinates for the atoms of NH3, as shown in Figure 10.3.

Table 10.2 C3v character table

C3v E
^

2C
^

3 3σ̂ v

A1 1 1 1 z, x2 + y2, z2

A2 1 1 −1 Rz

E 2 −1 0 (x, y) (Rx, Ry) (x2 − y2, xy) (xy, yz)

Γred 12 0 2
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Γred spans the translations, rotations, and vibrations of the molecule, and can be decomposed into ir. reps. cor-
responding to these degrees of freedom. The three translational degrees of freedom belong to the same ir. reps. 
as the Cartesian coordinates x, y, and z, while the rotational degrees of freedom belong to those for the rotations: 
Rx, Ry, and Rz. Inspection of the character table allows the symmetries of the translations and rotations to be 
discerned. These are then subtracted from the decomposed Γred to get Γvib, the symmetries of the 3N − 6 normal 
coordinates. We now illustrate this procedure for the ammonia molecule.

Recall that the character for each operation is the trace of the matrix which represents that operation. For 
example, the identity operation is represented by a diagonal unit matrix.
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(10.36)

The primed quantities indicate the coordinates after the operation, which in the case of the identity operation 
are the same as the unprimed coordinates. The trace of this matrix is 12, so the character of the identity opera-
tion is 12, χred(

˘
)E� =12, as shown in the last line of Table 10.2. In figuring the character for the Ĉ3 operation, 

we follow the general rule that only atoms which are not moved by the symmetry operation contribute to the 
trace. Since the hydrogen atoms are interchanged by the rotation, there are no diagonal elements correspond-
ing to the effect of Ĉ3 on their positions. The effect on the nitrogen atom, however, is given by
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Since cos( / ) / ,2 3 1 2π = −  the trace of the matrix which represents Ĉ3 is zero. Note that there are two Ĉ3 rotations 
( ,)C C� �

3 3
2

and  but the character is the same for all operations within a class, so we do not need to consider the 
second rotation.

There are three operations σ� v , one for each of the three reflection planes containing an N–H bond. Let us 
consider the one that interchanges the hydrogens labeled 2 and 4, in Figure 10.3, so that we need only con-
sider the effect of σ� v on the coordinates of atoms 1 and 3. Reflection will preserve the x and z coordinates of 
the two atoms that lie in the reflection plane, and reverse the sign of the y coordinates. Thus the operation is 
represented by
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The trace of the matrix representation of σ� v  is 2. If we chose one of the other two reflection planes, both 
the x and y coordinates for the two stationary atoms would be at angles to the reflection plane. You should 
 convince yourself that you would get the same trace for the matrix representation of σ� v using one of these 
other two reflections.

Recall that Γred spans the vibrations, rotations, and translations of the molecule. The next task is to decom-
pose this reducible representation and subtract out the ir. reps. that correspond to rotation and translation. 
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A reducible representation Γred is equivalent to a linear combination ai iΓ∑  of ir. reps. Γi. The number of times, 
ai, that the i-th ir. rep. contributes to Γred is found from:

 a
h

R Ri = ∑1 χ χred i( ) ( )� �  (10.39)

where the sum is over the operations of the group R� . Applying this to the problem at hand, we find:

 aA1

1

6
12 1 2 0 1 3 2 1 3= + +[ ] =( )( ) ( )( ) ( )( )  (10.40)

 aA2

1

6
12 1 2 0 1 3 2 1 1= + + −[ ] =( )( ) ( )( ) ( )( )  (10.41)

 aE = + − +[ ] =
1

6
12 2 2 0 1 3 2 0 4( )( ) ( )( ) ( )( )  (10.42)

Note that the factors of 2 and 3 in the second and third terms in each sum come from the number of Ĉ3 and 
σ� v operations, respectively. Thus Γred = 3A1 + A2 + 4E. From the character table, the Cartesian coordinate z 
transforms according to the totally symmetric (A1) representation, and x and y transform as a pair according 
to the E representation. Thus Γtrans = A1 + E. Similarly, by locating the rotations Rx, Ry, and Rz we conclude that 
Γrot = A2 + E. The vibrations are accounted for by Γvib = Γred − Γtrans − Γrot = 2A1 + 2E. The 3(4) − 6 = 6 vibrational 
degrees of freedom of NH3 comprise two totally symmetric (A1) and two doubly degenerate (E) modes. For 
each doubly degenerate mode there are two sets of atomic displacements having the same vibrational fre-
quency. The normal modes and their frequencies are pictured in Figure 10.5. For each E symmetry mode, only 
one set of displacements is shown. The totally symmetric stretch and bend are referred to as parallel modes, 
as they result in a net change in dipole moment parallel to the symmetry axis z. Conversely, the degenerate 
stretch and the degenerate bend are perpendicular modes. All the NH3 fundamentals are IR active, as will be 
discussed in a later section.

A more straightforward way to find Γvib is to use a set of internal coordinates as a basis for the reducible 
representation. In the case of ammonia, we could choose the three bond lengths r1, r2, r3 and the three H–N–H 
bond angles θ1, θ2, θ3. The reader should verify that the characters of the resulting reducible representation are

 
ˆ ˆ ˆE C v

red

2 3

6 0 2

3 σ
Γ  (10.43)

In contrast to the previously considered reducible representation, Γred as given in 10.43 spans only the vibra-
tions. Using Equation 10.39, we find Γred = Γvib = 2A1 + 2E, the same result that was obtained previously. 
The use of internal coordinates as a basis is a much more direct way to find the normal mode symmetries. 
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Figure 10.5 Normal modes of NH3.
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In the case of a planar molecule, it is necessary to include angles for out-of-plane motion in order to obtain 
the contribution of out-of-plane modes.

Some molecules present problems in the form of redundancy of the internal coordinates. For example, 
CH4 has nine normal modes, one nondegenerate C–H stretch, a doubly degenerate bend, a triply degenerate 
bend, and a triply degenerate stretch. See Table 10.3 for a list of the fundamental frequencies in CH4 and CD4. 
Note the general trend displayed there: stretching vibrations are higher in frequency than bending modes. 
A natural choice for the internal coordinates is the set of four C–H bond length displacements and six HCH 
bond angle displacements. This adds up to ten coordinates, therefore one of the group theoretically derived 
symmetry species must be discarded as redundant. The choice of which one to discard can be made by recog-
nizing that the six bond angles may not vary independently: the displacements must sum to zero. This condi-
tion on the sum of the angle displacements is totally symmetric, so we expect to get an extra coordinate of 
that symmetry. Proceeding as above in the ammonia example, the ten internal coordinates yield a reducible 
representation Γred that decomposes to 2A1 + E + 2T2. The redundant coordinate which should be thrown away 
is the totally symmetric combination of HCH bond angle displacements. This coordinate is discarded because 
it is impossible for a molecule with Td symmetry to have a totally symmetric bending mode.

The use of internal coordinates provides a natural point of reference for finding the symmetry coordinates 
referred to in the previous section. Projection operators can be employed, as described in [2], to find linear 
combinations of internal coordinates which correspond to the correct symmetries. As will be shown below, 
in the case of ammonia these are found to be
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These equations illustrate how a doubly degenerate vibrational mode comprises two different sets of displacements. 
The projection operator approach for obtaining these symmetry coordinates is described here in brief. The operator

 P
l

h
j

j
j

R

� � �= ∑χ ( )R R  (10.50)

Table 10.3 Fundamental frequencies of methane-h4 and -d4

CH4, �νν  in cm−1 CD4, �νν in cm−1

�ν 1, A1 2914 2085
�ν 2, E 1526 1054
�ν 3, T2 3020 2258
�ν4, T2 1306 996
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is applied to a basis for the representation of a group to project out the j-th ir. rep. For NH3, let us take the vectors 
r1, r2, and r3 as a basis. The effect of operating on r1 with each of the six operations of the C3v group is as follows:
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 (10.51)

where the reflection planes σ σ σv v v, ,′ ′′ pass through r1, r2, r3, respectively. Applying Equation 10.50 to the basis 
vector r1, and using Equations 10.51, we can project out the A1, A2, and E components:
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Equations 10.52 are not quite complete: the projected coordinates are not normalized and only one of the 
two E-symmetry coordinates has been obtained. These problems are taken care of by requiring that the 
symmetry coordinates be orthonormal. For example, the totally symmetric coordinate can be defined as 
S r r r C rii i1 1 2 3 13= + +( ) = ∑/ , where the coefficients Cji form the elements of a transformation matrix which 
converts from internal coordinates to symmetry coordinates. In matrix form, this transformation (like that 
from mass-weighted Cartesian to normal coordinates) is written compactly: S = CR, where S is a column vec-
tor containing the symmetry coordinates and R is one containing the internal coordinates. Since the trans-
formation is unitary, CTC is equal to the unit matrix. Normalization of the symmetry coordinates requires 

C Ckk k1 1 1∑ =  or, in matrix notation,
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Similarly, the E coordinate can be normalized to give S r r r2 1 2 32 6= − −( )/ . There is one more E coordinate, 
call it S3, that is not obtained directly using this approach, but it can be determined by requiring that S3 
be normalized and orthogonal to S2. Using the function S r r3 2 3 2= −( )/ , these requirements are met. For 
example,

 C C2 3
1

12
2 1 1

0

1

1

0T = − −( )
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=  (10.54)

By replacing the distances ri by the displacements Δri and repeating for the angles Δθi, the symmetry coordi-
nates of Equations 10.44 through 10.49 are obtained.

10.4.2 symmetries of vibrational WavefunCtions

Selection rules for vibrational spectroscopy and anharmonic coupling of normal modes are examples of prob-
lems for which the symmetries of vibrational states are required. Once the symmetries of the normal modes 
are known, the symmetry of any given vibrational state can be deduced. In general, for a state having v1 
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quanta in the first normal mode, v2 quanta in the second normal mode, and so forth, the overall symmetry 
of the vibrational state specified by the quantum numbers {v} ≡ (v1, v2, …, v3N−6) is the direct product of the 
symmetries of the one-dimensional vibrational states, ψ ψ ψv v v31 2 61 2 3 6( ), ( ),..., ( )Q Q QN N− − . This direct product 
can be represented by

 Γ Γ Γ Γ{ }v v v v= × × −1 2 3 6� N  (10.55)

Let us first consider the symmetries of the one-dimensional wavefunctions. The ground state v = 0 of any 
vibration is always totally symmetric, regardless of the symmetry of the mode. This may seem to go against 
intuition, but recall that the ground state vibrational wavefunction has the form N exp(−αQ2/2). The normal 
coordinate Q has the symmetry of the vibrational mode; it transforms according to one of the ir. reps. of the 
group, as discussed above. But its square, and thus exp(−αQ2/2), transforms according to the representation 
which is the direct product of the ir. rep. of Q with itself, ΓQ × ΓQ. The direct product of an ir. rep. with itself 
is equal to (in the case of a one-dimensional ir. rep.) or contains (in the case of a degenerate ir. rep.) the totally 
symmetric representation. The ground vibrational state is always totally symmetric.

Next consider nondegenerate normal modes. The form of a one-dimensional harmonic oscillator wave-
function is Hv(α1/2Q) exp(−αQ2/2) (see Equation 10.35), where Hv(α1/2Q) is a polynomial that contains either 
even or odd powers of Q according to whether the quantum number v is even or odd. Direct products of 
one-dimensional representations can only result in other one-dimensional representations. We conclude that 
states with even numbers of quanta v are totally symmetric, regardless of the symmetry of Q; i.e., even pow-
ers of ±1 are always +1. States having odd numbers of quanta have the same symmetry as the normal mode. 
Summarizing, the symmetries of nondegenerate normal modes alternate between totally symmetric and the 
symmetry of the mode, according to whether v is even or odd.

For example, the water molecule H2O has three nondegenerate normal modes. The symmetric stretch and 
the bend are totally symmetric (A1), and the asymmetric stretch corresponds to B2, as shown in Figure 10.6. 
We are using a coordinate system in which the Ĉ2  rotation axis coincides with the z direction and the mol-
ecule lies in the yz plane. (If one chooses instead to have the molecule lie in the xz plane, keeping the z axis 
as the symmetry axis, then the asymmetric stretch vibration is designated B1 instead of B2. To be meaning-
ful, symmetry labels must be referred to a particular choice of the molecular coordinate system.) The total 
vibrational state is specified by three quantum numbers (v1, v2, v3). Because all the vibrational states of the 
symmetric stretch and the bend are totally symmetric, the overall symmetry is decided by Γv3 , which is either 
A1 if v3 is even or B2 if v3 is odd.

Degenerate vibrations are somewhat more complicated. It is still true that the ground state is totally sym-
metric, and the v = 1 state has the symmetry of the normal mode. Notice that the symmetry species of a 
state reflects its quantum mechanical degeneracy. Consider a triply degenerate vibration, such as the asym-
metric stretch of a tetrahedral AX4 molecule, corresponding to the T2 symmetry species. The ground state 
(va, vb, vc) = (0, 0, 0) is nondegenerate, as any totally symmetric state must be. The first excited level belongs 
to T2 and is threefold degenerate because the states (1, 0, 0), (0, 1, 0), and (0, 0, 1) have the same energy. The 
energy level having two quanta in the asymmetric stretch includes the states (1, 1, 0), (1, 0, 1), (0, 1, 1), (2, 0, 0), 
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ν~3 (B2) = 3936 cm–1
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Figure 10.6 Normal modes of H2O.
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(0, 2, 0), and (0, 0, 2) and is therefore sixfold degenerate. There are no six-dimensional representations in the 
Td point group, so the representation to which this degenerate state belongs must be reducible.

Here we will consider doubly degenerate normal modes in states having v = va + vb ≥ 2. The characters of 
the corresponding reducible representation χv(

˘
)R  are found using the formula (see [3]):

 χ χ χ χv v-1
v( ) ( ) ( ) ( )R R R R� � � �= +





1

2
 (10.56)

where χ( )R�  is the character of the ir. rep. of the mode for the operation R� , χv-1( )R�  is the character of the 
representation to which the v − 1 state belongs, and χ( )R� v  is the character of the ir. rep. of the mode for the 
operation R� v . This is illustrated by the following example for the v2 = 2 state of the asymmetric stretch of NH3. 
We expect this energy level to be triply degenerate; the states (v2a, v2b) = (1, 1), (2, 0) and (0, 2) have the same 
energy. When Equation 10.56 is applied to this state, χ χ χv 1 1− = =( ) ( ) ( )R R R� � �  because the symmetry of the v = 1 
state is that of the mode. The characters of the reducible representation are found as follows:
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Using Equation 10.39, this is decomposed to give Γred = A1 + E. As a check on the calculation, note that the 
threefold degeneracy of the state is accounted for by the sum of a singly degenerate and a doubly degenerate 
representation. Now that the symmetries of the v = 2 state are known, those of the state having v = 3 can be 
obtained from Equation 10.56, using the characters χ2(

˘
)R , as given in Equations 10.57 through 10.59, for 

χv 1− ( )R�  and so on to find the symmetries of higher energy states. This is illustrated in Problem 5.

10.5  SELECTION RULES FOR INFRARED ABSORPTION AND 
RAMAN SCATTERING: GROUP THEORETICAL PREDICTION 
OF ACTIVITY

IR and Raman spectra are generally dominated by the fundamental transitions, in which the number of quanta in 
one normal mode increases (or decreases) by one and all other normal modes remain in the same state. It is often 
the case that the initial state is the ground vibrational state; thus transitions such as (0, 0, 0,…) → (1, 0, 0,…) are most 
intense. When the Boltzmann population of an excited vibrational state is significant, hot bands can be observed; i.e. 
(1, 0, 0,…) → (2, 0, 0,…), as well as anti-Stokes Raman scattering (1, 0, 0,…) → (0, 0, 0,…). Anharmonicity of either 
the electrical or mechanical variety can result in the appearance of overtones, such as (0, 0, 0,…) → (2, 0, 0,…) and 
combination bands, such as (0, 0, 0,…) → (1, 0, 1,…). Difference bands also become allowed; for example, the tran-
sition (1, 1, 0,…) → (2, 0, 0,…), provided the initial state is populated. The absence of overtones and combinations 
in the harmonic case is the result of taking the transition operators for IR and Raman to be
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Since the total wavefunction is a product of 3N − 6 one-dimensional orthonormal wavefunctions, the opera-
tors of Equations 10.60 and 10.61 can only connect product states which differ by the quantum number for 
one normal mode. The position operator Qi is proportional to a ai i

+ +( ). Thus operators which are linear in Qi 
can only connect states which differ by one quantum of excitation in a single normal mode, and the selection 
rule Δv = ±1 is obtained.

Next we consider the group theoretical basis for Raman and IR activity of fundamentals. The tremendous 
advantage of group theory is the following: matrix elements of an operator Ô with respect to initial and final 
states, i.e. ψ ψi fO� , are guaranteed to vanish unless the triple direct product Γ Γ Γi o f× ×ˆ  equals or contains 
the totally symmetric representation. Thus it is necessary to find the symmetry species to which the wave-
functions (Γi, Γf) and the operator Γô( ) correspond. Neglecting both mechanical and electrical anharmonic-
ity, we need only consider fundamental transitions, and we will assume that the initial state is the ground 
vibrational state. Thus Γi is the totally symmetric representation, and Γf is the ir. rep. of the normal mode. 
A fundamental transition will thus be allowed if Γ Γô f= , since this results in Γ Γô f×  equal to (or containing) 
the totally symmetric representation.

The dipole moment operator has three components corresponding to the three Cartesian coordinates. 
Thus the fundamental of a normal mode is IR active if it belongs to the same ir. rep. as one or more of the 
Cartesian coordinates. The group theory prediction is in perfect agreement with reasoning based on whether 
or not a normal mode results in a changing dipole moment. For example, all the normal modes of NH3 shown 
in Figure 10.5 are IR active because they result in a change in the dipole moment in a direction either parallel 
or perpendicular to the symmetry axis. The A1 modes share the symmetry species of the coordinate z and are 
parallel polarized. The E modes coincide with the symmetry of the (x, y) coordinates, and they are polarized 
in the perpendicular direction.

The polarizability operator has components that transform as the products and squares of Cartesian coor-
dinates. Thus a fundamental is Raman active if the normal coordinate belongs to the same ir. rep. as one of 
the functions x2, y2, xy, etc. For example, a glance at the C3v character table (Table 10.2) reveals that all the 
fundamentals of NH3 are Raman active.

An important and powerful consequence of group theory is easily applied whenever a molecule has a center 
of symmetry, in which case one of the operations of the group is the inversion operation ˆ.i  In centrosymmetric 
molecules, the coordinates x, y, and z belong to ungerade ir. reps. Products of Cartesian coordinates thus have 
gerade symmetry, because u × u = g. This results in the IR and Raman fundamentals being mutually exclusive. 
Thus vibrational spectroscopy readily reveals whether a molecule possesses inversion symmetry. An example of 
such a case is the CO2 molecule, where the asymmetric stretch and the bend are IR active and Raman inactive, 
while the symmetric stretch is IR forbidden and Raman allowed. Benzene, SF6, ethylene, and ethane in the stag-
gered confirmation are examples of molecules having inversion symmetry.

Chemical intuition is readily applied to deduce IR activity, as one can imagine bond dipole moments which 
move during the vibration, and figure out whether the net dipole moment is changed when the bond dipole 
changes are added vectorially. It may be less obvious how to use similar reasoning to deduce Raman activity. 
Aren’t all molecules polarizable, and shouldn’t this polarizability change during any vibrational mode? Yes, 
and yes! However, the Raman activity depends on (∂α/∂Q)0, which is evaluated at the equilibrium geometry. 
Consider the two graphs of polarizability versus normal coordinate as shown in Figure 10.7. The slope of the 
graph in Figure 10.7a is zero at the equilibrium geometry, so the mode is Raman inactive. Such a situation 
arises, for example, in the bending mode and in the symmetric stretch of CO2. The polarizability might increase 

a) b)

Q0 Q0

αα

Figure 10.7 Polarizability versus normal coordinate for (a) Raman inactive and (b) Raman-active normal modes.
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(or decrease) when the molecule bends (or stretches) in one direction, and it will do the same when bending (or 
stretching) in the other direction, resulting in a slope (∂α/∂Q)0 which is zero at the symmetric linear geometry. 
The polarizability during the symmetric stretch, on the other hand, resembles Figure 10.7b, where the polariz-
ability is assumed to increase with increasing bond length. We reach the conclusion that (∂α/∂Q)0 ≠ 0 for this 
type of vibration, and it is thus Raman active.

These considerations do not take into account the fact that the Raman transition polarizability is a second-
rank tensor. The symmetry of the Raman tensor dictates the polarization properties of the scattered light. 
Polarization in Raman scattering is a powerful way to deduce whether a mode is totally symmetric. This will 
be discussed in Chapter 12.

Group theory can only tell us if a vibrational mode is active in the Raman or IR based on symmetry; it 
cannot address how intense a band will be once it is known to be allowed. For example, although all three 
fundamentals of H2O are Raman allowed, they are not very intense because the polarizability derivatives are 
rather small. Polarizability correlates with electron density, and in the water molecule the electron density is 
concentrated on the oxygen atom. Since the position of the center of mass is nearly coincident with the oxygen 
atom, the magnitude of the change in polarizability during a water molecule vibration is small. On the other 
hand, water is a strong IR absorber, due to the large dipole moment derivatives for stretching and bending.

These symmetry considerations are also based on the assumption of harmonic normal modes and transi-
tion operators which are linear in Qi. When these assumptions break down, transitions other than the funda-
mental appear: overtone and combination bands. As in the case of diatomic molecules, perturbation theory 
can be used to treat these “forbidden” transitions, and electrical and/or mechanical anharmonicity may be 
responsible for their appearance. For example, the following component of the dipole operator

 µ̂ ∂ µ
∂ ∂

=






2

1 2 0

1 2
Q Q

Q Q  (10.62)

permits the combination band at frequency ν1 + ν2. This is an example of electrical anharmonicity.

10.6 ROTATIONAL STRUCTURE

Vibrational spectroscopy of gas-phase molecules provides another approach, in addition to pure rotational 
spectroscopy, for observing rotational transitions. As for pure rotational spectra, the rotational structure of 
vibrational bands can be quite complex for asymmetric tops. The discussion here is limited to IR spectra of 
linear and symmetric top molecules. The factorization of the wavefunction into vibrational and rotational 
parts enables us to recycle some of the selection rules for rotational transitions that were obtained in the pre-
vious chapter. However, we must take into account whether the transition dipole is parallel or perpendicular 
to the symmetry axis. For parallel transitions, the selection rules are identical to those for pure rotational 
transitions: ΔJ = 0, ±1 and ΔK = 0, with ΔJ = 0 prohibited for K = 0 and thus also for J = 0. Thus for parallel 
transitions of closed-shell linear molecules, where K is always zero, we observe the rotational structure typi-
cal of a diatomic molecule, i.e., P and R branches. For symmetric tops, the structure is more complex because 
for each branch pertaining to a change in the quantum number J, there is a series of lines for different initial 
values of K. If the vibrational transition is polarized perpendicular to the symmetry axis, whether linear or 
symmetric top, the selection rule is ΔJ = 0, ±1 and ΔK = ±1, with ΔJ = 0 still prohibited when J or K is zero.

The transition dipole moment for the asymmetric stretch of CO2, at about 2350 cm−1, is parallel to the 
symmetry axis. Thus the IR band for this vibration (Figure 10.8) lacks a Q branch. In contrast, the bending 
vibration of CO2, at about 670 cm−1, is perpendicularly polarized and the Q branch is prominent, as shown 
in Figure 10.8.

Next consider the example IR spectrum of Figure 10.9, showing the rotational structure of the CO stretch 
of methanol. Methanol is a near-prolate symmetric top, and the transition dipole for the CO stretch is coin-
cident with the near-symmetry axis. The barrier to internal rotation in CH3OH is about 400 cm−1, so at room 
temperature the methyl and hydroxyl groups do not rotate freely with respect to one another. However, the 
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small contribution of the off-axis hydrogen leads to � �B C≈ ≈ −0 8. cm 1, while the rotational constant for rotation 
about the “symmetry axis” is �A ≈ −4 cm 1. Recall that the rotational energy of a prolate symmetric rotor is EJK/h = 
B[v]J(J + 1) + (A[v] − B[v])K2, where A[v] > B[v], and [v] represents the set of vibrational quantum numbers on 
which the rotational constants depend. The vibration–rotation transition frequencies are thus given by

 ν ν= + ′ ′ ′ + − ′′ ′′ ′′ + + ′ − ′ ′ − ′′ − ′′ ′′0
2 21 1B J J B J J A B K A B K( ) ( ) ( ) ( )  (10.63)

Double-primed quantities represent initial state values and single-primed ones designate final state val-
ues, and ν0 is the frequency of the vibrational transition. The Q branch transitions in the case of a parallel 
 polarized vibration, for which J′ = J″ ≡ J and K′ = K″ ≡ K, are found at

 ν νQ B B J J A B A B K= + ′ − ′′( ) + + ′ − ′ − ′′ − ′′[ ]0
21( ) ( ) ( )  (10.64)

Since the rotational constants A′ and B′ in the upper vibrational state are expected to be smaller than their 
counterparts in the lower vibrational state, Equation 10.64 predicts that the Q branch lines move to lower fre-
quency with increasing |K| or J. Each of these Q branches, for a particular value of K, serves as an origin for a 
series of P and R branch lines, called a subband. Were it not for vibration–rotation coupling, the separation of 

1050
0

0.4

1000
Frequency (cm–1)

A
bs

or
ba

nc
e

Figure 10.9 IR vibration–rotation spectrum of the CO stretch of CH3OH. (From Infrared Spectra for 
Quantitative Analysis of Gases, P. L. Hanst and S.T. Hanst, copyright 1992 Infrared Analysis, Inc., Anaheim, CA. 
With permission.)
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Figure 10.8 IR spectrum of CO2, asymmetric stretch (a) and bend (b). (From Infrared Spectra for Quantitative 
Analysis of Gases, P. L. Hanst and S.T. Hanst, copyright 1992 Infrared Analysis, Inc., Anaheim, CA. With 
permission.)
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adjacent lines in each subband would be 2B. The spacing is only approximately constant, due to the difference in 
B′ and B″. Since the spacing within the P or R branch is typically larger than that of the subband origins, under 
low resolution the spectrum looks like that of a linear molecule with an allowed Q branch. There are still subtle 
differences, however. Besides being displaced in frequency, the subbands are not identical by virtue of the fact 
that J is always greater than or equal to |K|. Thus, as K increases, the P and R branches of the subbands start out 
at larger values of J.

In the methanol spectrum of Figure 10.9, there is also structure that results from nuclear spin statistics. 
The presence of three equivalent hydrogens results in alternation of the statistical weights of various K states. 
As discussed in [3], states for which K is an integral multiple of three have twice the weight of the others, 
leading to the intensity pattern 2, 1, 1, 2, 1, 1… for |K| = 0, 1, 2, 3, 4, 5…. All these factors make analysis of the 
low-resolution vibration/rotation spectrum of methanol very interesting.

The rotational structure of perpendicularly polarized transitions of symmetric top molecules is even more 
interesting, due to the selection rule ΔK = ±1. In this case there is less resemblance of the low-resolution spec-
trum to that for a linear molecule, as the ΔK = +1 and ΔK = −1 subbands are displaced to opposite sides of the 
main Q branch. See [3] and [4] for more discussion of this problem.

What becomes of the rotational structure as a gas is cooled and eventually condensed to a liquid? As the tem-
perature of the gas is decreased, the maxima in the P and R branches shift to smaller J, and thus the width of the 
spectrum spanned by the rotational transitions decreases. On going to the liquid phase, the rotational structure 
is lost, but reorientational motion continues to contribute to the spectral width of the IR band, as discussed in 
Chapter 5. The rotational contribution to the IR lineshape derives from the reorientational motion of the transi-
tion moment. In addition, vibrational relaxation (dephasing and population relaxation) contributes to the width 
of the IR band. The measurement of the IR spectrum alone does not permit the contributions of vibrational and 
rotational relaxation to be separated. In favorable cases, this separation can be accomplished by measuring the 
polarized and depolarized Raman spectra. See Chapter 5 for a discussion of this.

10.7 ANHARMONICITY

Perturbation theory can be used as described in the previous chapter to account for the expected decrease in 
the spacing of vibrational energy levels at higher energies. The perturbed vibrational energy are written as
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where the anharmonicity correction factors xij, unlike xe for diatomics, are defined such that they are gener-
ally negative and have units of frequency. Experimental determination of the xij’s requires the observation of 
a suitable number of overtone and combination bands. The vibrational spectrum of water vapor, for example, 
has been measured to great accuracy, and overtones and combinations extending into the visible region of 
the spectrum can be observed. The harmonic frequencies and anharmonic correction factors for the water 
molecule are given in Table 10.4, and the normal modes are depicted in Figure 10.6.

Two special cases of mechanical anharmonicity are Coriolis coupling and Fermi resonance. As it turns 
out, both of these effects are displayed in the vibrational spectrum of CO2, which will be used to illustrate the 
basic principles.

Table 10.4 Vibrational constants for water

�ν1 = 3825.32 cm−1 x11 = −43.89 cm−1 x12 = −20.02 cm−1

�ν2 = 1653.91 cm−1 x22 = −19.5 cm−1 x13 = −155.06 cm−1

�ν3 = 3935.59 cm−1 x33 = −46.37 cm−1 x23 = −19.81 cm−1

Source: B. T. Darling and D. M. Dennison, The water vapor molecule, Phys. Rev. 57, 128 (1940).
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Coriolis coupling is a splitting observed in vibrational states having more than one quantum of  excitation 
in a degenerate bending vibration. It is a form of vibration–rotation coupling. From a classical point of view, 
the Coriolis force, like the centrifugal force, is an apparent force associated with motion in a rotating coor-
dinate system. If an object in a rotating reference frame is displaced radially, a sidewise force (the Coriolis 
force) must be exerted. In the molecular example at hand, the rotational motion derives from excitation of the 
bending overtone of CO2, which leads to angular momentum about the bond.

Consider the triply degenerate v = 2 level of the bending mode of CO2, which consists of the states (v2a, v2b) = 
(1, 1), (2, 0), and (0, 2). Figure 10.10 illustrates the nuclear motion in the case where the two perpendicular 
bending motions are 90° out of phase. The net result is that each atom executes circular motion and there is 
angular momentum about the bond axis. A rigid linear molecule has no such angular momentum, but in the 
case where the bending vibration is excited, vibrational angular momentum results. To consider this from a 
quantum mechanical point of view, take the zero-order wavefunctions for the three states to have the form:

 ψ α α1 2
2 24 2∝ − +( ) Q Q Q Qa b a bexp /  (10.66)

 ψ α α2 2
2 2 24 2 2∝ −( ) − +( ) Q Q Qa a bexp /  (10.67)

 ψ α α3 2
2 2 24 2 2∝ −( ) − +( ) Q Q Qb a bexp /  (10.68)

which correspond respectively to (1, 1), (2, 0), and (0, 2) states. It is convenient to make a change of coordinates 
from Qa and Qb to r Q Qa b= +( )2 2

1 2/
 and ϕ = ( )−tan 1 Q Qb a . Then, after expressing the wavefunctions in terms of 

these new coordinates, we are free to take linear combinations of them, since they are degenerate. As shown 
in [5], one particular set of zero-order wavefunctions which are linear combinations of the ψi’s can be found, 
after some algebra, to be

 ′ ∝ ( )ψ ϕ1
2 2r iexp  (10.69)

 ′ ∝ −( )ψ ϕ2
2 2r iexp  (10.70)

 ′ ∝ −ψ 3
2 1r  (10.71)

The significance of this result is that the first two wavefunctions ′ψ 1  and ′ψ 2  depend on the angle ϕ, and indeed 
all three of them are eigenfunctions of the angular momentum operator 

˘
L iz = − ∂ ∂( )� ϕ  (where ϕ is the angle 

of rotation about the bond axis), having eigenvalues m = −2 2� �, , and 0. Anharmonic coupling in the form of 
vibration–rotation interaction mixes the zero-order states ψ1, ψ2, and ψ3 resulting in v2 = v2a + v2b no longer 
being a good quantum number. In general, Coriolis coupling of the v2 level results in perturbed states having 
quantum numbers m ranging from v2 to −v2 in steps of two. The energy depends on the absolute value of m 
because it is insensitive to the sense of rotation. Thus Coriolis coupling results in the triply degenerate v2 = 2 
level being split into two levels, one which is nondegenerate, having |m| ≡ l = 0, and the other doubly degener-
ate with l = 2. Using the formula given in Equation 10.56, one finds that the v2 = 2 level spans the Σg

+ and Δg 

C

OO

Figure 10.10 Vibrational angular momentum in the bending overtone of CO2.
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representations of the D∞h point group, which correspond respectively to the l = 0 and 2 states. To completely 
specify the vibrational state of CO2, the notation ( , , )v v v2 31

l  is used.
Since Coriolis coupling leads to angular momentum about the bond, it is reflected in the rotational fine 

structure of the vibrational spectrum. The rotational energies resemble those of a prolate rotor:

 E hB J J l A hlrot = + −  +[ ] [ ]( )v v1 2 2 (10.72)

Here again, the rotational constants B[v] and A[v] are functions of all the vibrational quantum numbers [v] = 
[v1,v2,…v3N−6].

The Σg
+ component of the bending overtone of CO2 is further perturbed by an anharmonic interaction 

with the symmetric stretch. The overtone is expected to be observed at a frequency close to 2 × 673 cm−1 = 
1346 cm−1, and being of u × u = g symmetry it might appear as a weak band in the Raman rather than the IR. 
In reality, the Raman spectrum of CO2 shows two strong bands at 1285 and 1388 cm−1. These two bands are 
the result of Fermi resonance, an anharmonic mixing of two vibrational states that have the same symmetry 
and are close in energy. The symmetry restriction results from the requirement that the matrix element of the 
perturbation operator, ψ ψ1 2

ˆ ′H , not vanish. Since the Hamiltonian, including any perturbation correction 
ˆ ′H , must be totally symmetric, this means that ψ1 and ψ2 must transform according to the same ir. rep. if they 

are to mix. In the example at hand, the perturbation operator is ˆ ′ =H V Q Q12 1 2
2, where
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  (10.73)

This operator can connect the states (1, 00, 0) and (0, 20, 0), which have zero-order energies 1354 and 
1346 cm−1, respectively. The first of these is the totally symmetric stretch, and the second is the l = 0 compo-
nent of the bending overtone; both of these states have Σg

+ symmetry.
The end result of the Fermi resonance interaction is that the states representing the symmetric stretch and 

the bending overtone are mixed, and the energies of the two perturbed states are split apart from one another, 
as shown in Figure 10.11. The higher energy state contains some of the character of the bending overtone, but 
can still be qualitatively regarded to be the symmetric stretch. Similarly, the lower energy transition is to a 
state which is mostly the bending overtone, with some symmetric stretch mixed in. In quantum mechanical 
terms, the coefficient a is much larger than b in Figure 10.11. The state mixing leads to intensity borrowing 
such that the otherwise weak overtone becomes strong by taking on some of the character of the stretching 
mode. There is an overall conservation of the total intensity of the two bands: the stretch losing intensity to 
the bending overtone, but the change in intensity of the “bending overtone” appears more dramatic because 
its zero-order transition strength is small.

Another example of anharmonicity at work is displayed by the vibrational spectrum of water vapor and 
is called Darling–Dennison coupling [6]. In this case, the near equality of the frequencies ν1 and ν3 is respon-
sible. Since the symmetry of the asymmetric stretch alternates between A1 and B1 according to whether the 
number of quanta v3 is even or odd, a state (v1, v2, v3) has the same symmetry and nearly the same energy as 
the state (v1 − 2, v2, v3 + 2), and coupling is permitted. The result is that many of the strong overtone and com-
bination bands in the water spectrum appear in pairs: e.g., (003) and (201) at about 11,032 and 10,613 cm−1, 
respectively. Note that these frequencies are in the near-IR, and higher overtones extend into the visible! This 
is something to think about the next time you gaze at a very deep blue lake.

ψ2 = aψ2
(0) – bψ1

(0)

ψ1 = aψ1
(0) + bψ2

(0)

ψ
1

(0)

ψ
2

(0)

Figure 10.11 State mixing and level splitting in Fermi resonance.
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10.8 SELECTION RULES AT WORK: BENZENE

As an example of a moderately large molecule with high symmetry, consider benzene, C6H6. The low-resolution 
IR spectra of gas-phase benzene and toluene are compared in Figure 10.12. The polarized and depolarized 
Raman spectra of liquid benzene and toluene are shown in Figures 10.13 and 10.14, respectively. Since toluene 
lacks a center of symmetry, there are vibrational bands common to both the Raman and IR spectra, whereas 
benzene adheres to the rule of mutual exclusion.

The 30 normal modes of benzene comprise ten nondegenerate and ten doubly degenerate symmetry 
 species (ir. reps.). Due to inversion symmetry, the Raman active fundamentals are IR inactive, and vice versa. 
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Figure 10.14 Polarized and depolarized Raman spectra of liquid toluene.
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Figure 10.13 Polarized and depolarized Raman spectra of liquid benzene.
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Figure 10.12 IR spectra of benzene and toluene in the gas phase.
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The vibrational spectra of benzene provided early evidence of D6h symmetry. Group theoretical analysis can be 
applied to determine the normal mode symmetries. The result is

 
Γvib = + + + + +

+ + + +

2 4 2 2 3

2 2

1 2 2 1 2 1

2 1 2 2

A A E B B E

B E A E

g g g u u u

g g u u

 (10.74)

The symmetry species listed in the first line of Equation 10.74 correspond to in-plane vibrations, while those 
on the second line designate out-of-plane vibrations. We deduce this merely by looking at the sign of the 
character for the σh operation in the D6h character table (see Appendix C). In-plane vibrations are symmetric 
with respect to reflection through the plane containing the molecule, and out-of-plane vibrations are anti-
symmetric. With the help of the D6h character table, it is concluded that a number of the fundamentals are 
“silent”; that is, they are active in neither the Raman nor the IR. Of the Raman active fundamentals (2A1g, E1g 
and 4E2g), two are totally symmetric (A1g) and are expected to give rise to polarized Raman bands. As will 
be shown in Chapter 12, these have depolarization ratio ρ < 3/4, while nontotally symmetric vibrations have 
ρ = 3/4. The totally symmetric modes are the ring-breathing vibration �ν2 at 992 cm−1 and the totally sym-
metric C–H stretch �ν1 at 3062 cm−1. The IR-active modes are A2u and 3E1u. A frequently used convention is to 
number the modes in order of decreasing symmetry (A1g, A2g,…) and then in order of decreasing frequency 
within each symmetry species. The frequencies of Raman and IR fundamentals of benzene are given in Table 10.5. 
Note that additional weak bands are also observed and assigned to overtones or combinations, not listed in 
the table. The major contributions from internal coordinates are listed for each normal mode in Table 10.5, 
where CC and CH are stretching coordinates, and the three-letter designations represent in-plane (i.p.) or 
out-of-plane (o.o.p.) bending of those three-atom groups.

10.9 SOLVENT EFFECTS ON INFRARED SPECTRA

Solvent effects on vibrational spectra can appear as perturbations to the intensity, frequency, and linewidth, 
and may arise from specific intermolecular interactions (such as dipolar forces and hydrogen bonding) or 
from the bulk dielectric properties of the medium. Although the analysis of solvent effects in vibrational 
spectra presents a rich area of possibilities for extracting intermolecular interactions from spectra, practi-
cal quantitative approaches for interpreting such effects remain elusive. Many commonly observed solvent 
effects are well understood qualitatively, but are difficult to describe quantitatively.

For example, the hydrogen bonding interaction, X H B– � , where X and B are generally quite electro-
negative atoms such as O, N or F, presents clear signatures. The hydrogen bonded X–H stretch is red-shifted 

Table 10.5 Benzene fundamentals

Raman Infrared

Assignment �νν, cm−1 �νν, cm−1

�ν 1 (CH) A1g 3062

�ν 2 (CC) A1g 992

�ν11 (o.o.p.CH) E1g 849

�ν15 (CH) E2g 3047
�ν 16 (CC) E2g 1585

�ν 17 (i.p.CCH) E2g 1178
�ν18 (i.p.CCC) E2g 606
�ν4 (o.o.p.CCH) A2u 676

�ν12 (CH) E1u 3072

�ν13 (CC, i.p.CCC) E1u 1480

�ν14 (i.p.CCH) E1u 1036



10.9 Solvent effects on infrared spectra 245

and broadened compared to the free molecule. The red-shift is attributed to withdrawal of X–H bonding 
electron density through formation of the hydrogen bond. The increased linewidth has long been assumed 
to be inhomogeneous in nature, due to a variety of hydrogen bond environments, but recent evidence sug-
gests homogeneous broadening may also be at work, perhaps due to an underlying progression in the low-
frequency stretch of the hydrogen bond. Hydrogen bond formation also leads to intensity enhancement of 
the X–H stretch, in the Raman and IR. Figure 10.15 shows the influence of hydrogen bonding on the IR band 
due to the C–H stretch of chloroform, hydrogen bonded to dimethylsulfoxide-d6. The sharp peak apparent 
at low dimethylsulfoxide concentration is the C–H stretch of free chloroform, while the broad component is 
the hydrogen bonded C–H stretch.

Less clear-cut than hydrogen bonding are interactions due to dipolar, induction, and dispersion forces. As 
discussed in [7], attractive forces tend to cause red shifts and repulsive forces blue shifts in vibrational spectra, 
and though red shifts of vibrational frequencies are often observed on going from gas to liquid phase, blue 
shifts are also possible. Attractive forces are of longer range than repulsive forces, while the latter reflect the 
shape of molecules and determine the packing in the liquid. Vibrational modes having large dipole-moment 
derivatives (strong IR intensity, e.g., carbonyl stretches) are particularly sensitive to solvent polarity. Modes 
having large polarizability derivatives (strong Raman activity), on the other hand, are subject to frequency 
shifts due to dispersion forces. Intermolecular forces can also influence the peak frequencies in Raman, and 
IR spectra in different ways, causing small frequency shifts from the IR to the Raman and frequency differ-
ences between the isotropic and anisotropic Raman components [8–9]. Accounting for these sorts of effects 
requires knowledge of the liquid structure.

In neat liquids, the dispersion in the refractive index across a strong IR band is significant and may 
cause the peak frequency to differ from the value observed in the gas phase, even in the absence of spe-
cific intermolecular interactions. Bertie et al. [10–13] have employed a generalized Lorenz–Lorentz equation 
(Equation 3.75), where both the polarizability and the refractive index are complex,
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to analyze IR bands in neat liquids and in solutions. The carets over the frequency dependent polarizability 
( )α�  and refractive index ( )n�  indicate that these are complex quantities. Recall from Chapter 3 that the real 
and imaginary parts of n�  are the (real) refractive index nr and the absorption coefficient κ. The Beer’s law 
molar absorptivity εM(ν) is proportional to νκ(ν). Bertie and coworkers exploited the Kramers–Kronig rela-
tionship to obtain the frequency-dependent refractive index nr from the measured absorption coefficient, 
determined using transmission or attenuated total reflection IR spectroscopy. In the case of strong IR bands, 
and especially at lower frequencies, the observed absorbance spectrum εM(ν) differs in shape and peak fre-
quency from that of the absorption coefficient κ(ν). In Figure 10.16, the spectrum of liquid methanol is repre-
sented in terms of the molar absorptivity ε νM ( )� , the absorption coefficient κ ν( )� , and the frequency-dependent 
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Figure 10.15 Infrared spectra of the C–H stretch of chloroform in the presence of increasing amounts of 
dimethylsulfoxide-d6, from bottom to top. (Reprinted with permission from D. C. Daniel and J. L. McHale, 
Journal of Physical Chemistry A, 101, 3070, (1997), Copyright 1997, American Chemical Society.)
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refractive index, n( )�ν . Note the dispersion in the refractive index, particularly in the vicinity of the strongest 
bands. Considerations such as those outlined in [10–13] are important in order to separate bulk dielectric 
effects in vibrational spectra from those due to specific interactions and to obtain the true peak frequency in 
the solution phase.

10.10 SUMMARY

The normal mode approach to the analysis of polyatomic vibrational motion has been exposed. The concept 
of normal modes is only as strong as the harmonic oscillator approximation, yet it provides us with a power-
ful vantage point from which the symmetries of molecules and vibrational modes can be discerned. Normal 
coordinates are linear combinations of mass-weighted Cartesian coordinates for atomic displacements. These 
normal coordinates can potentially involve all the atoms in the molecule, but when most of the potential 
energy of the vibration is invested in a small number of atoms, the concept of a group frequency applies. In 
symmetric molecules, normal mode symmetries and selection rules for IR and Raman activity are readily 
deduced using group theory. For larger, less symmetric molecules the group frequency approach can be of 
value. Anharmonic effects result in perturbations to vibrational frequencies and the appearance of overtone 
and combination bands, and in addition permit couplings between vibrational states that would otherwise be 
independent. These couplings can result in intensity borrowing and the appearance of forbidden transitions.

The conventional applications of IR and Raman spectroscopy observe vibrational motion within the 
ground electronic state. In Chapter 11, we will see that electronic spectroscopy permits the vibrational modes 
of excited electronic states to be investigated. Not all vibrational modes contribute to the electronic absorp-
tion and emission spectra, though, and we will have to figure out the relevant selection rules. It is useful to 
divide all normal modes into two groups, totally symmetric and nontotally symmetric. These two kinds of 
modes contribute differently to electronic spectra, as will be shown in Chapter 11.
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Figure 10.16 Infrared spectrum of liquid methanol: molar absorptivity in units of 105 cm2 mol−1 (a), absorp-
tion coefficient (b), and refractive index (c). (Reprinted with permission from J. E. Bertie, et al., Vibrational 
Spectroscopy 8, 215, (1995), Elsevier Science - NL, Sara Burgerhartstraat 25, 1055 KV Amsterdam, The 
Netherlands.)
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PROBLEMS
 1. Use group theoretical arguments to predict the number of fundamentals observed in the Raman and 

IR spectra of a triatomic molecule AB2 for each of the possible structures: linear symmetric, linear 
asymmetric, bent symmetric, and bent asymmetric.

 2. Find the symmetries of the normal modes of a planar AB4 molecules (D4h point group). Predict the 
Raman and IR activities of each fundamental. Repeat the analysis for the case where the molecule is 
tetrahedral (Td point group).

 3. Find the D matrix for CO2.
 4. Explain how vibrational spectra can distinguish between cis or trans dichloroethylene.
 5. Find the symmetries of the states associated with the second overtone of the bending mode of CO2.
 6. Use the data in Table 10.4 to calculate the frequencies of the transitions (000) → (003) and (000) → (201) 

for water. Compare to the values given in Section. 10.7.
 7. A general harmonic potential function for water is
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 The second line contains off-diagonal force constants, while the first three terms are diagonal. In matrix 
form, this can be expressed as 2V = RTFR, where R = ( )∆ ∆ ∆r r1 2 θ  is the vector whose elements are 
the internal coordinates. Find the symmetry coordinates S1, S2, and S3 for water, and the block diagonal 
force constant matrix f which permits the potential energy to be written as ST f S.

 8. Evaluate the upper state symmetry for each of the following combination bands in benzene: ν16 + ν2, 
ν10 + ν13, ν2 + ν16 + ν18, and 2ν2 + ν18. In each case, what operator could result in Raman or IR activity of 
the transition? Assume that the initial state is the ground vibrational state. Note that the ν10 mode has 
B2u symmetry.

 9. Assign the bands in the benzene spectra displayed in Figures 10.12 and 10.13.
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11

Electronic spectroscopy

11.1 INTRODUCTION

Because electronic energy levels are more widely spaced than vibrational and rotational levels, the study of 
 electronic spectroscopy encompasses many of the previously discussed concepts concerning rotational and 
vibrational spectra. In electronic spectra of gas-phase molecules, analysis of rovibrational transitions within 
an electronic absorption or emission band can provide useful structural information, particularly when the 
pure rotational or vibrational spectrum is forbidden. In condensed phases, discrete rotational structure is 
not observed, but vibrational transitions contributing to the linewidth are often resolved. For example, the 
electronic absorption spectrum of benzene, shown in Figure 11.1, displays vibrational structure which will be 
analyzed in Section 11.5.3. In larger molecules, the high density of vibrational states serves to blur the vibra-
tional structure. In solution, the line-broadening influence of the solvent may prevent individual vibronic 
transitions from being resolved, but they contribute to the linewidth nonetheless. Consider the absorption 
spectra of I2, shown in Figure 11.2. In the vapor phase, vibrational transitions are resolved as separate peaks. 
In solution, however, the vibrational transitions of I2 continue to contribute to the breadth of the spectrum, 
but are not resolved as distinct features. In this chapter, we will concentrate on the analysis of vibrational con-
tributions to electronic spectra. These hold the key to determining the difference in equilibrium geometries of 
the ground and excited electronic states. Electronic spectra can also reveal some of the features of the excited 
state potential surface, as well as dynamics such as dissociation, isomerization, and radiationless decay.

We begin by examining the theory of electronic absorption spectroscopy, in which a molecule in an initial 
vibronic (vibrational plus electronic) state makes transitions to a number of different vibrational levels within 
an excited electronic state. The commonly employed technique of UV-visible spectroscopy is based on the 
transitions of valence electrons, while core electron excitations may be found at higher frequencies. Quantum 
mechanics teaches us that electrons confined to bigger boxes have more closely spaced energy levels than 
those in smaller boxes. Thus when we compare, for example, the π − π* transitions of a series of conjugated 
molecules, we find the absorption wavelength increases with the size of the π system. While common dyes 
are large conjugated organic molecules, smaller molecules can also absorb visible light. Consider the purple 
color of I2 or the blue color of an aqueous solution of Cu2+ ion. It may come as a surprise that the well-known 
colors of many transition metal complexes often result from electronic transitions that are forbidden to a first 
approximation! In Sections 11.5.3 and 11.6, we consider how electronic transitions which are forbidden to a 
first approximation (“symmetry forbidden”) become allowed through the participation of nontotally sym-
metric vibrations.

Once a molecule is promoted to an excited electronic state, it may return to the ground state either radia-
tively or nonradiatively. The former pathway leads to emission spectroscopy. The fluorescence and phos-
phorescence spectra of molecules are discussed in Sections 11.3.2 and 11.7. These experimental techniques 
complement the information obtained from absorption spectroscopy. Nonradiative decay of excited elec-
tronic states is considered in Section 11.8.

The starting point for describing electronic transitions is the Born–Oppenheimer approximation. As 
 discussed in Chapter 9, this approximation permits the separation of electronic and nuclear (rovibrational) 
energies. In the case of a diatomic molecule, each electronic state is characterized by a potential energy 
 function V(R), for example the curves shown in Figure 9.1. In polyatomics, these curves are replaced by 
(3N − 6)-dimensional surfaces, as the potential energy V(Q1,Q2,…,Q3N−6) depends on 3N − 6 normal coor-
dinates. The harmonic approximation permits these surfaces to be further decomposed: V Vi

N
i= =

−Σ 1
3 6 ; so that 

one can draw separate potential energy curves Vi(Qi) for each normal coordinate, in a particular electronic state. 
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Electronic transitions that are forbidden within the Born–Oppenheimer approximation are frequently 
observed, requiring that we go beyond the limits of this approximation. The corrected picture allows for 
coupling of the zero-order Born–Oppenheimer (BO) electronic states, and new selection rules come into 
play. Effects permitted by the breakdown in the BO approximation, such as vibronic activation of forbidden 
transitions, predissociation (defined in Section 11.3.3), internal conversion, and symmetry lowering, are of 
wide-ranging importance in chemistry and spectroscopy.

In this chapter, we begin with a study of diatomic molecules in order to introduce topics which apply to 
polyatomics as well. Starting from the electronic configuration for a molecule, we can determine the elec-
tronic states associated with that configuration. Excited state configurations are generated by promoting 
electrons from occupied to virtual orbitals. Group theory can then be exploited to determine which state- to-
state transitions are permitted by E1, E2, and M1 selection rules. Vibrational (Franck–Condon) progressions 
within electronic absorption and emission bands depend on the change in equilibrium geometry. For poly-
atomic molecules, vibrational progressions are shown to be most important for totally symmetric vibrations. 
The appearance of nontotally symmetric vibrations is often an indication of Born–Oppenheimer breakdown 
and is of interest in both this chapter and the next.

11.2  DIATOMIC MOLECULES: ELECTRONIC STATES AND 
SELECTION RULES

Diatomic molecules may be homonuclear (D∞h point group) or heteronuclear (C∞v point group). The character 
tables for these two cases are given in Appendix C, and are reproduced in Tables 11.1 and 11.2 for reference. 
These are infinite groups, due to the existence of an infinite number of reflection planes σv through the bond 
and the infinite order of the rotation axis containing the bond. An additional designation of the irreducible 
representations (ir. reps. or symmetry species) in the case of the D∞h point group is the label g or u for even 
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or odd inversion symmetry. The functions listed in the two far-right columns of the D∞h and C∞v character 
tables are important in the consideration of selection rules. The molecular orbitals and electronic states can 
be characterized using symmetry labels corresponding to the irreducible representations of the group. Note 
that in both point groups the Σ ir. reps. are nondegenerate and the Π and Δ ir. reps. are doubly degenerate. 
The usual convention is to use lowercase letters σ, π, δ, and φ to denote the symmetries of molecular orbitals, 
reserving capital letters for state symmetries. The subscript g or u is appended to the orbital label in the case 
of homonuclear diatomics. The label of a molecular orbital (MO) also conveys information about the angular 
momentum. In molecules, as opposed to atoms, the total electronic angular momentum L is no longer a good 
quantum number. In diatomics and linear polyatomics, however, the component of orbital angular momen-
tum about the bond is quantized. Calling the z direction that of the bond, the angle of rotation about the bond 
is ϕ and the projection of the vector 

�
L onto the bond is Lz = mlħ. The labels σ, π, δ, φ, … for molecular orbitals 

designate the quantum number ml = 0, ±1, ±2, ±3, …. Knowing the occupied MOs (the electronic configura-
tion), one can generate term symbols which designate electronic states and their degeneracies. This procedure 
is described in the next section.

11.2.1  Molecular orbitals and electronic configurations 
for diatoMics

Molecular orbitals are conveniently represented as linear combinations of a limited number of atomic 
orbitals. This LCAO-MO (linear combination of atomic orbitals to get molecular orbitals) approach is based 
on the variation theorem, which permits the hydrogen-like or other atomic orbitals to be used as a basis 
for an approximate wavefunction for the molecule. In general, one takes as a basis set a number of atomic 
orbitals, χ1, χ2, etc., and writes trial wavefunctions (molecular orbitals) as ψ χ χ = + + ...c c1 1 2 2  . The coefficients 
ci are found using linear variation theory, as described in a number of quantum chemistry texts [1,2]. More 
accurate wavefunctions are generated with larger basis sets, at the cost of greater computational complexity 
and less intuitive physical pictures. While these sorts of calculations are of great importance in the study 
of electronic structure and spectra, in the present discussion we are concerned with qualitative ideas about 
the symmetry and energy level ordering, so we will employ the simplest possible description of MOs that is 
capable of capturing the physical picture.

Table 11.2 D∞h character table

D∞h E 2C() v i 2S() C2

∑g
+ 1 1 1 1    1 1 x2 + y2,z2

∑g
− 1 1 −1 1    1 −1 Rz

Πg 2 2 cosϕ 0 2 −2 cosϕ 0 (Rx,Ry) (xz, yz)

Δg 2 2 cos2ϕ 0 2  2 cos2ϕ 0 (x2 − y2,xy)
∑+

u 1 1 1 −1  −1 −1 z
∑−

u 1 1 −1 −1  −1 1

Πu 2 2 cosϕ 0 −2  2 cosϕ 0 (x,y)

Δu 2 2 cos2ϕ 0 −2 −2 cos2ϕ 0

Table 11.1 C∞v character table

C∞v E 2C() v

∑+ 1 1 1 z x2 + y2,z2

∑− 1 1 −1 Rz

Π 2 2 cosϕ 0 (x,y)(Rx,Ry) (xz, yz)

Δ 2 2 cos2ϕ 0 (x2 − y2,xy)

Φ 2 2 cos3ϕ 0
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Let us begin with the example of diatomic carbon, C2. The MOs required to describe the molecular 
electronic configuration can be formed from linear combinations of the 1s, 2s, 2px, 2py, and 2pz orbit-
als on each of the two carbon atoms. Alternatively, we could use the p1, p0, and p−1 orbitals instead 
of the real px, py, and pz orbitals. The complex p orbitals have the advantage of being eigenfunctions 
of L̂z , while the real p orbitals are more easily visualized; so we chose the latter for now. Figure 11.3 
depicts the bonding and antibonding MOs formed from combining these basis AOs. Recall that bond-
ing MOs have enhanced electron density in the internuclear region, while antibonding orbitals have 
nodal planes between the nuclei. Antibonding orbitals are distinguished by a superscript star (*), which 
should not be confused with the symbol for complex conjugation. There are some very general prin-
ciples that are basic to the LCAO-MO approach. AOs combine to give MOs if they are similar in energy 
and if they overlap. The number of resulting MOs is always equal to the number of AOs in the basis 
set. Molecular orbitals designated by the letter σ have cylindrical symmetry about the bond. There is 
no angular momentum about the bond for a σ-type orbital; ml is zero and the MO is independent of ϕ. 
Orbitals of π symmetry have nodal planes containing the nuclei. The bonding and antibonding π-type 
orbitals occur in degenerate pairs which differ only in the orientation of the nodal plane containing 
the bond. If formed from p1 and p−1 atomic orbitals, π-type MOs have quantized angular momentum 
about the bond: ml = ±1. Note that in this example the inversion symmetry leads to the labels g and u 
to denote MOs which are even or odd with respect to inversion. Bonding sigma orbitals are even with 
respect to inversion, while bonding pi orbitals are odd. The p0 and pz AOs are equivalent, so the σ MOs 
formed from combining pz AOs have ml = 0. The πx and πy MOs are linear combinations of the π+1 and 
π−1 MOs. The latter have exp(imlϕ) = exp(±iϕ) as part of the wavefunction. The energy of an MO does 
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Figure 11.3 Molecular orbitals formed from overlapping atomic orbitals.
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not depend on the sense of rotation of electrons, so it is to be expected that orbitals that differ only in 
the sign of ml are degenerate.

Arranging the MOs on an energy level diagram provides the basis for using the Aufbau principle to build 
up electronic configurations of homonuclear diatomics. The MO energy level order depends on the molecule, 
just as the order of atomic orbital energies depends on atomic number. The diagram shown in Figure 11.4a 
works for homonuclear diatomics H2 through C2, while that of Figure 11.4b can be used for homonuclear 
diatomics heavier than C2. Let us use Figure 11.4a to generate the ground configuration of C2. Loading twelve 
electrons into these MOs in accordance with the Pauli principle results in the electronic configuration shown 
in the figure. One can write this concisely as

 ( ) ( ) ( ) ( ) ( )σ σ σ σ πg u g u us s s s p1 1 2 2 22 2 2 2 4∗ ∗
 

It is important to remember that a configuration does not necessarily represent a state, since there are as many 
states associated with a configuration as there are ways to achieve it, as in the case of atomic configurations. In the 
case at hand, however, there is only one way to generate this closed-shell configuration, so there is just a single state, 
the ground electronic state, arising from this configuration. It can be represented by a single Slater determinant.

The bond order b associated with a configuration is calculated from the number n of electrons in bonding 
orbitals and the number n* in antibonding orbitals: b = (n − n*)/2. In the case of ground state C2, the bond 
order is b = 2, that is, a double bond. The MO result is in agreement with the Lewis dot structure, :C=C:, 
where only the eight valence electrons are included in this picture. This dot structure would be troubling to 
a beginning chemistry student, having been taught that atoms “like” being surrounded by complete octets!

In the case of a heteronuclear diatomic, the procedure for forming MOs is similar to that for a homonuclear 
diatomic, but the starting AO energies are not equal. Figure 11.5 illustrates the case of CO, where the greater elec-
tronegativity of oxygen is associated with the lower energy of the oxygen AOs on the right-hand side of the diagram. 
The ground state configuration of CO, another closed-shell molecule, represents a nondegenerate state with a bond 
order of three, in accordance with the triply-bonded Lewis dot structure, :C≡O:, drawn to satisfy the octet rule.

The blue color of a flame results from the emission of electronically excited C2 molecules. To consider some 
of the low-lying excited states of C2, we can start with the diagram of Figure 11.4 and promote electrons from 
the highest occupied MO (the HOMO) to the lowest unoccupied MO (the LUMO) to get configurations such as

 ( ) ( ) ( ) ( ) ( ) ( )σ σ σ σ σg u g u u gs s s s p p1 1 2 2 2 22 2 2 2 3 1∗ ∗ π  

There are 4 × 2 = 8 ways to arrive at this configuration: four ways to achieve a vacancy in the πu2p level and 
two ways to put a single electron in the σg2p level. There are thus eight states arising from this configuration, 
but how many energy levels are there? To answer this question, we need to develop the idea of term symbols.
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Figure 11.4 Energy levels of molecular orbitals in homonuclear diatomics and ground electronic  configurations 
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11.2.2 terM syMbols for diatoMics

Like term symbols for atoms, those for molecules keep track of the good quantum numbers. In diatomics 
and linear molecules, ML, the quantum number for the projection of the orbital angular momentum onto 
the bond, is a good quantum number. The total spin S is also a good quantum number if spin−orbit coupling 
is weak, and it is found by summing up the spin quantum numbers of individual electrons as discussed in 
Chapter 7 for atoms. The uppercase letter ML designates the sum Σi l im ,  of the angular momentum quantum 
numbers of occupied MOs. In analogy to the use of the letters S, P, D, F,… for atomic term symbols, the Greek 
letters Σ, Π, Δ, Φ,… are used to designate |ML| = 0,1,2,3… for linear molecules. Note that these are the same 
as the labels for the symmetry species of the C∞v and D∞h character tables, and these states do indeed belong 
to the corresponding ir. reps. of these point groups. The symbol Λ is used to denote the value of |ML|, and 
the term symbol for a state is written 2S+1Λ. The superscript 2S + 1 indicates the spin degeneracy as usual. 
A closed-shell configuration always leads to the 1Σg

+ term symbol for homonuclear diatomics, and just plain 
1Σ+ for heteronuclear diatomics. The values of ml for the occupied orbitals cancel when the shell is full, leading 
to |ML| = 0 and thus a Σ state. The right-superscript (+) sign gives the symmetry with respect to a reflection 
plane containing the molecule. States having Π or Δ symmetry have the character zero for this reflection 
operation, meaning that one component of the degenerate pair is (−) and the other (+) with respect to reflec-
tion. The degeneracy of a term 2S+1Λ is 2S + 1 when Λ = 0 and 2(2S + 1) when Λ ≠ 0. Note that this degeneracy 
is the product of the orbital and spin degeneracies.

Consider the ground configuration of O2, shown in Figure 11.4b, which can be written as

 ( ) ( ) ( ) ( ) ( ) ( ) ( )σ σ σ σ σ πg u g u g u gs s s s p p p1 1 2 2 2 2 22 2 2 2 2 4 2∗ ∗ ∗π  

As in figuring atomic term symbols, we need only consider the open shells. There are six π2 configurations, 
shown in Figure 11.6. We expect the ground state to be a triplet, and we shall see that this state comprises 
three of the diagrams of Figure 11.6. In this section, we choose π orbitals for which ml is a good quantum 
number in order to compute the net ML. All states must be gerade because the partially filled orbitals are 
gerade. The direct product of the open-shell orbital symmetries is π πg g g g g× = + ++ −Σ Σ ∆ , so these are the 
state symmetries. The spin multiplicity of each term must be decided in accordance with the requirement 
that the total wavefunction be antisymmetric with respect to exchange of two electrons. Since states having 

2pA

∗(2p)

2pB

2sB

1sB

2sA

1sA

C OCO

∗(2s)

(2s)

∗(1s)

(1s)

∗(2p)

(2p)

(2p)

σ

π

π

σ

σ

σ

σ

σ

Figure 11.5 Ground electronic configuration of CO.



11.2 Diatomic molecules: Electronic states and selection rules 255

S = + =1 2 1 2 1 must place two electrons in different orbitals, having opposite signs for ml, the net value of Λ is 
zero for the triplet state. Thus there is a 3Σg term, which is triply degenerate by virtue of the spin multiplicity, 
but it is not immediately obvious whether this state has Σg

+ or Σg
− symmetry. To pursue this question, consider 

the spatial part of the wavefunction for this state, which has to be written as the proper symmetry-adapted 
linear combination of two terms: π+1(1)π−1(2) and π+1(2)π−1(1), where 1 and 2 are the coordinates of the two 
electrons in the π g

∗ orbitals, which are distinguished here by giving the quantum number ml as a subscript. 
The superscript (*) is omitted for typesetting convenience, as it does not affect our symmetry conclusions. The 
overall wavefunction must be antisymmetric with respect to exchange of the two electrons, so the symmetric 
(+) and antisymmetric (−) linear combinations π+1(1)π−1(2) ± π+1(2)π−1(1) must be combined with antisym-
metric and symmetric spin functions, respectively. The triplet state necessarily has three symmetric spin 
functions associated with it, thus the wavefunction for the triplet state is
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The spatial function π+1(1)π−1(2) − π+1(2)π−1(1) changes sign on reflection σv, as you will show in one of the 
homework problems, so the triplet state is 3Σg

− . The symmetric spatial function π+1(1)π−1(2) + π +1(2)π−1(1) must 
be combined with the antisymmetric spin function: [ ( ) ( ) ( ) ( )]/α β α β1 2 2 1 2− . Since the state is symmetric with 
respect to σv, this gives rise to the 1Σg

+ term. There are two configurations having net ML = ±2 and net spin 
S = 0. The spatial functions for these two states are of the form π+1(1)π+1(2) and π−1(1)π−1(2). Each is symmetric 
with respect to exchange, and must be combined with the antisymmetric spin function. There is therefore a 1Δg 
state, which is doubly degenerate by virtue of the orbital degeneracy. The lowest energy state is the 3Σg

−  state, 
which is the most stable due to its spin multiplicity (Hund’s rule). The 1Δg is 0.98 eV higher than the ground 
state, and the 1Σg

+ is 1.6 eV above ground. The bottom line is that the ground configuration of O2 comprises 
three energy levels and six states, and the ground level, 3Σg

− , is triply degenerate.
By convention, the ground electronic state of a molecule is called �X , and excited states of the same spin 

multiplicity as the ground state are labeled � � �A,B,C,… in order of increasing energy. The tilde is not always used, 
but it is helpful to distinguish these symbols from symmetry labels A and B used for polyatomic molecules. 
Excited states of different spin multiplicity than the ground state are labeled similarly, but with lowercase letters: 
� � �a,b,c,…, etc. For example, one refers to the �X g( )3Σ− , �a( )1∆g   and �b g( )1Σ+  states of O2.

Returning to diatomic carbon, promotion of an electron from the πu2p to the σg2p MO generates the 
excited configuration:

 ( ) ( ) ( ) ( ) ( ) ( )σ σ σ σ σg u g u u gs s s s p p1 1 2 2 2 22 2 2 2 3 1∗ ∗ π  

The eight states that derive from this configuration are all ungerade, since the direct product of the inver-
sion symmetries of the partially occupied orbitals is u × g = u. We expect to obtain both singlets and triplets, 
because the spin of the “hole” in the πu2p level may be either parallel or antiparallel to the spin of the electron 

π–1* * * * * *π+1 π–1π+1 π–1π+1

π–1* * * * * *π+1 π–1π+1 π–1π+1

Figure 11.6 Six electronic configurations associated with π 2.
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in σg2p. Adding together ml = ±1 and ml = 0 can only lead to Π terms, so we have 1Πu and 3Πu, which have 
degeneracies of two and six, respectively, accounting for all eight states.

Electronic states of diatomics can also be characterized by the energies of the atomic states in the dissocia-
tion limit. The ground state of C2 is expected to dissociate to two ground state carbon atoms, each having the 
term symbol 3P. The 1Πu and 3Πu excited electronic states also dissociate to ground state carbon atoms. Still 
higher energy molecular electronic states yield to one or more excited state carbon atoms on dissociation. 
This is illustrated nicely by the numerous potential energy curves shown in Figure 9.1.

Spin−orbit coupling can lift the degeneracy of a term 2S+1Λ. The letter Ω is used to designate the quantum 
number for the z component of total electronic (orbital plus spin) angular momentum in diatomics, in the 
Russell–Saunders or weak-coupling scheme. This quantum number takes on the values Ω = Λ + S, Λ + S − 1, …, 
Λ − S (see Section 8.3). The weak coupling case is illustrated in Figure 8.6a for Hund’s case (a) coupling. The 
revised term symbol is then 2S+1ΛΩ. For example, a 3Δ state is split by spin−orbit coupling into three doubly 
degenerate levels: 3Δ3, 3Δ2 and 3Δ1.

In heavier diatomics, the spin–orbit interaction is quite strong and Hund’s case (a) does not apply. A good 
example is I2, where strong spin−orbit coupling gives rise to rather complex visible absorption spectra. Some 
of the low-lying potential energy curves for I2 are shown in Figure 11.7. The ground state is 1Σg

+, as expected for 
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this closed-shell molecule, and this state dissociates into two ground state 2P3/2 iodine atoms. Since the degen-
eracy of each 2P3/2 atomic state is 2J + 1 = 4, there are 4 × 4 = 16 molecular states that also dissociate to two 
ground state iodine atoms. There are fewer than 16 energy levels because many of them are degenerate. The 
valence excited states of iodine adhere approximately to Hund’s case (c), discussed in Chapter 8, and a dif-
ferent scheme than that used above for lighter diatomics is required. The lowest excited configuration of I2 is 
… ∗ ∗( ) ( ) ( ) ( )σ π π σg u g up p p p5 5 5 52 4 3 1. In the absence of spin–orbit coupling, one expects 1Πu and 3Πu states to arise 
from this configuration. Spin–orbit coupling splits the latter into four new levels, labeled, 3

0
Π + u

, 3
0

Π − u
, 3Π1u and 

3Π2u in order of decreasing energy, where the numerical subscript designates the quantum number Ω. These 
symbols, though convenient for quantum mechanical bookkeeping, are only approximate because the strong 
spin–orbit coupling means that Λ and S are not good quantum numbers. States having Ω ≥ 1 are doubly degen-
erate, while the 3Π0u level splits into two levels having (+) or (−) symmetry with respect to the σv reflection opera-
tion. The 3

0
Π + u

 state dissociates to 2P1/2 plus 2P3/2, while the other three 3Π states dissociate to two 2P3/2 (ground 
state) iodine atoms. The 1Πu state, relabeled 1Π1u to denote the value of Ω, is not split by spin–orbit coupling 
(since S = 0). It also dissociates to ground state iodine atoms. Thus the lowest excited configuration gives rise 
to seven states, out of the total of 16 expected, that dissociate to two ground state iodine atoms. Other excited 
configurations, such as … ∗ ∗( ) ( ) ( ) ( )σ π π σg u g up p p p5 5 5 52 3 4 1, also correlate with ground state iodine atoms.

Note that not all the excited state potential energy curves shown in Figure 11.7 and Figure 9.1 
are bound, i.e.; have a minimum energy. For example, the states arising from the configuration . . . 
( ) ( ) ( ) ( )σ π π σg u g up p p p5 5 5 52 3 4 1∗ ∗  of I2 are dissociative, as might be expected since the bond order is zero.

11.2.3 selection rules

With the help of term symbols to designate state symmetries, we can now consider selection rules for elec-
tronic transitions. As usual, the transition from state i to state f is permitted if the integral Ψ Ψi fÔ  is 
nonzero, where Ô is the appropriate operator: the dipole moment operator µ̂  for E1 transitions, the quadru-
pole moment operator Θ̂ for E2 transitions, and the angular momentum operator L̂ for M1 transitions. The 
wavefunctions Ψi and Ψf are state wavefunctions, which can be expressed as Slater determinants or linear 
combinations thereof. The symmetry of the state function is found from the direct product of the occupied 
orbitals. The transition i ↔ f will be allowed if the triple direct product Γ Γ Γi O f× ×ˆ  equals or contains the 
totally symmetric representation, which is Σg

+ or Σ+ for homo- or heteronuclear diatomics, respectively.

11.2.3.1 ELECTRIC DIPOLE TRANSITIONS (E1)

The electric dipole moment operator transforms according to the same ir. reps. as the Cartesian coordinates 
x, y, z. In heteronuclear diatomics, the z coordinate belongs to the totally symmetric representation, as it is 
invariant to all symmetry operations of the group. The x and y directions are equivalent; they transform as a 
pair according to the doubly degenerate Π representation. In homonuclear diatomics, z transforms according 
to Σu

+, while x and y belong to the Πu ir. rep. Even without consulting the character table, clearly the Cartesian 
coordinates are odd under inversion symmetry, in D∞h. So in the case of homonuclear diatomics, we arrive 
at the selection rule known as the LaPorte rule: g ↔ u is dipole allowed but transitions between states having 
the same inversion symmetry are forbidden. This selection rule also holds for polyatomics having centers of 
symmetry, for example benzene. In the case of Σ states, the symmetry with respect to one of the σv reflection 
planes may be either (+) or (−), and the dipole moment operator for a z polarized (parallel polarized) transi-
tion belongs to the Σ+ or Σu

+  representation. Therefore, the transitions Σ+ ↔ Σ+ and Σ− ↔ Σ− are allowed, 
but transitions between (+)-states and (−)-states are forbidden. There is also a selection rule restricting the 
change in the quantum number ML. The ϕ-dependence of the state wavefunction is exp(−iMLϕ), where ϕ is 
the angle of rotation about the bond. In the case of parallel transitions, the dipole operator has no ϕ depen-
dence. Recall the orthogonality condition:
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This condition means that transitions having ΔΛ = 0 are permitted, e.g., Σ ↔ Σ, Π ↔ Π, etc. The com-
ponents of the dipole moment along the x and y directions (perpendicularly polarized transitions) must 
also be considered. These transform according to Π (or Πu) representations. The x and y components 
of the dipole operator contain the function exp(±iϕ), which is then included in the integral shown in 
Equation 11.2. The result is that transitions having ΔΛ = ±1 are also permitted, such as Σ ↔ Π, Π ↔ Δ, 
etc. The net selection rule is thus ΔΛ = 0, ±1. For light molecules, in which spin–orbit coupling is weak, 
we expect the selection rule for the spin quantum number to be ΔS = 0, however in heavier molecules 
this will be violated due to mixing of the zero-order states. The selection rule on the quantum number Ω 
is ΔΩ = 0, ±1. The spin selection rule is independent of whether the transition is E1, E2, or M1 since none 
of the transition operators depends on spin.

11.2.3.2 ELECTRIC QUADRUPOLE TRANSITIONS (E2)

The electric quadrupole moment operator has components with the same symmetry as products and 
squares of the coordinates, e.g., z2, x2 − y2, yz, etc. These functions belong to g representations in the D∞h 
character table, so the transitions g ↔ g and u ↔ u are allowed under E2 selection rules. The representa-
tions of these functions are Σ, Π, Δ, and they thus have the ϕ-dependence of MOs of the same symmetry. 
The selection rule for changes in the orbital angular momentum quantum number is therefore ΔΛ = 0, 
±1, ±2. Since the functions x2 + y2 and z2 belong to Σ+, the transitions Σ+ ↔ Σ+ and Σ− ↔ Σ− are permitted 
by E2 selection rules.

11.2.3.3 MAGNETIC DIPOLE TRANSITIONS (M1)

The operator for M1 transitions is that for orbital angular momentum, 
�
L. The components of this operator 

transform according to the same ir. reps. as the rotations Rx, Ry and Rz listed on the right-hand side of the 
character tables. In the D∞h point group, these functions belong to gerade representations, so we immedi-
ately obtain the selection rule g ↔ g and u ↔ u for M1 transitions of molecules with inversion symmetry. 
In the case of transitions allowed by the z component of angular momentum, the relevant function is the 
rotation Rz, which belongs to the Σ− representation. In this case the transition Σ+ ↔ Σ− is permitted. The 
functions Rx and Ry transform as a degenerate pair according to the Π or Πg ir. rep.; therefore, transitions 
having ΔΛ = ±1 are permitted, along with the transitions having ΔΛ = 0, which are permitted by the z 
component of 

�
L.

11.2.3.4 EXAMPLES OF SELECTION RULES AT WORK: O2 AND I2
As was shown previously, the ground configuration of O2 gives rise to three terms: 3Σg

− , 1Σg
+ , and 1Δg. The 

spin selection rule forbids transitions between the triplet ground state and either of the excited singlets. 
In addition, these states derive from the same electronic configuration, so transitions among them are 
forbidden or weak. The 1Δg state is in fact metastable, with a lifetime ranging from microseconds to tenths 
of a second, depending on the environment. The decay of the singlet excited states takes place mainly via 
nonradiative transitions. These excited states of O2, once formed, stick around for long enough to act as 
important photochemical intermediates. They can be formed by energy transfer from excited triplet states 
of other molecules to ground state O2.

In the electronic spectrum of I2, large spin–orbit coupling means that the ΔS = 0 selection rule is easily vio-
lated. The purple color of iodine is the result of visible absorption due to several overlapping transitions, two of 
which involve transitions from the singlet ground to triplet excited states. The strongest absorption in I2 is due 
to the transition 1 3

0
Σ Πg u

+ → + , at about 630 nm. It is made possible by Hund’s case (c) coupling, which mixes 
some triplet character into the singlet states and vice versa. Weaker absorption in the visible is due to transi-
tions from the ground state to the 3Π1u and 1Π1u states. Note the selection rule ΔΩ = 0, ±1 is obeyed in all three 
visible transitions.
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11.3  VIBRATIONAL STRUCTURE IN ELECTRONIC SPECTRA 
OF DIATOMICS

11.3.1 absorption spectra

Unlike the line spectra of atoms, electronic spectra of molecules can be bands, consisting of a series of vibra-
tional (and rotational) transitions within the electronic transition. In electronic absorption spectra, a series of 
vibrational transitions from one initial vibrational state (in the lower electronic state) to a number of different 
final vibrational states (within the final electronic state) is called a Franck–Condon (FC) progression, and the 
intensity distribution within this progression is determined by the difference in equilibrium bond length of 
the molecule in the two electronic states. Figure 11.8 illustrates a common situation: the bond length in the 
excited electronic state is longer than in the ground. This is to be expected in the case of a transition for which 
an electron is promoted from a bonding to an antibonding orbital. By convention, double-primed quantities 
are used to designate properties of the ground state, and single-primed symbols are used for excited state 
quantities. In Figure 11.8, the case ′′< ′R Re e  is shown, but it is also possible to have ′′ ′>R Re e  and ′′≈ ′R Re e . In the 
spirit of the Born–Oppenheimer approximation, the most probable transition in the absorption spectrum is 
the one indicated by the vertical line in Figure 11.8. The aptly named “vertical transition” would be the only 
one observed if, during the electronic transition, the nuclei were frozen at the distance ′′Re . In the semiclas-
sical Franck–Condon picture, the most probable transition is from the bottom of the lower well to a classical 
turning point at R Re= ′′ on the upper well, in keeping with the idea that the sluggish nuclei remain fixed dur-
ing the electronic transition. The quantum mechanical version of this approach recognizes that the molecule 
begins in the zero-point level of the lower electronic state and makes a transition to a state having the same 
nuclear kinetic energy and a probability distribution similar to that of the initial ground vibrational state. 
This translates into the vertical transition being that for which the overlap of the initial and final vibrational 
states is maximized, as shown in Figure 11.8. In contrast, if the ground and excited state potential wells are 
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Figure 11.8 Displaced potential energy curves leading to a Franck–Condon progression.
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identical except for vertical displacement in energy, then states having different vibrational quantum num-
bers have no overlap, and only transitions for which Δv = 0 are allowed.

Let us call the final vibrational quantum number for the vertical transition vvert, e.g., v′ = 4 in Figure 11.8. 
The larger the shift in bond length between the ground and excited state, the higher the value of vvert, and the 
smaller the overlap of the v″ = 0 and v′ = 0 states. As v′ increases from zero, the amplitude of the vibrational 
wavefunction shifts toward the turning points, leading to more favorable overlap with the v″ = 0 state. In 
general, the greater the change in bond length upon excitation, the greater the number of vibrational states 
contributing to the progression. The width of this progression is a function of the slope of the upper potential 
well in the vicinity of ′′Re . As illustrated in Figure 11.8, the width of the FC progression can be estimated from 
the range of transition energies for internuclear distances within the turning points of the initial vibrational 
state. This is called the “reflection principle.” The steeper the slope of the upper well, the wider the range of 
final energy levels in absorption.

In the Born–Oppenheimer approximation, the ground and excited state wavefunctions are written as 
products of electronic and vibrational wavefunctions.

 Ψg g
gr R R′′ ′′=v vψ χ( ; ) ( )  (11.3)

 Ψe e
er R R′ ′=v vψ χ( ; ) ( )  (11.4)

The electronic wavefunctions ψg(r;R) and ψe(r;R) depend parametrically on internuclear distance R, and the 
vibrational wavefunctions χ ′′v

g R( ) and χ ′v
e R( ) depend on the potential energy function for the ground and 

excited states. The lowercase r symbolizes the coordinates of all the electrons. The transition moment for an 
E1-allowed transition is evaluated as follows:
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(11.5)

We must proceed carefully, because the dipole moment operator depends on electronic as well as nuclear 
coordinates. As discussed in Chapter 3, this operator is
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(11.6)

Consider the second term, µ̂nuc  , which depends on positions of the stationary nuclei. When this operator is 
sandwiched between the ground and excited state wavefunctions in Equation 11.5, the electronic wavefunc-
tions can be separated out, and on integrating over electronic coordinates, we get dr r R r Rg e∫ =

�
ψ ψ( ) ( ); ; 0  

due to orthogonality of the ground and excited electronic states. Thus we need only worry about the elec-
tronic part of the transition moment operator: µ̂el iie r= − ∑

�
, because the nuclear part cannot connect the two 

Born–Oppenheimer states. We imagine integrating first over the electronic coordinates and then over the 
internuclear distance.
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(11.7)

The electronic transition moment, μge(R), depends on R due to the parametric dependence of the electronic 
wavefunctions on internuclear distance. It is common to make the Condon approximation, in which the elec-
tronic transition moment for absorption is evaluated at the equilibrium geometry of the ground electronic 
state: μ μge ge eR0 ≡ ′′( ). This amounts to expanding μge(R) in a Taylor series about R Re= ′′  and dropping all but 



11.3 Vibrational structure in electronic spectra of diatomics 261

the first term. Alternatively,  µge
0  can be replaced by the mean value  µge, considered to be an average over the 

range of internuclear distances sampled by the ground vibrational state wavefunction. In either case, the elec-
tronic transition moment is no longer dependent on R and can be factored out of the integral. The transition 
moment for a vibronic transition is then written as
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g e
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(11.8)

where the overlap of the vibrational wavefunctions has been defined as 〈v″|v′〉. Now, if the two vibrational 
states χ ′v

e R( ) and χ ′′v
g R( ) are eigenfunctions of the same Hamiltonian, they are orthonormal, and we get 

′′ ′ = ′ ′′v v v vδ . This is exactly what happens when there is no difference between the ground and excited state 
potential surfaces, except that one is higher in energy than the other. If the vibrational energy levels are 
widely spaced compared to thermal energy, only the ground vibrational state is populated and only the so-
called 0 − 0 transition is expected. So in the absence of a change in bond length or vibrational frequency, no 
FC progression is observed.

Consider the two potential surfaces shown in Figure 11.8, having characteristic vibrational frequen-
cies ′′νe  and ′νe . The absorption spectrum consists of a series of lines separated by the frequency difference 
of adjacent vibrational states in the excited electronic state. If the upper well is not harmonic, then this 
spacing is not constant but decreases as the vibrational quantum number of the upper state increases. 
(The emission spectrum, on the other hand, to be discussed in Section 11.3.2, exhibits a progression in 
which the vibrational spacing is that of the ground electronic state.) Each peak may be labeled by the initial 
and final quantum numbers as shown in Figure 11.8. The relative intensities of vibronic transitions 
v″ ↔ v′ are proportional to the Franck–Condon factor, which is the square of the overlap of the initial and 
final vibrational wavefunctions.
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The value of F ′′ ′v ,v  ranges from zero to unity, and the following sum rule is readily obtained:
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(11.10)

Thus the total intensity of a transition originating in a particular initial vibrational state v″ and integrated 
over all final vibrational states is constant. The FC progression merely distributes the intensity among various 
final vibrational states.

In the special case where the upper and lower potential functions are harmonic and have the same fre-
quency, ′′= ′ν νe e , a simple closed form expression for the Franck–Condon factor exists:
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where the dimensionless displacement Δ has been introduced:

 
∆ ≡ 



 ′ − ′′( )μω

h
R Re e

1 2/

 
(11.12)

Notice that the intensity of a 0 − v transition depends on the square of the displacement, so one cannot tell 
from the FC progression alone whether the bond is longer in the ground or excited state. Equation 11.11 gives 
F0v = δ0v when Δ is zero.
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For initial vibrational quantum numbers other than zero, the FC factors can be generated starting from 
Equation 11.11 and employing recursion formulas [3]. There are also formulas in the literature that enable 
F ′′ ′v ,v  to be calculated in the case of displaced harmonic potentials with different frequencies, or for anhar-
monic potentials [4]. While it is possible to obtain an FC progression from a mere change in vibrational fre-
quency, it turns out that in the absence of a change in Re, a change in frequency is rather ineffective in causing 
a vibrational progression. For similar equilibrium positions ′ ≈ ′′R Re e , it has been shown [5] that the ratio of the 
intensity of the 0 − 0 transition to the sum of the intensities of all other 0 − v′ transitions is
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Suppose that ′νe  is as small as one-half the value of ′′νe ; the ratio given by Equation 11.13 is about 0.94, meaning 
that even for a significant frequency shift, in the absence of a change in bond length, most of the intensity is 
concentrated in the 0 − 0 band.

It is common, but not necessarily correct, to neglect the change in vibrational frequency between the 
ground and excited state when calculating FC factors. This assumption runs the risk of being inconsis-
tent, since weaker (longer) bonds generally have lower vibrational frequencies as well. For example, the 
vibrational frequency of I2 is 214 cm−1 in the ground electronic state and about 120 cm−1 in the lowest 
excited electronic state. The I2 molecule also provides an example of sequences, in which a series of FC 
progressions is observed. At room temperature, the populations of the first few vibrational levels of I2 
are significant, and a Franck–Condon progression in absorption is built on each thermally populated 
initial state.

11.3.2 eMission spectra

Once a molecule is prepared in an excited electronic state, whether by a radiative transition or some other 
means, the possibility of a radiative transition to the ground electronic state is presented. As discussed in 
previous chapters, this emission may be either stimulated or spontaneous, and conventional emission spec-
troscopy exploits the latter, as it is more easily achieved than stimulated emission in the visible and ultraviolet 
regions of the spectrum. In the case where there is no change in spin quantum number, ΔS = 0, spontaneous 
emission is referred to as fluorescence. For many molecules, having closed-shell ground electronic states, 
fluorescence is a transition from an excited singlet state to the ground singlet state. Phosphorescence, on the 
other hand, is emission in which there is a change in spin quantum number. The relationship between these 
two types of emission is discussed in more detail in Section 11.7. Our interest here is in describing vibrational 
structure of emission spectra in general.

Consider the Franck–Condon state achieved immediately after a vertical transition. The greater the 
displacement of the upper potential surface, the higher is the energy of the FC state relative to the ground 
vibrational level of the excited electronic state. The energy difference between the FC state and the ground 
vibrational state v′ = 0 is called the reorganization energy. The reorganization energy is the energy lost by the 
molecule as it relaxes from the vertically excited to the equilibrium configuration. If emission occurs before 
this vibrational relaxation takes place, the emission spectrum is identical to the absorption spectrum. This 
is the case in the effect known as resonance fluorescence, and it may be observed for small molecules (such 
as diatomics) in the gas phase. However, consider the fact that typical radiative lifetimes in electronic spec-
troscopy are on the nanosecond timescale. Except in low pressure gases, this is a time within which many 
energy-transferring collisions can take place. Relaxed fluorescence is observed when emission takes place 
from the equilibrium geometry of the excited electronic state. The transition from the FC to the ground 
vibrational state, within the excited electronic state, involves loss of energy to the surroundings or to other 
internal degrees of freedom (such as other normal modes in the case of polyatomic molecules). This nonradia-
tive relaxation step takes place readily in large molecules and in condensed phases, where relaxed emission is 
more common than emission from higher v′ states.
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Figure 11.9 illustrates the vibronic transitions associated with relaxed emission. As in the case of absorp-
tion spectra, the most intense peak in the vibrational progression in emission is that due to the downward 
vertical transition, from v′ = 0 to v″ = vvert, where vvert = 3 in Figure 11.9. The width of the emission spec-
trum increases with displacement of the ground and excited state potentials or, alternatively, the slope of the 
ground state potential in the vicinity of R Re= ′. The emission spectrum is at longer wavelength than absorp-
tion. The difference in the absorption and fluorescence frequency maxima (the vertical transitions) is called 
the Stokes shift. It too depends on the displacement. Note that the absorption and emission intensity overlap 
at the frequency of the 0 − 0 transition, but for large displacements this transition may have an unfavorable 
FC factor. In order to extract the 0 − 0 energy from the crossing point of the absorption and emission spectra, 
the intensity of each must be scaled by correcting for the different frequency dependence of absorption (pro-
portional to ν) and emission (proportional to ν3).

11.3.3 dissociation and predissociation

Even in high-resolution spectra of gas-phase molecules, discrete vibrational structure is not always observed. 
For example, a transition may take the molecule to a terminal state having more energy than required for 
dissociation, as shown in Figure 11.10, in which case a continuous absorption spectrum is expected. On 
the other hand, if one of the Franck–Condon allowed states has energy similar to that where the bound (e1) 
and dissociative (e2) excited state potentials cross, as in Figure 11.11, the molecule may make a transition 
from one potential surface to another. This is called predissociation, and it is an example of a nonadia-
batic transition, to borrow vocabulary from the next section. In this case, vibrational structure may still be 
observed, but transitions to states in the vicinity of the curve crossing are broadened due to the shortened 
lifetime of the directly excited state. This crossing from one potential curve to another is the result of mixing 
of Born–Oppenheimer states, discussed in the next section.

In the case of direct dissociation, the dissociation energy of the excited state ′D0  may be obtained from the 
energy of the onset of the continuum Econt in absorption and the 0 − 0 energy E00.

 E E Dcont = + ′00 0  (11.14)
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Figure 11.9 Franck–Condon progression in the relaxed emission spectrum.
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Figure 11.11 Potential energy surfaces leading to predissociation.
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Conversely, the dissociation energy of the ground electronic state ′′D0  can be obtained from the energy of the 
onset of the continuum in emission. In addition, one may know the energy difference of the atomic states in 
the dissociation limit, ′ − ′′E Eatoms atoms , in which case the following relationship can be used to extract ′′D0 .

 E D D E Eatoms atoms00 0 0+ ′ = ′′+ ′ − ′′  (11.15)

Even if continuous absorption is not observed, one may still derive dissociation energies of excited states from 
the pattern of vibrational spacings in absorption. As was discussed in Chapter 9, vibrational levels converge 
as the dissociation limit is approached, and extrapolation procedures can be employed to derive dissociation 
energies from vibrational progressions.

11.4  BORN–OPPENHEIMER BREAKDOWN IN DIATOMIC 
MOLECULES

The very idea of drawing potential energy curves (or surfaces) for electronic states is founded on the 
Born–Oppenheimer (BO) approximation. This approximation is based on the physically appealing premise 
that electrons are swifter than nuclei and thus the nuclei experience the potential energy of the averaged 
electronic distribution. Still, the BO approximation can break down whenever electronic energy differences 
are not large compared to vibrational spacings. When the BO approximation fails, it is no longer possible to 
separate electronic and nuclear energies, and the timescales of electronic and nuclear motion are not sepa-
rable. Unexpected spectral features are often observed, such as a departure from the regular FC progression 
or appearance of symmetry-forbidden transitions.

Figure 11.12 illustrates a typical situation leading to BO breakdown, the crossing of two potential energy 
curves of the same symmetry. The perturbation operator Ĥ ′ can connect two states if the matrix element 
Ψ Ψ1 2 12

ˆ ′ ≡H H  is nonzero. The Hamiltonian, including any perturbation terms, is totally symmetric, and 
thus the nonvanishing of H12 requires that Ψ1 and Ψ2 be of the same symmetry. This leads to the noncrossing 
rule, which states that the potential energy curves for states of the same symmetry cannot cross. Rather, in 
the vicinity of the crossing, the two BO states mix with one another and split apart, as shown in Figure 11.12, 
resulting in an “avoided crossing.”

What is the nature of the perturbation? The answer to this question depends on the basis states that one 
uses to describe the perturbed system. In principle, the exact wavefunctions could be expanded in terms of 
the BO wavefunctions.
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(11.16)

However, this is an infinite series. In favorable cases, such as that shown in Figure 11.12, just two electronic 
states, call them i and j, interact strongly. One can then solve the perturbation problem in the basis of these 
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Figure 11.12 Avoided crossing resulting from Born–Oppenheimer breakdown.
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two states. The BO approximation neglects the operator for the nuclear kinetic energy T̂N. The so-called adia-
batic curves, which do not cross, have energies given by

 E R V R Tad i i N i( ) ( )= + ψ ψ�  (11.17)

The second term in Equation 11.17 has been averaged over the electronic coordinates but still depends on R. 
The adiabatic energy Ead neglects the off-diagonal matrix element ψ ψi N j ijT Hˆ = , which further perturbs 
and mixes the adiabatic states.

It is sometimes convenient to describe the unperturbed states in terms of what is called the diabatic rep-
resentation. These are not exact eigenfunctions, and so their potential functions are allowed to cross. They 
are chosen to have nonzero matrix elements of the electronic part of the Hamiltonian, Ĥel , which contains 
the operators for electronic kinetic energy as well as those for the electron-electron, electron-nuclear, and 
nuclear-nuclear potential energies. In this case the perturbation matrix element is ψ ψ1 2 12

diab
el

diabH Vˆ ≡ , 
which is a function of R. The splitting of the two diabatic curves to give the adiabatic energies is 2V12. See [6] 
and references therein for more details on corrections to the Born–Oppenheimer picture.

The ground and first excited-state potential curves for NaCl provide an example of the noncrossing rule. 
At internuclear distances near the ground state bond distance ′′Re , the ground state is ionic (Na+Cl−) and the 
excited state is covalent (NaCl). In the dissociation limit, however, clearly the ionic state Na+ + Cl− is higher 
in energy than the separated atoms, by about 30,000 cm−1, an amount equal to the ionization potential of 
sodium (5.1 eV) less the electron affinity of chlorine (1.5 eV). The potential curves for the covalent and ionic 
states, in the Born–Oppenheimer approximation, cross near 10 Å, and the true state for each of the adia-
batic surfaces is a mixture of the covalent and ionic states. There is a characteristic time associated with the 
adjustment of the wavefunctions to the non-BO perturbation, on the order of h/ΔE, where ΔE = 2V12 is the 
splitting of the adiabatic surfaces. If the ground state Na+Cl− molecule could be dissociated very slowly com-
pared to h/ΔE, it would travel along the lower adiabatic state and end up going over to the neutral atoms. This 
is a manifestation of the Ehrenfest adiabatic principle, which states that a system will remain in a definite 
state if a perturbation is applied infinitely slowly. Such a process, taking place on a single potential surface, is 
called adiabatic, as opposed to a nonadiabatic process, in which a jump from one surface to another occurs. 
On the other hand, if dissociation is rapid compared to the time it takes for the wavefunctions to adjust, 
then a jump from the lower to the upper adiabatic surface may happen, and dissociation yields ions rather 
than neutral atoms.

Nonadiabatic effects can be important in spectroscopy, charge transfer processes, and photochemistry. 
The previously discussed case of predissociation is an example of a nonadiabatic transition, as are internal 
conversion and intersystem crossing, defined in Section 11.7.

11.5  POLYATOMIC MOLECULES: ELECTRONIC STATES 
AND SELECTION RULES

The molecular orbitals of a molecule correspond to ir. reps. of the molecular point group, and the electronic 
states associated with a given electronic configuration are found from the direct product of the symmetries 
of the occupied orbitals, taking the Pauli exclusion principle into account. The electronic state is designated 
by the so-called Mulliken symbol, an uppercase letter designating the state symmetry with a left-hand super-
script having the value 2S + 1. The total spin quantum number S is as good a quantum number in polyatomics 
as it is in diatomics and atoms; that is, it is strictly good in the absence of spin–orbit coupling. Most stable 
molecules have closed-shell (singlet) ground electronic states, belonging to the totally symmetric representa-
tion of the group. In the case of open shells, the state symmetry can be derived from the direct product of the 
singly occupied molecular orbital symmetries. This will be illustrated below by means of several examples. 
We continue to use the convention that lowercase letters represent the symmetry of molecular orbitals and 
uppercase letters that of electronic states.
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11.5.1 Molecular orbitals and electronic states of H2o
The water molecule provides a tractable example of symmetry considerations in molecular electronic struc-
ture and a prototype for other bent triatomic systems. A molecular orbital of water may be labeled a1, a2, b1, 
or b2 to designate the representation to which it belongs. (See the C2v character table of Appendix C.) The 
minimal basis set of AOs required for a qualitative description of the bonding is the set 1s, 2s, 2px, 2py and 
2pz on oxygen and the 1s orbitals on the two hydrogens. This is a basis set of seven AOs, so seven MOs will be 
obtained. The oxygen atom 1s, 2s, and 2pz AOs transform according to the totally symmetric representation 
a1, while the 2px and 2py orbitals belong to b1 and b2, respectively. (The symmetry axis is the z direction and the 
molecule lies in the yz plane.) To find these symmetries, consider the effect of each operation of the group on a 
given AO; i.e., construct a table of plus and minus signs according to whether the operation preserves the AO 
or changes its sign. The pattern should match that of one ir. rep. of the C2v group. Now, it is quite general that 
only atomic orbitals of the same symmetry may interact, so it is convenient to start with symmetry-adapted 
linear combinations (SALCs) of the hydrogen atom 1s functions. In general, one can use the projection opera-
tor method described in the previous chapter to form SALCs from a given set of basis AOs. In this example, 
we can derive the desired SALCs by inspection, by taking in-phase and out-of-phase combinations of the 
hydrogen AOs. The symmetric and antisymmetric combinations ψs = 1sA + 1sB and ψa = 1sA − 1sB belong to 
the a1 and b2 representations, respectively, where A and B label the hydrogen atoms. The symmetric SALC, 
ψs, can combine with the three a1 AOs on oxygen, and the SALC of symmetry b2, ψa, can combine with the 
sole b2 orbital on oxygen. There should thus be four totally symmetric MOs and two of symmetry b2. To a 
good approximation, the 1s orbital on oxygen is little perturbed by the bonding, and we can consider it to be 
the lowest energy core MO, of a1 symmetry, (1a1). The b1 symmetry px orbital, which is perpendicular to the 
molecular plane, is the wrong symmetry to interact with either ψs or ψa; it is therefore a nonbonding orbital 
(1b1). Figure 11.13 shows the MOs that result from combining these AOs. The ground configuration of H2O is

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 3 1 4 21
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The unoccupied 4a1 and 2b2 orbitals are antibonding, as shown in Figure 11.13. We can get an approximate 
picture of the water molecule’s excited states by promoting electrons to these virtual orbitals. The ground 
state is a totally symmetric singlet state, because all orbitals are doubly occupied, designated by 1A1. Since 
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Figure 11.13 Molecular orbitals for H2O.
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the dipole operator transforms under A1, B1, and B2 representations for the z, x, and y components, respec-
tively, of the C2v point group, these are also the symmetries of the excited states that can be reached from 
the ground state by E1 selection rules. The state symmetry of a configuration such as (1a1)2(2a1)2(1b2)2

(3a1)2(1b1)1(4a1)1 is equal to the direct product of the singly occupied orbitals: b1 × a1 = B1. Since the two 
electrons may have either parallel or antiparallel spins, both 1B1 and 3B1 states arise from this configura-
tion. The transition from the ground 1A1 to the excited 1B1 state is allowed by E1 selection rules and is 
polarized in the x direction.

As for diatomics, the ground state configuration is labeled �X , and higher-lying electronic states of the 
same spin multiplicity are designated by the letters � � �A B C, , ,… , etc., in order of increasing energy. The lowest-
energy electronic transition observed in H2O is � �X A A B( ) ( )1

1
1

1→ , and it turns out that it is a special type of 
transition known as a Rydberg transition. Rydberg electronic states are hydrogen-like states resulting from 
promotion of an electron to an orbital in which its average distance from the center of the molecule is much 
larger than that of the other electrons. From the point of view of the distant electron, the molecule is little 
different from an ion with a +1 charge, since the net nuclear charge is screened by all the other electrons. The 
energies of Rydberg states follow the formula

 
E I

R

n
n = −

−( )δ 2
 

(11.18)

where I is the ionization energy of the orbital from which the Rydberg electron was promoted, R is the Rydberg 
constant, δ is a number which depends on the quantum number l for the Rydberg orbital (the Rydberg correc-
tion factor), and n is the principle quantum number. Many Rydberg states having n ≥ 3 have been observed for 
water. The first member of the ns series is the � �X A A B( ) ( )1

1
1

1→  transition observed from about 186 to 145 nm. 
The excited state configuration is …(1b1)1(3sa1)1; i.e., an electron from the nonbonding b1 orbital is promoted 
to a hydrogen-like 3s orbital. At higher energies, transitions to 4s, 5s, 6s, … Rydberg states are observed, as 
well as a series involving p-type Rydberg states.

The second lowest energy absorption of water, the � �X A B A( ) ( )1
1

1
1→  transition, has an upper state with 

the configuration …(3a1)1(1b1)2(3sa1)1. This band stretches from 140 to 125 nm and has vibrational structure 
with a spacing of about 800 cm−1, due to an excited state bending mode. The �B  state of water is linear, and the 
vibrational progression in the � �X A B A( ) ( )1

1
1

1→  transition results from this change in symmetry. In the next 
section, we discuss the origin of this sort of vibrational structure.

11.5.2  franck–condon progressions in electronic spectra 
of polyatoMics

The occurrence of Franck–Condon progressions in polyatomic molecules depends on the difference in the 
equilibrium geometries of the two electronic states involved in the transition. Consider a transition from the 
ground to the excited electronic state, with no change in molecular symmetry. The overall geometry change 
can be resolved into contributions along each normal coordinate Qi, for i = 1 to 3N − 6. The normal coordi-
nates can be divided into two groups: totally symmetric and nontotally symmetric. If there is no change in 
point group on excitation, only totally symmetric modes are displaced in the excited state. For example, a 
symmetric stretch can be displaced in the excited state by virtue of a change in the equilibrium bond lengths, 
as shown in Figure 11.14a. The potential function for a nontotally symmetric vibration, such as the bend of 
a linear molecule or an asymmetric stretch of equivalent bonds, is always a symmetric function of normal 
coordinate, as shown in Figure 11.14b. As an example, consider the asymmetric stretch of H2O, for which the 
ground state potential is of course a minimum when the two bond lengths are equal. The potential energy 
must be a symmetric function of the difference in the two O–H bond distances; i.e., V r r V r r( ) ( )1 2 2 1− = − . 
We expect the two bond distances are also equal at the equilibrium geometry of the excited electronic state. 
Barring a change in symmetry, there can be no change in the equilibrium position for a nontotally symmetric 
mode. The Franck–Condon active normal modes are thus those which mimic the difference in geometry of 
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the two electronic states. In the absence of a change in symmetry in the excited electronic state, these are 
necessarily totally symmetric vibrational modes.

When a nontotally symmetric vibration derives FC activity through a large frequency shift (however, 
see Equation 11.13 and the discussion that follows it), there are selection rules that restrict the value of 
Δv. For example, the state symmetries of a nondegenerate, nontotally symmetric mode alternate between 
totally symmetric (for even v) and the symmetry of the mode (for odd v). This results in the selection rule 
Δv = 0,±2,±4,±6,…, etc., because the FC factor F ′′ ′v ,v  vanishes unless the states v′ and v″ have the same symme-
try. In the case of a degenerate vibration, even overtones always contain the totally symmetric representation, 
so the transitions having Δv = 0,±2,±4,±6,… are again allowed. In certain point groups, such as D3h, C3v, and 
Td, odd overtones of degenerate vibrations also contain the totally symmetric representation, so the selection 
rules are more permissive: Δv = 0,±1,±2,±3,±4,…, except that the 0 − 1 and 1 − 0 transitions are not allowed.

For each FC-active normal mode, the one-dimensional FC factor F ′′ ′v ,v  can be calculated using formulas 
like Equation 11.11, but with a redefinition of the dimensionless displacement Δ.

 
∆i i iQ Q≡ 



 ′ − ′′( )ω
�

1 2

0 0
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(11.19)

In Equation 11.19, ′Q i0  ( )′′Q i0  is the equilibrium position of the normal coordinate for mode i in the excited 
(ground) electronic state.

It often happens that more than one normal mode is Franck–Condon active, and vibrational structure in an 
electronic spectrum can be complex. A progression is a series of lines corresponding to all possible changes in 
quantum number for a given initial state of one normal mode. A sequence, on the other hand, is a series of vibra-
tional transitions all having the same value of Δv for a certain mode. The observation of a sequence in absorption 
is contingent upon having significant Boltzmann population of states having v″ > 0. In addition, the frequency 
separation of sequences depends on the difference in the ground and excited state vibrational frequencies.

What about the case where the molecule undergoes a change in symmetry, in other words, the ground and 
excited states belong to different point groups? There are many examples where this is the case. The �B  excited 
state of H2O is linear and the absorption spectrum exhibits a long progression in the bending mode at about 
800 cm−1. The �A u(1∆ ) state of CO2 has an equilibrium bond angle of 122 degrees, compared to 180 degrees in 
the ground state. These two situations are illustrated in Figure 11.15. In the emission spectrum corresponding 
to Figure 11.15a, and in the absorption spectrum corresponding to Figure 11.15b, the slope of the potential 
for the final electronic state is nonzero in the FC region, and we expect to get a progression in the vibration 
which correlates with the geometry change. When an electronic transition is accompanied by a change in 
point group, the normal coordinates of one state are linear combinations of those of the other state, and one 
must take into account this mixing in order to account for the intensities of vibronic transitions. This mixing 
of normal modes is called Duschinsky rotation. Group theory may still be useful in this case, but one must 
use only the symmetry elements common to both the ground and excited states.
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Figure 11.14 Ground- and excited- state potentials along (a) a totally symmetric and (b) a nontotally symmetric 
normal coordinate.
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Even in the absence of a symmetry change, there are other ways that nontotally symmetric vibrations can 
show up in absorption and emission profiles. One way is for the FC activity to derive from a frequency change, 
but as previously mentioned this is not nearly as effective in producing FC progressions as a change in geom-
etry. The other way is for nontotally symmetric modes to appear by means of what is called vibronic coupling. 
This is a non-Born–Oppenheimer effect which permits mixing of BO states via nontotally symmetric vibra-
tions. It is discussed and illustrated in the next section, using benzene as an example.

11.5.3  benzene: electronic spectra and vibronic activity 
of nontotally syMMetric Modes

The ultraviolet absorption spectrum of benzene derives from transitions of π electrons and can therefore be 
discussed within simple molecular orbital pictures which treat only these electrons. Benzene belongs to the D6h 
point group. The MO energy levels and π bonding patterns of benzene are shown in Figure 11.16. These are 
obtained using the six carbon atom pz orbitals as a basis, where z is considered to be the direction perpendicu-
lar to the plane of the molecule. The energies and symmetries can be found using, for example, Hückel theory 
[7,8]. Alternatively, as we are interested only in selection rules and not attempting to calculate energies, the 
projection operator techniques described in Chapter 10 can be used to find the symmetries of the MOs (a2u, 
e1g, e2u, and b2g), which can then be ordered on the basis of the number of nodal planes perpendicular to the 
plane of the molecule. As shown in Figure 11.16, the MO energy increases with the number of these nodes. The 
labels on the left-hand side of the diagram are the MO energies obtained from a Hückel calculation, a semiem-
pirical method which treats only the π electrons. α is the energy of an isolated carbon atom 2pz electron, and β 
(a negative quantity) is the resonance integral connecting 2pz orbitals on neighboring carbons. The two lowest 
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Figure 11.16 Benzene molecular orbitals and energy levels.
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Figure 11.15 Ground- and excited-state potential energy curves for a molecule undergoing a change in 
symmetry. The lower curve in (a) represents a nontotally symmetric vibration of a symmetric molecule (e.g., the 
bending mode of a linear triatomic), while the upper curve represents a totally symmetric vibration of a mol-
ecule with two equivalent distorted geometries (e.g., a bent triatomic). In (b) the upper state is symmetric and 
the lower state distorted.
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energy levels, the nondegenerate a2u and the doubly degenerate e1g, are fully occupied in the ground electronic 
configuration of benzene. These are all bonding π MOs, although the lowest energy MO is more bonding than 
the pair of e1g orbitals. Also note that the two e1g MOs differ only in the position of the nodal plane, and simi-
larly the two antibonding π * MOs of e2u symmetry differ in the positions of the two nodal planes.

The ground configuration of benzene a eu g2
2

1
4  gives rise to a totally symmetric singlet state, for which the 

Mulliken term is 1A1g. Excited state configurations may be generated by promoting electrons from bonding 
(π) orbitals to antibonding (π *) orbitals. Consider the HOMO–LUMO transition to form the configuration 
a e eu g u2

2
1
3

2
1 , from which the lowest-lying excited states are derived. There are 4 × 4 = 16 states associated with 

this configuration. The state symmetries are found by taking the direct product of the singly occupied MO 
symmetry with that of the triply occupied MO. When decomposed into ir. reps., one obtains e1g × e2u = E1u + 
B2u + B1u. Each of these terms can be associated with either a singlet or a triplet spin state, thus there are 1E1u, 
3E1u, 1B2u, 3B2u, 1B1u, and 3B1u states. The E1u states are doubly degenerate with respect to the spatial part of the 
wavefunction, and the B2u and B1u states are nondegenerate.

The electric dipole moment operator transforms according to the A2u and E1u representations of D6h. 
Transitions allowed by the A2u component are polarized perpendicular to the plane of the molecule, while 
those permitted by the E1u component are polarized in the plane. Since the ground state is totally symmetric, 
E1-allowed transitions are to states of A2u and E1u symmetry, so we predict that the transition from the ground 
1A1g to the excited 1E1u state should be allowed and polarized in the plane. This transition is observed in the 
ultraviolet, in the vicinity of 185 nm, and it is quite strong, having an oscillator strength close to one.

Now for the surprises: two lower-energy UV transitions, much weaker than the 185 nm band, are also 
observed. The excited states active in these two bands are of B1u and B2u symmetry, absorbing at about 208 
and 260 nm, respectively. These would be forbidden according to the selection rules we have discussed so far, 
which are based on the validity of the Born–Oppenheimer separation of electronic and vibrational states. 
When this approximation breaks down, states which are forbidden according to BO selection rules can mix 
with states (such as those of E1u symmetry) which are allowed. This state mixing can only take place if there 
is a vibration of appropriate symmetry that can couple the two pure electronic states. The coupling vibra-
tion must be a nontotally symmetric species, and one way to regard the altered selection rules is in terms of 
lowered symmetry of the vibrating molecule, resulting in the appearance of otherwise symmetry-forbidden 
transitions. This type of electronic transition is said to be allowed by vibronic coupling.

In the case where the BO approximation fails, we need to discuss the symmetry of a vibronic state, which 
can be designated as Γev. The transition moment μ ′ ′ ′′ ′′e ev v,  refers to that connecting two vibronic states. For 
this transition moment to be nonzero, the direct product, Γ Γ Γ′ ′ ′′ ′′× ×e ev vμ  must contain or equal the totally 
symmetric representation, in which case the transition e′v′ ↔ e′′v″ is allowed. Each vibronic symmetry spe-
cies is in turn the direct product of the electronic and vibrational parts: Γev = Γe × Γv, where Γv is the sym-
metry of the vibrational state and not necessarily that of the mode. In the case where absorption originates 
from the vibrational ground state, Γ Γ′′ ′′ ′′= =e e gAv 1  (as in the case of benzene). Thus vibronically activated 
excited states of benzene must become allowed by participation of a vibrational state whose symmetry satis-
fies Γ Γ Γ′ ′× =e v μ . The 260 nm band of benzene derives its activity from the E2g in-plane bending mode (ν18 
in Table 10.5), and it can be checked that Γ Γ Γ′ ′× = × = =e u g uB E Ev 2 2 1 μ, where we have assumed that v′ = 1; 
thus the symmetry of the final vibrational state is that of the mode. This is based on the fact that the observed 
vibrational structure of the 1A1g → 1B2u absorption band displays transitions to vibrational levels having one 
quantum of excitation in the bending mode and some number of quanta n in the totally symmetric breathing 
mode, ν2(A1g). The frequency of the bending vibration in the ground electronic state is 606 cm−1, but it shifts to 
522 cm−1 in the excited 1B2u state. Similarly, the breathing mode shifts from 992 to 923 cm−1 in the 1B2u excited 
state. These shifts are consistent with the π − π* nature of the transition. The peaks observed in the progres-
sion of the 260 nm band of benzene can be labeled 2 180 0

1n , where the 2 and the 18 are the mode numbers,* and 
the subscripts and superscripts respectively denote initial (v″) and final (v′) vibrational quantum numbers. 
The long FC progression in the ring-breathing mode of benzene derives from the increase in the C–C bond 

* In some books, the notation of Wilson, Decius, and Cross is employed to number the benzene vibrations. In this nota-
tion, the breathing mode is ν1 and the bending mode is ν6.
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distance, by about 0.04 Å, in the excited electronic state. Note that the 0 − 0 transition of the bending mode, 
2 180 0

0n , is not observed, as the vibronic activation requires that the final state have one quantum of excitation 
in the nontotally symmetric mode. The vapor-phase spectrum of benzene also shows transitions of the type 
2 180

0
1

n . At higher temperatures, the ′′ =v18 1 state of the bending mode is populated in the ground electronic 
state, and transitions to states having ′ =v18 0  in the excited electronic state also satisfy the symmetry require-
ments. In the solution phase spectrum of Figure 11.1, the progression in the breathing vibration is apparent, 
but separate peaks due to ν18 are not resolved. They are readily observed in the gas phase, however.

The 208 nm band of benzene, 1A1g → 1B1u, is also made possible by the vibronic activity of the E2g vibration. 
The direct product of B1u and E2g is E2u. (The direct products B1u × E2g and B2u × E2g are equal because the only 
characters in B1u which are different from those of B2u are those of operations for which the E2g characters are 
zero. See the character table in Appendix C to verify this.) Similar vibrational structure to that of the 260 nm 
band is observed for this band. But the following question is worth raising: If symmetry is the key to understand-
ing vibronic activity, why are none of the other three E2g vibrations of benzene, such as the in-plane CCH bend, 
at 1178 cm−1 in the ground state, observed in the structure of these two bands? To probe this question, let us 
consider the quantum mechanical basis for the appearance of these transitions.

The electronic Hamiltonian in the BO approximation is independent of the normal coordinates, as the 
nuclear positions are considered fixed. The following perturbation operator serves as a correction to the BO 
approximation:
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This operator is totally symmetric, so the derivative ( / )∂ ∂H Qel i
�

0 must have the symmetry of the normal 
mode Qi. Two electronic states, labeled e and s, can be coupled by this perturbation if their zero-order energies 
are similar and the matrix element Hes is nonzero:
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where the brackets indicate integration over the electronic coordinates only. This integral can exist only if 
the triple direct product Γ Γ Γe Q si× ×  equals or contains the totally symmetric representation. In this case, 
at nuclear positions where the energies of state e and s are similar, then these two electronic states will be 
vibronically coupled. If, to a first approximation, the transition from the ground g to the excited electronic 
state e is forbidden, while g → s is allowed, the mixing of e and s enables the state e to borrow intensity from 
state s. But in addition to the symmetry and energy requirements, such coupling takes place only if the elec-
tronic Hamiltonian depends on the normal coordinate for the coupling vibration. The perturbed states are 
then linear combinations of the zero-order states, e.g., ψ ′ = ceψe + csψs. In the case of benzene, the B2u and B1u 
excited states derive their intensity from mixing with the nearby allowed state of E1u symmetry. It seems rea-
sonable that the matrix element Hes connecting two π − π* excited states depends more strongly on vibrations 
which distort the pi framework than those which do not.

Another way to account for vibronic activity is to go beyond the Condon approximation and account for 
the normal coordinate dependence of the transition moment:
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The so-called non-Condon term (∂μge/∂Qi)0 is capable of connecting the states g and e if the direct product 
Γ Γ Γg Q ei× ×  equals or contains Γμ. This approach leads to the same conclusions as derived above, as far as 
symmetry requirements for vibronic activity are concerned. We will reexamine the issue of vibronic coupling 
in Chapter 12, where it is shown to play a role in selection rules for Raman scattering.
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11.6  TRANSITION METAL COMPLEXES: FORBIDDEN TRANSITIONS 
AND THE JAHN–TELLER EFFECT

Transition metal complexes provide familiar examples of color in chemistry. Although metal–ligand systems 
may be found in a variety of symmetries (tetrahedral, square planar, linear…), we choose the classic case of 
octahedral symmetry, assuming that the metal is surrounded by six equivalent ligands, ML6, as the basis 
for the examples of this section. The optical spectra of transition metal complexes derive from transitions 
of d electrons, and the conventional way to describe them often invokes a theory called crystal field theory. 
In this theory, electrostatic interaction of the metal ion with the surrounding ligands, assumed to be point 
charges, lifts the degeneracy of the five d atomic orbitals on the metal. The approach of this section, however, 
begins with molecular orbital theory, using a basis of the five d, three p, and one s orbitals on the metal, plus 
six equivalent orbitals on the ligands. These ligand orbitals can be called σ AOs, because they direct electron 
density toward the metal, resulting in orbitals which are axially symmetric about the metal-ligand bonds.

In the free ion, the nd AOs are occupied and the (n + 1)p and (n + 1)s AOs are unoccupied. Each ligand is 
assumed to contribute one pair of electrons to the system. The five d orbitals and the coordinate system employed 
are shown in Figure 11.17. With the help of the Oh character table of Appendix C, it can be shown that the dxy, 
dxz, and dyz AOs transform according to the triply degenerate t2g representation. Clearly these three d orbitals are 
equivalent under octahedral symmetry, so they must belong to a triply degenerate representation. They are also 
even under inversion symmetry. To distinguish whether these AOs transform as t1g or t2g, consider the effect of 
one of the six C2 operations, which changes the phase of the dxy, dxz, or dyz orbital; hence, they must belong to t2g, 
for which the character of the C2 operation is −1. Similarly, it can be concluded that the d

z2 and d
x y2 2−  AOs trans-

form according to the doubly degenerate eg ir. rep., while the metal px, py, and pz orbitals belong to t1u, and the 
metal s orbital is totally symmetric, a1g. The six equivalent ligand AOs can be combined into symmetry-adapted 
linear combinations, using projection operator techniques. The resulting symmetries are a1g, eg, and t1u, as shown 
in Figure 11.18. The metal AOs are combined with ligand SALCs of the same symmetry, to form the bonding and 
antibonding MOs. The resulting energy levels are depicted in Figure 11.19. In a class by themselves and having 
zero overlap with ligand SALCs, the metal t2g orbitals are nonbonding. The metal and ligand eg orbitals combine 
to give a degenerate pair of bonding MOs, and a degenerate pair of antibonding MOs. Similarly, the metal and 
ligand a1g AOs give bonding and nonbonding AOs as shown in Figure 11.19.

The splitting of the t2g and e g
∗ AOs is called Δ, and it is a function of the strength of the metal–ligand 

interaction. The value of Δ tends to increase in the ligand series I Br Cl NO F OH H O2
− − − − − −< < < < < <3

< < < < <− −NH H NCH CH NH NO CN CO3 2 2 2 2 2 , the so-called spectrochemical series. For example, the value 
of Δ is about 18,000 cm−1 in [Co(H2O)6]3+, 23,000 cm−1 in [Co(NH3)6]3+, and 33,500 cm−1 in [Co(CN)6]3+. 
Ligands that cause small (large) splitting are called weak (strong) field ligands. The splitting also depends on 
the metal and tends to increase with oxidation state.
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The ground electronic configuration of the complex is determined by first loading the 12 ligand electrons 
into the lowest energy (bonding) MOs: a1g, t1u, and eg. The metal ion d electrons are then placed in the t2g and/
or e g

∗ MOs, but for certain numbers of d electrons one must compare the energy difference Δ to the cost of 
placing two electrons in the same MO with their spins paired. For example, a d5 metal, such as Fe3+, may have 
one unpaired electron in a strong octahedral field or five unpaired electrons if Δ is small. The former situation 
is referred to as a low-spin complex, and the latter is called the high-spin form.

The splitting Δ is sometimes called 10Dq, a holdover from the old crystal field theory. In this theory, elec-
trostatic interactions cause the dxy, dxz, and dyz orbitals to be stabilized by an amount 4Dq and the d

z2 and d
x y2 2−  

orbitals to be destabilized by 6Dq, with respect to the energy of the free ion d orbitals. This emphasizes the 
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Figure 11.19 Molecular orbital energy levels in an octahedral transition metal complex.
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net conservation of energy of the orbitals after splitting; i.e., a completely filled d10 or high-spin d5 ion would 
experience no net stabilization or destabilization by the “crystal field.” This statement obviously neglects 
interelectronic repulsion. Besides this, the crystal field picture is physically unsatisfying because it invokes 
repulsion between ligand and metal electrons as the basis for destabilization of the d

z2 and d
x y2 2−  orbitals, yet 

experiment shows that many anions are weak ligands (the halide ions) while neutral species such as CO can 
be strong ligands. Nevertheless, as far as optical spectra are concerned, crystal field theory focuses on the 
energy levels of interest, those of the d electrons. And since it gives the correct symmetries of the molecular 
orbitals, it is useful for deducing selection rules.

Figuring out the state symmetries that arise from a particular d electron configuration can be rather 
complicated. For example, consider a free ion having a d2 configuration, such as Ti2+. The term symbols 
which derive from this configuration are 3F, 1D, 3P, 1G, and 1S, a total of 45 states! On going from the spheri-
cal symmetry of the free ion to octahedral symmetry for six-fold coordination, the terms designated by S, 
P, D,… correlate with symmetries of the Oh point group as given in Table 11.3. In the complex, the ground 
configuration is t2g

2, which gives rise to both triplet and singlet spin states and orbital symmetry species found 
from the direct product t2g × t2g = A1g + Eg + T1g + T2g. There are (6 × 5) ÷ 2 = 15 states associated with the t g2

2  
configuration. It is not immediately obvious how to associate each of the four terms with singlet and/or triplet 
spin states or how to order the term energies. Fortunately, these sorts of group theoretical considerations have 
been worked out for a large number of d-electron configurations, and are summarized in the form of Tanabe–
Sugano diagrams (see for example [9] or [10]). One such diagram, for the d2 case, is shown in Figure 11.20. 
These diagrams display the energies of the terms relative to the ground state as a function of the splitting 
parameter Dq or Δ. Energies are expressed in units of B, a parameter dependent on the interelectronic repul-
sion in the complex. In the strong-field case, the right-hand side of the diagram, the terms are 3T1g, 1T2g, 1E1g, 
and 1A1g, in order of increasing energy. Note that these account for all 15 states deriving from t g2

2 . States deriv-
ing from the excited configuration t eg g2

1 1 are 3T2g, 3T1g, 1T2g, and 1T1g. All of these states have g symmetry and thus 
cannot be connected by electric dipole selection rules.
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Figure 11.20 Tanabe–Sugano diagram for d2. (Adapted from F. A. Cotton, Chemical Applications of Group 
Theory, Wiley-Interscience, New York 1971.)

Table 11.3 Correlation of free ion terms with symmetry species 
in an octahedral complex

Spherical symmetry Octahedral symmetry

S A1g

P T1g

D Eg + T2g

F A2g + T1g + T2g

G A1g + Eg + T1g + T2g



276 Electronic spectroscopy

In fact, any d − d transition of an octahedral complex, in which an electron is promoted from the t2g level 
to the e g

∗ level, must be dipole forbidden to a first approximation, as per the LaPorte rule. In spite of the well-
known colors of transition metal complexes, they are often the result of forbidden transitions, as evidenced 
by the rather low molar absorptivities, εM, less than about 50 L mol−1 cm−1. We must look to the possibility of 
vibronic activity to explain the absorption of visible light.

The transition dipole moment transforms according to the T1u representation of the Oh point group. 
Forbidden transitions may borrow intensity via vibronic coupling to dipole-allowed electronic states via 
vibrations of the appropriate symmetry. A complex of the type ML6 has 3(7) − 6 = 15 normal modes involving 
metal–ligand motion. Group theoretical analysis shows that these modes have the symmetries A1g, Eg, 2T1u, 
T2g, and T2u. In the case of a d2 complex, the ground state is 3T1g, and there is one excited state from the excited 
configuration having the same symmetry and spin multiplicity. Therefore, a vibration having the symmetry 
of the transition dipole moment, T1u, is capable of vibronic activation of the 3 1 2

2 3
1 2

1 1T t T t eg g g g g( ) ( )→  transition. 
As it turns out, however, there is even more to this story.

Many transition metal complexes provide classic examples of the Jahn–Teller theorem, which states that a 
nonlinear symmetric molecule in an orbitally degenerate state will be unstable to distortion to a lower sym-
metry state. The ground state of an octahedral complex such as the d2 complex of Figure 11.20 is orbitally 
degenerate. According to the Jahn–Teller theorem, such a complex can lower its energy by distorting to a 
tetragonal geometry, having D4h symmetry. The splitting of the t2g and e g

∗ orbitals as a result of moving two 
ligands in or out along the z-axis is shown in Figure 11.21. In either case, the distortion allows the d electrons 
to be placed in a lower-energy orbital.

The theorem as stated here does not address the size of the distortion-induced splitting. Consider a doubly 
degenerate electronic state. Jahn and Teller showed that there is always at least one nontotally symmetric nor-
mal mode that is capable of lifting the electronic degeneracy. This is illustrated in Figure 11.22, which shows 
the splitting of the electronic state as a function of a nontotally symmetric normal coordinate. The crossing 
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Figure 11.22 Splitting of a degenerate electronic state along a nontotally symmetric normal coordinate.
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point corresponds to the symmetric configuration where the electronic state is doubly degenerate. If the barrier 
to interconversion of the two distorted forms is less than the zero-point energy, the molecule merely vibrates 
back and forth between the two forms. In this case, the dynamic Jahn–Teller effect is operative. The vibration 
in question can participate in vibronic activation of forbidden electronic transitions, but the molecule remains 
symmetric on the average. In the other extreme, if the barrier is large compared to thermal energy, the molecule 
will permanently distort to the less symmetric form. This is the static Jahn–Teller effect, and it leads to the split-
ting of electronic transitions which would be degenerate under Oh symmetry.

Figure 11.23 shows some example electronic spectra that reveal Jahn–Teller splitting of a d1 transition 
metal complex. In this example, the expected octahedral symmetry of the TiCl6

3− ion is lowered to D4h by 
means of a slight compression of the ligands along the z direction. The 2T2g ground state is split by about 
400 cm−1 and the 2Eg excited state by about 1800 cm−1.

In addition to d − d transitions, the electronic spectra of transition metal complexes may involve other 
orbitals as well. Transitions in which a d electron is moved to an orbital primarily localized on the ligand 
are called metal-to-ligand charge-transfer transitions. Ligand-to-metal charge-transfer transitions involve 
the promotion of lower-lying bonding electrons to one of the d electron levels. These transitions can adhere 
to the LaPorte rule, and thus they may be stronger than the d − d transitions.

11.7 EMISSION SPECTROSCOPY OF POLYATOMIC MOLECULES

What is the fate of a molecule that has been promoted to an excited electronic state? Of course, what goes up, 
must come down, but there is more than one return path to equilibrium. Though excited electronic states may be 
prepared in a number of different ways, it is convenient for the present discussion to consider emission that fol-
lows absorption of light in order to see how absorption and emission spectra are related. Following vertical exci-
tation from the ground electronic state, the molecule in its Franck–Condon state is electronically excited, but 
has the geometry of the ground electronic state at equilibrium. This directly excited state has excess vibrational 
energy invested in the FC-active modes, but in polyatomics this energy may be rapidly redistributed into other 
vibrational modes by a radiationless process called intramolecular vibrational redistribution (IVR). The rate at 
which the excess vibrational energy is randomized among all the normal modes depends on the molecule and is 
a strong function of the size. For example, in trans-stilbene, transfer of the initial nonthermal population in the 
FC-active modes into lower frequency vibrations takes place in about 2 to 4 ps [11]. In the fluorescent dye couma-
rin-153, IVR takes place on a timescale of less than 100 fs [12]. As the vibrational energy and number of modes 
increase, the density of vibrational states increases and so do anharmonic couplings, facilitating the shuffling of 
energy between modes. This IVR process leaves the molecule in a state that is still at a higher temperature than 
the surroundings, but with the excess vibrational energy randomly partitioned among the modes. The ensuing 
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Figure 11.23 Electronic spectra of (a) Rb2 NaTiCl6 (b) Cs2KTiCl6, and (c) Rb3TiCl6 showing Jahn–Teller split-
ting. (Reprinted with permission from R. Ameis, S. Kremer, and D. Reinen, Inorganic Chemistry 24, 2751 (1985), 
copyright 1985, American Chemical Society.)
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process of equilibration, in which excess vibrational energy is lost to the surroundings (e.g., the solvent) in the 
form of heat, is called vibrational energy transfer (VET). This form of vibrational relaxation, like IVR, takes place 
on a subpicosecond or picosecond timescale in typical dyes, and when it is complete, the molecule finds itself in 
the equilibrium geometry of the excited electronic state. The timescale for IVR and VET in large polyatomics 
should be contrasted with the vibrational population relaxation times of diatomic molecules in solution, which 
can be as long as milliseconds! Neglecting solvation, the molecule would be ready to undergo relaxed emis-
sion following IVR and VET. In solution, however, the rearrangement of solvent molecules from their Franck–
Condon positions, equilibrated to the ground electronic state, takes place over a range of timescales, about 0.1 to 
20 ps, before fully relaxed emission is observed. The timescales for IVR, VET, and solvent relaxation vary from 
one system to another, and the processes are not necessarily sequential.

Since the above-mentioned events are rapid compared to a typical radiative lifetime, 10−8 − 10−9 s, emis-
sion from the directly excited electronic state is often relaxed. In the case of relaxed emission, the molecule 
undergoes a nonradiative transition, from the FC state to the solvated ground vibrational state of the upper 
electronic state, before undergoing the radiative transition. The total energy lost by the chromophore to the 
surroundings during intramolecular vibrational relaxation is the internal reorganization energy ΔEint, and it 
may be resolved into contributions from the various Franck–Condon active normal modes. The contribution 
of each normal mode in turn depends on its displacement Δi (Equation 11.19) in the excited state:
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(11.23)

Equation 11.23 is correct for harmonic normal modes having the same vibrational frequency (ωi) in the 
ground and excited electronic states. More generally, ΔEint is the energy difference between the vertical and 
ground vibrational states in the upper electronic state, so it contributes to the difference between the 0 − 0 
frequency ν00 and the frequency of maximum absorption νmax. In the absence of solvent effects, hνmax = hν00 
+ ΔEint, but in solution, solvent–solute interactions contribute to reorganization as well, as mentioned above. 
This effect is depicted in Figure 11.24, where the arrows depict the dipole moment of a spectroscopically 
active solute molecule and those of surrounding (polar) solvent molecules. Electronic excitation results in 
an instantaneous change in the dipole moment of the solute molecule, but it takes time for the surrounding 
solvent dipoles to equilibrate to the excited state charge distribution. Immediately following excitation to the 
excited electronic state, the solvent molecules are still in positions which favor the ground electronic state of 
the chromophore. The energy lost as solvent molecules rearrange to solvate the excited electronic state is the 
solvent reorganization energy ΔEsolv. The total reorganization energy is ΔEreorg = ΔEint + ΔEsolv, and the energy 
of maximum absorption is hνmax = hν00 + ΔEreorg.

hν ∆E
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lv

Figure 11.24 Solvent reorganization in response to an electronic transition. The arrows represent the dipole 
moments of the spectroscopically active solute and surrounding solvent molecules.
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Let us suppose, as is often the case, that the ground electronic state is a singlet, call it S0, and that the 
absorption transition which precedes emission is to the lowest energy excited singlet state S1. In this case, the 
radiative transition S1 → S0 is fluorescence. The nonradiative transition S1 → S0 is called internal conversion, 
a term used to describe radiationless transitions from one electronic state to another of the same spin multi-
plicity. This transition competes with the radiative one and causes the fluorescence yield ϕfluor to be less than 
unity. The fluorescence yield, introduced in Chapter 6, can be expressed as the ratio of the number of emitted 
photons nf to the number absorbed nabs, ϕfluor = nf/nabs. It can also be viewed in terms of the relative contribu-
tions of radiative and nonradiative relaxation rates: 1/τrad and 1/τnonrad, as expressed in Equations 6.28 and 
6.29. When emission is preceded by a transition to an electronic state higher in energy than S1, e.g., S0 → S2, 
and if the transition S1 → S0 is allowed, emission is usually observed from the lower energy excited electronic 
state, rather than from S2 to S0. This effect, sometimes called Kasha’s rule, is the result of rapid nonradiative 
relaxation (internal conversion) from S2 to S1. Figure 11.25 illustrates Kasha’s rule as well as the frequently 
observed mirror symmetry between absorption and fluorescence spectra. The absorption spectrum of para-
fuschin comprises two overlapping transitions to the S1 and S2 states, while emission is from S1 to S0 only. The 
emission spectrum mirrors the lower energy absorption band.

The difference in frequency of the absorption and fluorescence maxima is called the Stokes shift:

 ∆ν ν νstokes abs fluor= −max, max,  (11.24)

In the special case where the ground and excited state vibrational potentials for each active normal mode are 
harmonic and the same shape, then the Stokes shift hΔνstokes is twice the total reorganization energy ΔEreorg, as 
defined above. In general, the greater the difference in the equilibrium and Franck–Condon geometries is, the 
larger the difference in the absorption and fluorescence maxima.

A fluorescence spectrum such as that shown in Figure 11.25 is obtained by irradiating a molecule within 
the electronic absorption band and collecting the emitted light as a function of emission frequency or wave-
length. If, instead of scanning the wavelength of emitted light, one scans the excitation wavelength λexc (or 
frequency) and collects the total emitted radiation as a function of λexc, then the resulting spectrum is called 
the excitation spectrum. If the absorption and emission transitions involve the same excited state, the excita-
tion spectrum resembles the absorption spectrum. Excitation spectra are useful to determine if fluorescence 
is intrinsic to the molecule of interest or results from a fluorescent impurity.

Excited triplets are lower in energy than singlets having the same occupied orbitals, due to lower interelec-
tronic repulsion in the triplet states. There is a good chance that these singlet and triplet excited states cross 
at a particular nuclear configuration, as shown in Figure 11.26. Spin–orbit coupling then allows the singlet 
and triplet states to mix with one another. This presents the possibility of a nonadiabatic transition called 
intersystem crossing (ISC), in which the initially excited singlet electronic state crosses over to the triplet state. 
In the absence of the spin–orbit perturbation the two states would have different spin symmetry and could 
not interact. Since spin–orbit coupling is roughly proportional to Z4, where Z is the atomic number, the rate of 
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Figure 11.25 Absorption spectrum and fluorescence spectrum (excited at 21,900 cm−1) of parafuschin in 
aqueous solution.
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intersystem crossing can be enhanced by the presence of heavy atoms, even if these atoms are not part of the 
molecule undergoing emission (the external heavy atom effect). After making the nonradiative transition to 
the excited triplet state, labeled T1 in Figure 11.26, the molecule can then emit light in the form of phosphores-
cence. Since transitions having ΔS ≠ 0 are forbidden to a first approximation, the rate and thus the intensity of 
phosphorescence is usually lower than that for fluorescence. In rigid media, such as solids and glasses, phos-
phorescence lifetimes can be quite long, and emission can continue for minutes after illumination ceases.

11.8 NONRADIATIVE RELAXATION OF POLYATOMIC MOLECULES

While the radiative relaxation of molecules is of great interest to spectroscopy, radiationless decay is also 
an important deactivation channel for excited electronic states. Fast internal conversion from higher lying 
excited states (Sn) to the lowest lying singlet (S1) is common, leading to Kasha’s rule. The conversion, or 
“degradation,” of absorbed radiation to heat is a common occurrence in everyday life. What is the pertur-
bation that enables deactivation of an excited electronic state without emission of light? We have seen that 
the radiative transition rate can be understood within the Golden Rule expression of Chapter 4, where we 
considered the time-dependent perturbation ˆ ( )′ = − ⋅H E t

� �
μ  to be responsible for inducing transitions. We 

can also use the Golden Rule to treat nonradiative transitions that take place via departure from the Born–
Oppenheimer approximation. While such transitions may involve surrounding molecules as energy accep-
tors, radiationless transitions also take place in rare gases. We explicitly treat intramolecular radiationless 
transitions in this section, in order to reveal the role of vibrations in meeting the criterion of energy con-
servation. The perturbation operator responsible for nonradiative transitions is the part of the Hamiltonian 
that was neglected in the BO approximation. This is a time-independent perturbation that mixes otherwise 
separate electronic states. On an energy scale, we can view a nonradiative transition as a horizontal transition 
from one BO potential energy surface to another, as compared to a vertical radiative transition. In order for 
a nonradiative transition from an excited electronic state to the ground electronic state to occur, it is clear 
that a number of excited vibrational quanta are necessary to soak up the energy of the relaxing excited state. 
We consider internal conversion, in which an excited electronic state e decays to a ground state g of the same 
spin multiplicity. Experimentally, radiationless transition rates are often seen to decay exponentially with 
increasing energy difference of initial and final states. This so-called exponential energy gap law may seem 
counterintuitive at first, but the treatment here exposes why larger energies are dissipated less efficiently.
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Figure 11.26 Absorption, fluorescence, phosphorescence (radiative transitions) and vibrational relaxation 
and intersystem crossing (nonradiative transitions).
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To proceed, recall the expression for the transition rate given in Equation 4.38, from Fermi’s Golden Rule. 
We make two adjustments to treat nonradiative rather than radiative transitions. We replace the perturba-
tion operator − ⋅

� �
µ E t( ) by ˆ ( )T QN , the nuclear kinetic energy operator, which was neglected in making the 

BO approximation. Further, we set the frequency ω of the perturbation to zero. The rate wif of transitions 
between the initial and final states is then

 
w Vif fi fi=

2
2

2π δ ω
�

( )
 

(11.25)

The delta function ensures that the energy of the final state matches that of the initial state. It could be replaced 
by the density of energy conserving final states, if desired. The matrix element of the perturbation is taken to be

 V Tfi f N i= Ψ Ψˆ
 (11.26)

The nuclear kinetic energy operator depends on the normal coordinates Qk:
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Recall from Chapter 10 that the effective mass of the mode k is absorbed in Qk. In the case where there is a large 
energy difference in the zero point levels of the initial and final electronic states, we expect the adiabatic approxi-
mation to hold. Assuming harmonic vibrational states, we can thus write initial and final states as follows:

 Ψi e
e

e
e e er Q r Q Q r Q Q Q( ; ) ( ; ) ( ) ( ; ) ( ) ( ) (= =′ ′ ′ ′ψ χ ψ χ χ χv v v v1 2 3N-61 2 … QQ N3 6− )  (11.28)
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Here, Q (with no subscript) represents a collection of 3N – 6 normal coordinates and v′ and v designate collec-
tions of vibrational quantum numbers in the excited and ground electronic states, respectively. Subscripted 
v’s and Q’s are reserved for one-dimensional harmonic oscillator wavefunctions. We are ignoring any change 
in symmetry that would mix the normal coordinates. The electronic wavefunctions depend parametrically 
on the normal coordinates Q and explicitly on the electronic coordinates, denoted here by r. Using the short-
hand version of the vibronic wavefunctions for now, we evaluate the matrix element Vfi.
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The angle brackets in Equation 11.30 imply integration over electronic and nuclear coordinates. To distin-
guish these, let us show the averages over nuclear coordinates as explicit integrals over Q and use Dirac nota-
tion for integration over the electronic coordinates. On evaluating the second derivative above, we obtain a 
sum of three terms:
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The third term is clearly zero since the ground- and excited-state wavefunctions are orthogonal. The first 
term can be neglected for small departures from the BO approximation. Thus we consider the second term in 
Equation 11.31 as the main contribution to the nonradiative transition from i to f.
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If vibrational relaxation within the excited state is fast enough, and vibrational energy levels widely spaced 
compared to kBT, we can take the initial state to be the zero-point level of the excited electronic state: 
χ χ χ χ χ′ −= = …v 0 0 0 0

e e e e e
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Casting Equation 11.32 in terms of multimodal vibrational wavefunctions leads to
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The operator ∂ ∂/ Qk is proportional to the momentum operator. With the help of raising and lowering opera-
tors, Equation 1.38, it is a simple matter to show that
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The so-called promoting mode Qk is a dominant vibrational mode that enables nonradiative decay. For the 
electronic matrix element ψ ψg k eQ∂ ∂  to be nonzero, the normal coordinate Qk must belong to an irre-
ducible representation that is the product of the irreducible representations of the ground and excited elec-
tronic states. These are the same symmetry constraints encountered for vibronic coupling, which is the same 
kind of coupling that makes the nonradiative transition possible. (Problem 10 explores this connection.) 
If we neglect the dependence of ψ ψg k eQ∂ ∂  on nuclear coordinates, Vfi is proportional to the product of 
one-dimensional vibrational overlaps:
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Since the rate wif depends on the square modulus of Vfi, nonradiative relaxation is a function of previ-
ously discussed Franck–Condon factors. Energy conservation (and the delta function of Equation 11.25) 
is satisfied when the 0 – 0 energy of the excited electronic state matches the vibrational energy of the final 
state: E j j j00 = Σ v �ω , where ωj is the vibrational frequency of mode j in the ground electronic state. Modes 
capable of accepting the energy of the relaxing state must have favorable Franck–Condon factors. These 
 Franck–Condon factors fall off as the number of quanta increases, therefore higher frequency modes such 
as C–H and O–H stretches are better accepting modes than lower frequency vibrations. The decrease in 
Franck–Condon factors with increasing vibrational quantum number, on its own, would make the rate of 
nonradiative decay decrease as the energy gap increases. Countering that trend somewhat is the increas-
ing density of vibrational states at higher energy, which makes it easier to achieve energy matching. 
In  condensed phases, in addition to intramolecular vibrational modes considered in the above analysis, 
intermolecular modes can accept the energy, as can solvent intramolecular vibrations that are displaced 
in the excited electronic state of the solute. The above treatment reveals why nonradiative lifetimes, and 
thus fluorescence yields, depend on isotopic substitution. Consider deuteration of O–H or C–H bonds 
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that participate in acceptor modes. Higher vibrational quantum numbers are required for O–D or C–D 
bond vibrations to match the excited state energy, resulting in a decreased rate of radiationless decay 
compared to that seen in the presence of O–H or C–H bonds. For example, the fluorescence lifetime of the 
laser dye LDS750 is 220 ps in CH3OH solution and 300 ps in CD3OD solution, a result of faster nonradia-
tive relaxation in CH3OH compared to CD3OD.

For more details on the theory of nonradiative transitions, including intersystem crossing induced by spin–
orbit coupling, the reader is encouraged to consult the seminal work by Bixon and Jortner [13]. In addition to 
internal conversion and intersystem crossing, additional pathways for nonradiative relaxation include photo-
chemical processes such as electron transfer, dissociation, and isomerization.

11.9 CHROMOPHORES

A chromophore is a molecule (or part of a molecule) responsible for absorption of light. For practical and 
esthetic reasons, chemists are fascinated by chromophores which absorb visible light and therefore give rise 
to color. Some common chromophores that exemplify various types of electronic transitions are illustrated 
in Figure 11.27. Electronic transitions can be classified according to the types of molecular orbitals whose 
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occupation numbers differ in the configurations of the ground and excited states. For example, a σ − σ * 
transition is one in which an electron is promoted from a bonding MO to an antibonding MO, both of sigma 
symmetry. Similarly, we have π − π * transitions in molecules containing double and triple bonds, and n − σ * 
and n − π * transitions in molecules having lone pairs, such as acetone or pyridine. (The letter n stands for 
nonbonding electron.) The n − π * transitions of conjugated molecules containing heteroatoms are found at 
lower energy than the π − π * transitions and are often much weaker. The low intensity is a consequence of 
poor overlap between the n and π * orbitals, which leads to a small transition moment.

Molecules containing electron donor and electron acceptor groups may have intramolecular charge-
transfer transitions. An example is dimethylaminonitrostilbene, in which the visible transition involves 
transfer of electronic charge from the amino to the nitro group. The well-studied molecule p-dimethylami-
nobenzonitrile (p-DMABN) undergoes a π − π * transition followed by twisting of the dimethylamino group 
to form a “twisted intramolecular charge transfer” state (TICT state). Emission from the highly polar TICT 
state shifts to the red with increasing solvent polarity. Organic complexes called electron donor-acceptor 
complexes are formed from aromatic electronic donors such as alkylbenzenes and electron acceptors such as 
quinones, halogens, and substituted ethylenes. The signature of complex formation is the presence of a strong 
charge-transfer electronic transition, usually in the visible region of the spectrum, where neither the donor 
nor the acceptor absorbs. See [14] for more discussion of the wide variety of chromophores found in nature.

11.10 SOLVENT EFFECTS IN ELECTRONIC SPECTROSCOPY

The theory of solvent effects on the frequency and intensity of electronic transitions has long held the inter-
est of chemists and continues to be the subject of much research. The influence of the solvent on the elec-
tronic spectrum of the solute may result from bulk solution properties such as the dielectric constant εs and 
refractive index n. More difficult to treat are the inherently quantum mechanical effects of specific intermo-
lecular interactions. Attempts to account for the local field in solution take the nonspecific interactions into 
account, and are based on ideas such as the Onsager approach described in Chapter 3. Quantum and statisti-
cal mechanical approaches employ computer simulations of specific systems. A number of empirical solvent 
polarity scales are based on the solvent shift of the absorption maximum of a particular solvatochromic 
probe molecule [15]. The π* scale is based on the π − π* transition of nitroanisole and the ET-30 scale is based 
on the intramolecular charge-transfer transition of 2,6-diphenyl(2,4,6-triphenyl-1-pyridinio)phenolate (or 
betaine-30, for short). The solvent sensitivity of the absorption maximum (solvatochromism) of betaine-30 is 
particularly dramatic; λmax is about 810 nm in diphenyl ether and 450 nm in water! In this section we explore 
the basis for this behavior.

The shift in the frequency of the absorption or emission maximum on going from the gas to solu-
tion phase is the result of the difference in the solvation energies of the ground and excited electronic 
states: h h E Esol gas s s( )ν ν ν− = = ′′− ′∆ ∆ ∆ . The solvation energies of the ground ( )∆ ′′Es  and excited ( )∆ ′Es  states 
are taken to be positive if the solvent stabilizes the solute. Thus, as shown in Figure 11.28, if the ground 
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state is stabilized more than the excited state, the electronic transition will shift to the blue (νsol > νgas), and 
if the excited state is stabilized more than the ground, then the transition will shift to the red. Because 
electronic transitions are fast compared to the time it takes for solvent molecules to translate or rotate, the 
solvation energies must be defined with care. Consider absorption for the moment. The initial state is the 
equilibrium geometry of the ground electronic state, surrounded by solvent molecules equilibrated to 
the solute in its ground state. The equilibrium geometry of the excited solute favors a different distribution 
of solvent molecules, adapted to the excited-state charge distribution. Immediately following excitation, 
however, only the electronic part of the solvent polarization has adjusted to the new charge distribution. 
The solvent molecule positions and orientations are said to be in a state of strain [16–17]. This strain has 
been defined to consist of two parts, packing strain and orientation strain, corresponding to translational 
and orientational positions of solvent molecules. In figuring the solvent shift of absorption Δνabs, the solva-
tion energies of the ground and excited states must be evaluated at the equilibrium and Franck–Condon 
geometries, respectively.

 h E Eabs s eq s fc∆ ∆ ∆ν = ′′ − ′, ,  (11.37)

When the lifetime of the excited electronic state is much longer than the time it takes for solvent molecules 
to translate and rotate, the initial state in emission is fully relaxed with respect to the solvent and solute 
configurations. The final state finds the solvent molecules in a state of strain with respect to the ground state 
of the solute. Thus the solvent shift in the emission spectrum (assumed here to be fluorescence) is given by

 h E Efluor s fc s eq∆ ∆ ∆ν = ′′ − ′, ,  (11.38)

One particularly important motif in solvent shift studies is the consideration of the permanent dipole 
moments, μg and μe, of the ground and excited states. The solvent shift due to dipolar forces, in the Onsager 
cavity approach, is given by [18,19].
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where a is the cavity radius, εs is the static dielectric constant, n is the refractive index, and f(x) ≡ 2(x − 1)/(2x + 1). 
In the case of fluorescence, the solvent shift due to dipolar interactions can be obtained from Equation 11.39 
by interchanging the labels g and e. In a nonpolar solution, εs ≈ n2, and the shift given by Equation 11.39 is 
approximately zero. One still has interactions between permanent dipole moments of the solute and induced 
dipole moments of the solvent, as well as dispersion interactions due to induced dipoles of both solute and sol-
vent molecules. The induction contribution to the solvent shift depends on the refractive index of the solvent.
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Various approximate formulas for the dispersion contribution to the solvent shift have been obtained [16–18]. 
The solvent shift due to dispersion is proportional to the difference αg − αe between the ground and excited 
state polarizabilities. The excited electronic state tends to be more polarizable than the ground state, and the 
dispersion term generally leads to a red-shift in the absorption spectrum with increasing solvent refractive 
index.

The poorly defined cavity radius is a serious drawback to solvent shift models based on the Onsager theory. 
While it is possible to generalize the approach to nonspherical cavities, these models still suffer from treating 
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the solvent outside the cavity as a dielectric continuum. Nevertheless, for many molecules the frequency 
of the absorption maximum, in a series of solvents of similar refractive index, has been found to be roughly 
proportional to f(εs) as expected from Equation 11.39. This is illustrated for betaine-30 in Figure 11.29. (See 
also Table 11.4.) The positive slope of the graph of �νabs versus f(εs) − f(n2) is a consequence of the ground 
state dipole moment of betaine-30 being larger than that of the excited state. This is referred to as negative 
solvatochromism. Note the large deviation of alcohols, water, and other hydrogen-bond donors from the main 
trend. The additional blue shift is a consequence of hydrogen bonding, which is stronger in the ground than 
the excited state. It is clear that Equation 11.39 does not account for this effect. Nevertheless, Onsager-based 
approaches such as this are qualitatively useful: one can immediately deduce the direction, if not the precise 
magnitude, of the change in dipole moment on electronic excitation. For example, the absorption maximum 
of the lowest energy π − π* transition of benzene is independent of solvent dielectric constant, indicating 
that μe = μg and thus the excited state dipole moment, like that of the ground state, is zero.

More sophisticated approaches to solvent effects must account for the solvation structure in the vicinity of 
the solute as well as the sort of long-range effects that continuum theories are capable of treating. The hydro-
gen-bonding interaction is a well-known case of a specific interaction which affects spectra in ways that are not 
revealed by the bulk dielectric properties of the solution. For example, n − π* transitions are shifted to the blue 
in protic solvents such as alcohols, due to hydrogen-bonding between the solute lone pair and the solvent proton. 
In the more delocalized excited state, the hydrogen bond is weaker, thus ∆ ∆′′> ′E Es s  and a blue shift results.

Quantum mechanical calculations of solvent effects often invoke a hybrid approach, in which the near-
est neighbor solvent molecules are included in a quantum mechanical “supermolecule” calculation, and 
more distant solvent molecules are considered part of the continuum. Hush, Reimer and collegues [20–21] 
have employed computer simulations to calculate solution structure and electronic spectra of dilute aque-
ous solutions of pyrimidine. Zerner and coworkers [22–24] developed semiempirical quantum mechanical 
approaches which incorporate the reaction field calculated using the quantum mechanically derived charge 
distribution of the solute in the ground and excited states. Polarizable continuum models use a quantum 
mechanical treatment, for example time-dependent density functional theory, of a solute molecule enclosed in 
a molecule-shaped cavity [25] surrounded by a polarizable continuum. Mixed quantum/classical calculations 
treat the solvent molecules using molecular mechanics or molecular dynamics. Effective fragment potentials 
account for solvent effects using discrete solvent molecules with distributed multipoles and polarizability ten-
sors derived from ab initio calculations [26]. While harder to implement than the simple continuum-based 
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equations presented above, computational approaches to solvent effects are better able to account for solvato-
chromic shifts of electronic spectra. Solvent effects on the lineshape of electronic spectra also continue to be 
of interest [27]. We will examine the topic of solvent contributions to the lineshape in the next chapter, where 
the relationship between absorption and resonance Raman spectra is presented.

11.11 SUMMARY

In this chapter we have used group theory to derive selection rules for electronic transitions of molecules. 
The basis for the approach is the approximate description of electronic states in terms of occupied molecular 
orbitals of definite symmetry. The state symmetry is derived from the direct product of the symmetries of 
the occupied orbitals. We found that the totally symmetric vibrations contribute to an electronic transition, 
as Franck–Condon progressions, whenever the excited state geometry is displaced along that normal coor-
dinate, relative to the ground state. The point group of a molecule is based on its equilibrium geometry, and 
while selection rules derived on this basis are emphasized, the participation of nontotally symmetric vibrations 

Table 11.4 Absorption maximum of betaine-30 in various solvents

Solvent Dielectric constant

�ν max, cm−1, of 

betaine-30

1 n-hexane 1.9 10,800

2 carbon tetrachloride 2.2 11,400

3 m-xylene 2.4 11,600

4 toluene 2.4 11,800

5 benzene 2.3 11,900

6 diethylamine 3.6 12,400

7 m-dichlorobenzene 5.0 12,900

8 tetrahydrofuran 7.6 13,100

9 n-propylacetate 6.0 13,100

10 fluorobenzene 5.4 13,300

11 chloroform 4.8 13,700

12 pyridine 12.4 14,100

13 dichloromethane 8.9 14,400

14 acetophenone 17.4 14,400

15 acetone 20.7 14,700

16 N,N-dimethylacetamide 37.8 15,300

17 N,N-dimethylformamide 36.7 15,300

18 aniline 6.9 15,500

19 dimethylsulfoxide 46.7 15,700

20 acetonitrile 37.5 16,100

21 ethanol 24.5 18,100

22 N-methylacetamide 191.3 18,200

23 formamide 111.0 19,800

24 N-methylformamide 182.4 18,900

25 methanol 32.7 19,400

26 water 78.4 22,100

Source: C. Reichardt, Molecular Interactions Vol. 3, ed. H. Ratajczak and W. J. Orville–Thomas, John–Wiley and 
Sons, Chichester, 1982.



288 Electronic spectroscopy

permits transitions that would be forbidden in the rigid molecule. Nontotally symmetric vibrations are also 
active in electronic transitions that are accompanied by a change in symmetry; i.e., when the ground and 
excited state geometries belong to different point groups. Transitions which derive from a breakdown in the 
Born–Oppenheimer approximation are said to be vibronically allowed. They result from coupling of electronic 
states via nontotally symmetric vibrations. In some cases, such coupling results in splitting of otherwise degen-
erate states, and the molecule may distort to a less symmetric geometry (the Jahn–Teller effect).

We have also considered the many paths taken by a molecule after it has been promoted to an excited 
electronic state. Nonradiative transitions back to the ground electronic state, resulting from perturbations 
to the Born–Oppenheimer approximation, compete with emission. Vibrational relaxation within the excited 
electronic state, along with solvent relaxation, often precedes emission, leading to the Stokes shift between the 
absorption and emission maxima. In the event that excited state potentials of different states cross, nonadia-
batic transitions may take place, leading to effects such as predissociation and intersystem crossing. A myriad 
of dynamical effects can exert their influences on the absorption and emission spectra. In the next chapter, 
we will examine a formalism that enables us to consider these events in the time domain, and explore the 
connection between electronic spectroscopy and resonance Raman spectroscopy.

PROBLEMS
 1. Find the state symmetries that derive from the ground and first excited electronic configurations of N2, 

F2, and CO. What transitions are possible between states?
 2. Verify that the wavefunction ψ = π+1(1)π−1(2) − π+1(2)π−1(1), discussed in Section 11.2.2, is odd with 

respect to reflection through the xz plane. This can be done by first showing that the σ̂ xz operation 
 converts the angle ϕ to −ϕ. The π±1 MOs contain the function exp(±iϕ).

 3. The bond length of CO is 1.128 Å in the ground electronic state and 1.370 Å in the first excited state. 
The vibrational frequency �νe is 2170 cm−1 in the ground state and 1172 cm−1 in the excited state. Sketch 
the Franck–Condon profile of the CO absorption band, indicating the relative intensities and peak 
frequencies.

 4. The absorption spectrum of I2 has E00/hc = 15,677 cm−1, and the onset of the continuum is at 19,735 cm−1. 
The excited state dissociates to I(2P3/2) + I(2P1/2), which is 7589 cm−1 above the energy of two ground state 
iodine atoms. Find the dissociation energies ′D0  and ′′D0 .

 5. The SO2 molecule, analogous to H2O, has a 1A1 ground electronic state with the valence electronic 
configuration …(1a2)2(4b2)2(6a1)2(2b1)0 and low-lying excited singlet states of symmetry 1B1, 1A2, and 1B2. 
Account for the configurations of these excited states. Which of these states are E1-allowed? Experiment 
reveals that weak absorption in the range 280 to 340 nm is due to the transition 1A1 → 1A2. How does 
this transition become allowed?

 6. The ground electronic state of Cr3+ in an octahedral field is 4A2g, which derives from a t g2
3  configuration. 

Is this state subject to Jahn–Teller distortion?
 7. The Ti H O( )2 6

3+ ion shows an electronic transition which is split by the Jahn–Teller effect. Derive the 
symmetries of the metal–ligand vibrations of an ML6 complex of D4h symmetry. Suppose that Ti H O( )2 6

3+ 
is distorted by virtue of moving the two ligands along the z direction closer to the metal (“z-ligands 
in distortion”). What is the symmetry of the ground state configuration? What are the symmetries of 
the states deriving from the excited-state configurations in the distorted complex? What vibrations are 
 responsible for vibronic activity of the 2B2g → 2A1g and 2B2g → 2B1g electronic transitions?

 8. Verify that the normal mode symmetries of octahedral ML6 are as given in Section 11.6.
 9. The compound shown below has λmax = 736 nm in hexane and 553 nm in water. Explain the basis for the 

solvent shift.

H3C

H3C

N NO
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 10. Using perturbation theory, derive the following expression for the matrix element pertinent to 
 radiationless relaxation (Section 11.8).
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 How does this result compare to the vibronic coupling responsible for activation of nominally 
forbidden electronic transitions? Does this problem explain how the neglect of the matrix element 
ψ ψg k eQ∂ ∂2 2  might be justified? ([13] may be helpful for this problem.)
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12

Raman and resonance Raman spectroscopy

12.1 INTRODUCTION

The subject of Raman scattering has already been investigated in several chapters. Here, we want to tie 
together various theoretical approaches and introduce the topic of resonance Raman scattering, in which 
the frequency of the exciting radiation falls within an electronic absorption band. The selection rules and 
polarization properties of Raman scattered light are considered for both off-resonance and resonance Raman 
experiments. We also introduce the very interesting topic of surface-enhanced Raman spectroscopy (SERS). 
We are concerned here with vibrational Raman scattering in the absence of resolved rotational subbands, 
but we do consider the influence of rotational motion and vibrational dynamics on the Raman lineshape. 
In effect, Raman spectroscopy is a two-dimensional experiment, in that the intensity depends on both the 
incident and scattered light frequency. The Raman spectrum is represented by the intensity of scattered light 
as a function of the frequency shift Δν = ν0 − νs between the incident (0) and scattered (s) radiation. Peaks in 
this spectrum correspond to transitions between vibrational levels within the ground electronic state. On 
the other hand, the Raman excitation profile (REP) is the intensity of a particular normal mode as a function 
of the incident frequency ν0. The dependence of the Raman intensity on the incident and scattered light fre-
quency is illustrated in Figure 12.1. As the incident frequency is tuned, the intensities of bands in the Raman 
spectrum vary, but the frequency shifts remain the same. The intensity profiles of the various Raman bands, 
as a function of ν0, reflect dynamics taking place in the excited electronic state.

In this chapter, we introduce two approaches that are useful in the interpretation of resonance Raman 
scattering. One of these theories, called transform theory, is based on the Kramers–Kronig relationship 
between the real (scattering) and imaginary (absorption) parts of the polarizability. The other is a time-
dependent approach, sometimes called wave packet theory, useful for describing spectra which involve more 
than one potential energy surface: electronic absorption and emission spectra and Raman excitation profiles. 
Both of these approaches take advantage of the relationship between Raman excitation profiles and absorp-
tion and emission profiles involving the resonant electronic state.

We begin with the Kramers–Heisenberg–Dirac (KHD) expression for the polarizability as expressed in 
Chapter 4 and follow the presentation of Albrecht [1] to derive the selection rules for Raman scattering both 
on- and off-resonance. We then analyze the depolarization ratio, which is the relative intensity of depolarized 
and polarized light scattering. (See Chapter 6 for a discussion of the experimental arrangement for measuring 
these.) This will show how off-resonance Raman scattering can be used to determine symmetries of modes and 
molecules, as well as dynamics in the ground electronic state. In resonance Raman spectroscopy, depolariza-
tion ratios reveal details of the resonant excited electronic states, as well as mode symmetries. The lineshape 
of a band in the Raman spectrum depends on dynamics that take place in the ground electronic state, while 
the shape of the Raman excitation profile reveals dynamics in the excited electronic state. In Section 12.6, 
we examine how the electromagnetic fields associated with electronic resonances of metal nanoparticles lead 
to enhanced Raman scattering and even single molecule detection. In Chapter 13, we will show that Raman 
scattering can be viewed as a nonlinear (third-order) spectroscopic technique and we will examine a unified 
formalism that encompasses Raman and fluorescence emission.
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12.2 SELECTION RULES IN RAMAN SCATTERING

In Chapter 10, it was revealed that fundamental transitions in vibrational Raman spectroscopy are allowed 
through the polarizability derivative with respect to normal coordinate, α′ ≡ (∂α/∂Q)0, also called the derived 
polarizability. This operator is actually a second-rank tensor, the form of which dictates the polarization of 
the scattered light relative to that of the incident light. As discussed in Chapter 6, a Raman scattering experi-
ment entails the measurement of both the polarized (Ipol) and depolarized (Idep) components of the intensity, 
where the scattered light is detected having polarization vector polarized parallel or perpendicular to the 
incident polarization vector. (Alternatively, these are sometimes designated as I|| and I⊥.) Ipol and Idep are 
in turn proportional to the differential cross-sections (dσ/dΩ)|| and (dσ/dΩ)⊥. We focus on the transition 
polarizability tensor αif for which the square modulus gives the intensity. The components of this tensor are 
matrix elements of the polarizability operator connecting initial and final states. The differential Raman 
cross-section for the i → f transition is related to the polarizability tensor in the laboratory frame of reference.
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The unit vectors ê0 and ê s point along the polarization directions of the incident and scattered radiation; their 
role is to project out the part of the tensor αif  relevant to the experimental situation. ω0 and ωs are the angular 
frequencies of the incident and scattered radiation. Equation 12.1 contains the Cartesian tensor αif (in units 
of volume) having elements such as (αXX)if , (αXY)if , etc., where X, Y, and Z are laboratory directions. If the 
polarizability is in MKS units, the right-hand side of Equation 12.1 should be divided by (4πε0)2.

The KHD expression, on the other hand, is conveniently related to the polarizability in the molecule frame 
of reference.
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Equation 12.2 expresses the transition polarizability, a function of the incident frequency ω0, as a matrix ele-
ment of the polarizability operator connecting initial and final states. The transition polarizability is written 
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Figure 12.1 Raman spectra of 4-[2-(4-dimethylaminophenyl)ethenyl]-1-methylpyridinium iodide in water, at 
several excitation frequencies. (Courtesy of Dr. Xuan Cao, PhD thesis, University of Idaho, 1998.)
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here as a Cartesian tensor where ρ and σ are directions x, y, z in the molecule frame. Equation 12.2 is taken 
from Equation 4.57 with the addition of the level dependent damping term iΓn, which accounts for the finite 
lifetime τ ∝ 1/Γn of the intermediate state (see Section 4.4.2). The factor Γn is the homogeneous linewidth of 
the electronic transition, that is, the population decay rate due to radiative and nonradiative mechanisms. We 
have several tasks at hand to connect the above expressions to experiment: we need to obtain the tensor αif in 
the molecular frame from Equation 12.2 and then project out the desired components to find the differential 
cross-section dσif/dΩ appropriate to the experimental scattering geometry. This treatment exposes how the 
polarizability derivative and the transition polarizability are related.

Let us look more closely at the KHD equation. The ground, intermediate and final vibronic states of 
Equation 12.2 can be written according to the Born–Oppenhiemer (BO) approximation as

 i r Q Q gg
g= ≡ψ χ( ; ) ( )0 0  (12.3)

 n r Q Q ee
e= ≡ψ χ( ; ) ( )v v  (12.4)

 f r Q Q gg
g= ≡ ′′′′ψ χ( ; ) ( )v v  (12.5)

Equations 12.3–12.5 consider a Raman transition from the ground vibronic state to a given final vibrational 
level v″ within the ground electronic state. As per the usual notation, r and Q denote the electronic and 
nuclear coordinates, respectively. The vibrational wavefunctions are assumed to be separable into 3N – 6 one-
dimensional harmonic oscillator wavefunctions. Thus the pertinent states are more completely expressed as

 g r Q Q Q Qg
g g g

N0 0 1 0 2 0 3 6= −ψ χ χ χ( ; ) ( ) ( )... ( )  (12.6)

 e r Q Q Q Qe
e e e

NNv v v v3= − −ψ χ χ χ( ; ) ( ) ( )... ( )1 2 61 2 3 6  (12.7)

 g r Q Q Q Qg
g g g

N′′ = ′′ −v vψ χ χ χ( ; ) ( ) ( )... ( )1 0 2 0 3 6  (12.8)

The electronic wavefunctions depend parametrically on the set of normal coordinates, and the Raman active 
mode is arbitrarily chosen to be mode 1. The index “v” in Equation 12.7 represents a set of vibrational quan-
tum numbers {v1, v2,…} within the intermediate excited electronic state e. We are assuming that only one 
normal mode undergoes a transition, but all normal modes can potentially contribute to the intermediate 
state. Combination bands and hot bands can be treated similarly, but here we will just examine the possibil-
ity of fundamentals and overtones originating in the ground vibrational state. Using Equations 12.6 through 
12.8 in Equation 12.2, the matrix elements of µ̂  can be evaluated first with respect to the electronic wavefunc-
tions to get the normal-coordinate dependent transition moment μge(Q). This can be expanded in terms of 
the normal coordinates.
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where the first term µge
0   is the Condon approximation to the transition moment. If Equation 12.9 is truncated 

after the linear term, then Equation 12.2 contains terms such as
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Alternatively, the Herzberg–Teller (HT) formulation of the electronic transition moment can be employed. 
In this approach the perturbed wavefunction for state e is

 e e
H Q

E E
rer

i
i

e rr ei

′ = +
−

≠
∑∑  (12.11)

where the sum is over all the normal modes i and all excited states except e, and |e〉 and |r〉 are the unperturbed 
electronic states having energies Ee and Er. (The prime in Equation 12.11 indicates a first-order perturbed 
quantity, not a derivative.) The vibronic coupling matrix element is
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The angle brackets in Equation 12.12 indicate an average over electronic coordinates. The transition moment 
connecting states g and e is thus
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In the Herzberg–Teller approach, the coordinate dependence of the electronic transition moment μge arises 
from intensity borrowing from other electronic states, through the dependence of the Hamiltonian on nor-
mal coordinate. The operator ( / )∂ ∂H Qi 0 is a perturbation to the BO approximation. In either approach, 
Equation 12.9 truncated at the second term or Equation 12.13, the transition moment is linear in the normal 
coordinates, leading to the same selection rules. We continue with Equation 12.9 for now, but at times it is 
convenient to make the following correspondence:
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The BO approximation also allows the electronic and vibrational contributions in the energy denominator 
to be separated:
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where ωeg is the origin (0 – 0 transition) of the electronic transition from g to e, ω1 is the frequency of the 
Raman mode in the ground electronic state, and ω j

e  is the frequency of normal mode j in electronic state e. 
The ground and excited states are assumed here to be harmonic.

12.2.1 Off-resOnance raman scattering

Let us suppose that the frequency ω0 of the exciting radiation is far removed from the resonance frequency, 
e.g., ω0 << ωge, so that the vibrational energy terms of Equations 12.15 and 12.16 can be neglected compared to 
ωeg − ω0 and ωeg + ω0 in the energy denominators of Equation 12.2. The damping term can also be neglected 
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in this limit, as it is on the order of a vibrational frequency. Keeping only the Condon approximation transi-
tion moments then leads to
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The quantities 〈0|v〉 and 〈v|v″〉 are vibrational overlaps, the squares of which are the Franck–Condon (FC) 
factors discussed in Chapter 11. Again, the summation index v is shorthand notation for the set of intermedi-
ate state vibrational quantum numbers {v} = {v1v2…v3N−6}. In the harmonic approximation, the multimodal 
overlaps are factored into 3N – 6 one-dimensional overlap integrals.
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Similarly,
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Having removed the denominator’s dependence on the summation over intermediate vibrational states, we 
can get rid of the identity term, 1 = ∑ v v

v
. This gives
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We have used 0 0′′ = ′′v vδ , which follows from that fact that the states 0 and v″ both belong to the ground 
state potential surface. Equation 12.21 describes Rayleigh scattering, for which the initial and final vibra-
tional states are the same. Note that this expression poses no restrictions in terms of selection rules: all mol-
ecules are active in Rayleigh scattering.

To obtain Raman scattering, we need the part of the transition moment that depends on normal coordi-
nate. The contribution of the polarizability which is linear in Qi has terms in the numerator such as
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where the derivative of the transition moment (∂μge/∂Qi)0 is defined as µgei( ) . Again, the summation over inter-
mediate vibrational states can be removed when the exciting frequency is far from resonance, yielding
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For harmonic oscillators, the matrix element 〈0|Qi|v″〉 vanishes unless v″ = 1, in keeping with the previously 
introduced selection rules for Raman scattering. The term αρσ

( )i  can now be associated with the polarizability 
derivative, ( )∂ ∂αρσ / Qi 0.
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More generally, allowing for a vibrationally excited initial state v′ ≠ 0, the matrix element of the normal 
coordinate contributing to ( )αρσ ′ ′′v v  is
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The transition polarizability ( )αρσ ′ ′′v v  is related to the polarizability derivative through
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iQ  (12.25)
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The selection rule Δv = ±1, which applies when both mechanical and electrical anharmonicity are 
absent, derives from the matrix element of the normal coordinate in Equation 12.25. The condition 
that the polarizability derivative αρσ

( )i  be nonzero leads to the gross selection rule and is a function of the 
symmetry of the mode and of the molecule. Raman activity of a normal mode requires that αρσ

( )i  not van-
ish for at least one combination of molecule-frame Cartesian directions ρ and σ. Now there are always 
allowed electonic states for which (μge)ρ is nonzero, but what are the conditions for which (∂μge/∂Qi)0 is 
nonzero? To examine this more closely, let us return to the HT formalism of Equation 12.14. We require 
the matrix element Her

i  (Equation 12.12) connecting two E1-allowed excited states to be nonzero. To be 
allowed, the states e and r must transform according to irreducible representations to which the coor-
dinates x, y, and z belong. The operator (∂H/∂Qi)0 belongs to the same ir. rep. as the normal coordinate 
Qi. Therefore, Raman active fundamentals are those for which the normal coordinates transform as 
 quadratic functions of the Cartesian coordinates, such as x2 − y2, xy, and other products and squares of 
x, y, z. These functions are found on the right-hand side of the character table. These are the same selec-
tion rules that were introduced in Chapter 10 on the basis of the symmetry of the polarizability tensor. 
In Section 12.3 we examine how the molecular symmetry dictates the form of the molecule-frame tensor 
and thus the polarization properties of the scattered light.

12.2.2 resOnance raman scattering

Figure 12.2 shows a Raman spectrum of I2 in cyclohexane, excited at a wavelength within the electronic 
absorption band of I2. The concentration of I2 in this sample is on the order of 10−3 M, yet the Raman intensi-
ties of I2 are comparable to those of the solvent. Several overtones are observed; thus it is apparent that the 
selection rule Δv = ±1 does not hold for resonance Raman. Particularly for small molecules, such as the spec-
trum of liquid Br2 in Figure 9.8, resonance excitation of the Raman spectrum leads to activity of high-order 
overtones. In this section, we examine the selection rules operative in resonance Raman spectra like those of 
Figures 9.8 and 12.2.

Let us back up to the point just before Equation 12.17, and not make the assumption that the incident 
frequency ω0 is far from resonance. We assume that ω0 is close to the origin ωeg of an allowed electronic 
transition. Then we can neglect the anti-resonance term (the first term in Equation 12.2), because it is small 
compared to the term with the small energy denominator. We shall also limit the sum over intermediate 
states to vibrational states v within the resonant excited electronic state e. We are thus ignoring the possibility 
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of simultaneous resonance with more than one electronic transition. Keeping the terms up to linear in Qi, we 
may write the transition polarizability ( )αρσ ′ ′′v v  as a sum of two terms:

 ( )αρσ ′ ′′ ′ ′′ ′ ′′= +v v v v v vA B  (12.27)

called the Albrecht A and B terms. The first of these comes from the Condon approximation. It is
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Here, �ωe gv v, ′  is the energy difference between the intermediate |ev〉 and initial |gv′〉 vibronic states. Equation 
12.28 already indicates that incident frequencies close to an allowed transition frequency can lead to intensity 
enhancement, through an increase in the transition polarizability. Typical enhancement factors, that is, intensity 
increases compared to off-resonance Raman, are on the order of 105 to 106, but the enhancement does not apply 
to all normal modes, as we shall see.

Again, the label v represents a collection of vibrational quantum numbers in the intermediate (excited 
electronic) state: {v} = v1, v2,… v3N−6, and v′ and v″ are similar collections of vibrational quantum numbers 
for the initial (v′) and final (v″) vibrational states, both of which are within the ground electronic state. 
Assuming harmonic vibrational modes that are the same frequency in the ground and excited electronic 
states, we can write
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Equation 12.29 can be readily adapted to the case where the excited state vibrational frequency differs from 
that of the ground. In any event, the dependence of the energy denominator on intermediate vibrational 
states prevents the sum over v from being removed as was done in the off-resonance case. The multimodal 
vibrational overlaps in the numerator of Equation 12.28 (see Equations 12.18 and 12.19) are the basis for 
selection rules in resonance Raman scattering. Recall the Franck−Condon factors introduced in Chapter 11, 
which are most important for totally symmetric normal modes that are displaced in the excited electronic 
state. If a particular mode j is not Franck−Condon active, then the (one-dimensional) vibrational overlaps 
reduce to ′ = ′v v v ,vj j j jδ  and v v v ,vj j j j′′ = ′′δ . Consider for example a transition from {v′} = (0,0,0….) to {v″} = 
(v″1,0,0…). The transition polarizability vanishes unless the excited state potential is displaced with respect to 
that of the ground state along normal coordinate Q1. Thus vibrational modes which are not Franck−Condon 
active are not allowed by the A term, since Equation 12.28 in this case only permits v′ = v″, which corresponds 
to Rayleigh scattering. Conversely, totally symmetric modes that contribute to the vibrational progression of 
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Figure 12.2 Raman spectrum of I2 in cyclohexane, excited at 514.5 nm. The fundamental and first and second 
overtones of the I–I stretch are observed. The (*) marks a solvent vibration.
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the g → e transition in electronic absorption are active in resonance Raman, as the overlap integrals in the 
numerator of Equation 12.28 do not vanish. Thus the totally symmetric modes that are enhanced in the reso-
nance Raman spectrum are those which correspond to the geometry change of the molecule. These modes are 
said to be “A-term enhanced” or “Franck−Condon enhanced.” Note that the selection rule Δv = ±1 no longer 
applies in this situation: long FC progressions in absorption are associated with overtones Δv = ±2, ±3,… in 
the resonance Raman spectrum. As in the resonance Raman spectrum of CH3I shown in Figure 12.3, excita-
tion wavelengths resonant with an electronic transition can result in the appearance of many overtones of 
the Franck−Condon active modes. In CH3I, the excited state is dissociative, CH3I → CH3 + I, leading to a long 
progression in the C–I stretch. In larger molecules, overtones are less frequently observed in the resonance 
Raman spectrum. This is something we return to in Section 12.5 as it is easier to understand in the time-
dependent view.

The Albrecht B term is obtained by employing Equation 12.9 for the transition moment and keeping terms 
which are linear in the normal coordinate. This results in quite different selection rules than those from the 
A term, and we show next that the B term is responsible for resonance Raman activity of nontotally symmet-
ric vibrations. It is convenient to employ the Herzberg–Teller formalism in writing the B term.
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Figure 12.3 Resonance Raman spectrum of CH3I excited at 266 nm, showing the fundamental and 28 over-
tones of the C–I stretch, �ν3

1500 cm≈ − . (Reprinted with permission from Imre, D. et al., J. Phys. Chem. 88, 3956, 
1984. Copyright 1984 American Chemical Society.)
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Mode 1 is the one under consideration, and we continue to use shorthand notation for the multimodal vibra-
tional states. Equation 12.30 emphasizes the importance of allowed electronic states r close in energy to the 
resonant state e. Let us consider the B term as it pertains to a nontotally symmetric vibration in which the ini-
tial state is the ground vibrational state. As we have seen, nontotally symmetric modes do not contribute to 
vibrational progressions in electronic spectra unless there is a change in symmetry in the excited electronic 
state. In the absence of Franck−Condon activity, the overlap 〈v′|v〉 = 〈0|v1〉〈0|v2〉….〈0|v3N–6〉 vanishes unless 
v1 = 0. (As for the remaining modes 2 through 3N – 6, we need only consider overlaps for those modes that are 
displaced in the excited state. Intermediate states having an arbitrary number of vibrational quanta invested in 
these modes contribute to the sum over states.) Thus the first overlap in the first term in the numerator of Equation 
12.30 selects the v1 = 0 intermediate state. The quantity 〈v|Q1|v′′〉 contains the term 〈01|Q1|v″1〉, which vanishes 
unless v″1 = 1. Thus this term allows for enhancement of the fundamental transition of mode 1 when the 
radiation is resonant with the g0 → e0 transition. Similarly, the second term results in activity of the funda-
mental when the radiation is resonant with the g0 → e1 transition. Note that the fundamental transition of a 
nontotally symmetric vibration is active in the resonance Raman spectrum if that vibration is responsible for 
vibronic coupling of two nearby electronic states. The intensities of nontotally symmetric vibrations are gen-
erally weaker than totally symmetric ones in resonance Raman, as the latter are symmetry allowed and the 
former depend on breakdown of the Born–Oppenheimer approximation. The Albrecht C term, not given here, 
employs an HT expansion of the ground electronic state. It becomes important for molecules with low-lying 
excited electronic states.

In the next section, we examine how the depolarization ratio can be exploited to distinguish between 
totally and nontotally symmetric vibrations in ordinary and resonance Raman.

12.3 POLARIZATION IN RAMAN SCATTERING

The problem at hand is to convert molecule-frame tensor elements αxx, αxy, etc. to the necessary lab-frame 
components. In the conventional 90° scattering arrangement depicted in Figure 6.5, we require αZZ for the 
polarized spectrum and αZX for the depolarized spectrum. We are interested here in a sample of randomly 
oriented molecules, as in the gas or liquid phase. One approach is to employ direction cosines to project each 
molecule-frame inertial axis onto the desired lab-frame direction. This approach has been employed in the 
older literature (see [2]), but it is somewhat clumsy because the averages (integrals) over molecular orientation 
have to be done on a case by case basis. In Chapter 8, the Wigner rotation matrices were introduced in order 
to connect the lab-frame and molecule-frame polarizabilities (see Equation 8.62). The use of Wigner rotation 
functions is convenient because the symmetry properties of these functions can be exploited in performing the 
orientational averages. The polarizability is expressed as a spherical, rather than Cartesian, tensor. The formu-
las for relating the spherical tensor components αM

J  to the Cartesian components are given in Chapter 8. Each 
spherical tensor component in the molecule frame can be rotated into the lab frame as described in Section 8.6. 
The equations of that section were expressed in terms of the polarizability for rotational Raman scattering, but 
they apply as well to the case of vibrational Raman scattering. When we write αM

J  in this chapter, it denotes a 
spherical tensor component of the Raman polarizability.

It is possible, as shown in [3,4], to write down three rotational invariants, ΣJ, which are linear combina-
tions of the αM

J  that are independent of reference frame. These are

 Σ J
M
J

M J

J

=
=−
∑ α

2

 (12.31)

where J = 0, 1, and 2 and M = 0, ±1,…, ±J. Each ΣJ is called an invariant because it is independent of orienta-
tion. By way of analogy, consider how a vector, such as the dipole 

�
µ , a first-rank tensor, has a length which is 

independent of its orientation. The combination µ µ µx y z
2 2 2+ +  is a rotational invariant. As a second-rank tensor, 

the polarizability has three invariants, Σ0, Σ1, and Σ2:
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The invariants in Equations 12.32 are written in terms of the molecule-frame (xyz) components of the polar-
izability. Since they are invariants, we could also have used the lab frame (XYZ) components, which relate 
directly to the measured intensities, in Equations 12.32. Σ0 is called the isotropic part of the polarizability. 
Note that it is proportional to the square modulus of the trace of the polarizability tensor, Σ0 = |Trα|2/3. Σ1 and 
Σ2 are the antisymmetric and symmetric anisotropies, respectively. Σ1 is zero in ordinary Raman scattering 
because α is a symmetric tensor: αρσ = ασρ. It can be nonzero in resonance Raman experiments, as discussed 
below. Σ2 depends on the existence of off-diagonal elements of the polarizability tensor as well as differences 
in the diagonal components, so it represents the deviation of the polarizability from spherical symmetry.

The lab-frame components |αZZ|2 and |αZX|2 can be written as linear combinations of the invariants. As 
shown for example in [3],
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If the molecule-frame tensor α is known, one can write the invariants ΣJ according to Equations 12.32, and 
then use Equations 12.33 to predict the polarized and depolarized intensity. Next, we will examine how sym-
metry principles are applied to the analysis of the depolarization ratio ρ in off-resonance Raman scattering.

12.3.1 POlarizatiOn in Off-resOnance raman scattering

The form of α in the molecule frame reflects the symmetry of the molecule and the symmetry of the vibration. 
The polarizability tensor of a molecule in its equilibrium geometry can always be diagonalized, and thus the 
derived polarizability tensor for a totally symmetric mode preserves this symmetry. Therefore, the Cartesian 
Raman tensor for any totally symmetric mode is of the form

 α =
















a

b

c

0 0

0 0

0 0

totally symmetric vibration (12.34)

Asymmetric top molecules have a ≠ b ≠ c, linear molecules and symmetric top molecules (those having 
threefold symmetry or higher) have two equal components, say a = b ≠ c, and spherically symmetric mol-
ecules have three equivalent diagonal elements a = b = c. For example, the Raman polarizability tensor for 
any totally symmetric mode of a molecule with spherical symmetry, such as SF6 or CCl4, has three equivalent 
diagonal components and Σ2 is zero, as is Σ1.

In contrast, the polarizability tensor for a nontotally symmetric mode has zero trace and is not diagonal. 
First we define the average polarizability α α α α α≡ + + =( )/ /xx yy zz 3 3Tr . This is necessarily a totally symmet-
ric quantity because it is invariant to all symmetry operations. As an operator, α  is responsible for the activity 
of totally symmetric modes, since the selection rules require that Γi × Γα × Γf be totally symmetric, where 
Γi and Γf are the ir. reps. of the initial and final vibrational states. In the case of nondegenerate, nontotally 
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symmetric modes for which Δv = ±1, Γi and Γf are never the same symmetry, so the totally symmetric part of 
the Raman tensor cannot connect two such states.

It is often convenient to separate out the totally symmetric and nontotally symmetric parts of the polar-
izability. We can always take an arbitrary molecule-frame Raman tensor α and divide it up into two parts:

 α α β=
















+
1 0 0

0 1 0

0 0 1

 (12.35)

where the tensor β, called the anisotropy of the polarizability, is given by
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 (12.36)

It is easy to show that Tr β = 0. While the tensor β need not vanish for totally symmetric modes, except for 
molecules of spherical symmetry, for nontotally symmetric modes it is the only surviving contribution to 
α, since the totally symmetric part (Trα) vanishes. The reason that β can be nonzero even for a totally sym-
metric vibration is that it reflects deviations from spherical symmetry, and these may be inherent to the 
molecule. Equation 12.36 assumes that the Raman tensor is symmetric, since we are treating off-resonance 
Raman scattering.

The depolarization ratio ρ = Idep/Ipol is related to the lab-frame components of the polarizability as follows:

 ρ
α

α
= ZX

ZZ

2

2
 (12.37)

This formula assumes the scattering geometry of Figure 6.5. Using Equation 12.33, the depolarization ratio 
in terms of invariants is

 ρ =
+
+
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Since the trace of the polarizability tensor vanishes for any nontotally symmetric mode, such modes have 
Σ0 = 0. Coupled with the fact that Σ1 vanishes in off-resonance Raman, we conclude that the depolarization 
ratio of any nontotally symmetric vibration must be ρ = 3/4. Totally symmetric vibrations have Σ0 ≠ 0, so 
the only general statement one can make is that ρ < 3/4 in this case. In off-resonance Raman scattering, ρ is 
never greater than 3/4. The use of polarization in Raman scattering enables totally and nontotally sym-
metric modes to be distinguished. For molecules symmetric enough for the x, y, and z directions to be 
equivalent (the tetrahedral and octahedral point groups), then clearly ρ = 0 for totally symmetric vibrations. 
Measurement of the depolarization ratio is a powerful way to assign normal modes and deduce symmetry.

The spectrum of CCl4 shown in Figure 12.4 provides an illustration. CCl4 is tetrahedral, and the totally 
symmetric C–Cl stretch at 459 cm−1 has a depolarization ratio near zero, about 0.01. It is not exactly zero in 
the liquid phase, due to interaction-induced contributions to the polarizability tensor. The remaining modes 
are nontotally symmetric vibrations and all have ρ = 3/4. Note the Fermi resonance doublet in the vicinity 
of 760 and 790 cm−1. This pair of peaks is due to anharmonic mixing of the ν3 fundamental and the ν1 + ν4 
combination.

For any normal mode of known symmetry, the character table can be consulted to predict the form of the 
polarizability tensor. We have already seen how this works for totally symmetric vibrations. Now let us look 
at the general case. Consider for example the normal modes of a molecule of C2v symmetry. The quadratic 
functions of Cartesian coordinates and corresponding ir. reps. are given in Table 12.1. Modes of A2 symmetry 
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are Raman inactive, while those of A1, B1, and B2 symmetry are allowed. The Raman tensors for the B1 and B2 
modes are

 α( )B
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 (12.39)

 α( )B b

b

2

0 0 0

0 0

0 0

=















 (12.40)

Equations 12.39 and 12.40 merely account for the correspondence between the symmetry of a function like xz 
and the tensor element αxz. Point groups with degenerate vibrations must be handled with care. For example, 
the E mode of a C3v molecule encompasses the functions (x2 − y2, xy) and (xz, yz). The parentheses enclose 
functions that transform as a pair under the operations of the group. There are necessarily two Raman tensors 
for a doubly degenerate vibration. In this case they are

 α( ) ,E

a b

b a

a

b

a b

= −
































0

0

0 0 0

0 0

0 0

0
 (12.41)

Nafie and Peticolas [2] have tabulated the form of the Raman tensor for a large number of point groups and 
mode symmetries.

12.3.2 POlarizatiOn in resOnance raman scattering

The preceding considerations assume nonresonance Raman scattering. In the resonance Raman experiment, 
the Raman tensor is not necessarily symmetric and the depolarization ratio can exceed the value 3/4. It is often 
possible to predict the depolarization ratio ρ from the form of the resonant electronic state, as shown in [3,4]. 
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Figure 12.4 Raman spectrum of neat CCl4, excited at 514.5 nm. The depolarized spectrum is offset for clarity.

Table 12.1 Quadratic functions in C2v

C2v Function

A1 x2,y2,z2

A2

B1 xz
B2 yz
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Consider the common scenario in which a totally symmetric vibration is A-term enhanced (see Equation 12.28) 
through resonance with a single nondegenerate electronic state. The transition moment for the g → e transi-
tion has a unique direction in the molecule frame, let us say it is the x direction. This means that the only 
nonzero component of the Raman tensor is αxx. Using Equations 12.32 and 12.38, the value ρ = 1/3 is readily 
obtained. On the other hand, a doubly degenerate resonant electronic state results in two equal diagonal 
Raman tensor components, such as αxx = αyy, which leads to ρ = 1/8. When the Raman intensity derives from 
more than one excited electronic state with transition moments in different directions, the depolarization 
ratio depends on excitation wavelength. This is referred to as dispersion in the depolarization ratio.

B-term enhancement can lead to interesting effects such as anomalous polarization, in which ρ > 3/4. 
Anomalously polarized Raman bands have been observed for some heme ring vibrations of hemoglobin and 
ferrocytochrome c [5], and for A2g modes of five-coordinate metalloporphyrins [6]. Vibronic coupling of two 
states leads to off-diagonal components of the Raman tensor such that αρσ ≠ ασρ. As shown by Equation 12.38, 
nonzero Σ1 can lead to a depolarization ratio in excess of 3/4.

The explanation of anomalous polarization begins with the same Herzberg−Teller coupling scheme that led 
to Equation 12.30. The perturbed wavefunctions are written as in Equation 12.11, and the vibrational states 
are included in the picture. Let us suppose that the electronic transition g → e is x polarized while g → r is y 
polarized, leading to Raman activity of the fundamental transition of a nontotally symmetric vibration of 
symmetry Γv = Γx × Γy. As shown above, this transition is resonant with the |e0〉 and |e1〉 intermediate states. 
When electronic state e is perturbed by vibronic coupling to state r, symmetry requires that |e0〉 mix with 
state |r1〉 and |e1〉 with state |r0〉. The perturbed intermediate states are thus
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where ħωr1 is the energy of the unperturbed state |r1〉, ħωe0 is that of |e0〉, etc. Using the above states to write 
the Albrecht B term leads to the following xy and yx Raman tensor components:
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The αxy component dominates when the incident frequency is resonant with the g0 → e1 transition, while the 
αyx term is resonant with the g0 → e0 transition. If the origins of state r and e are well separated compared to 
a typical vibrational energy, then ωr1 − ωe0 ≈ ωr0 − ωe1 ≈ ωr − ωe. If, in addition, ω0 is far from resonance, then 
αxy ≈ αyx. Thus in nonresonance Raman scattering, the Raman tensor is symmetric, Σ1 vanishes, and ρ = 3/4 for 
a nontotally symmetric vibration. Close to resonance with the 0 – 1 transition, on the other hand, we have 
αxy >> αyx, while for ω0 close to the frequency of the 0 – 0 transition, αyx >> αxy. When the energy of exciting 
radiation is midway between the 0 – 0 and 0 – 1 resonances, the relationship αxy ≈ −αyx results. This leads to 
Σ1 ≠ 0, while Σ2 = Σ0 = 0. Consequently, ρ goes to infinity. The result is that at particular excitation frequen-
cies Raman bands for vibrations active in vibronic coupling show up in the depolarized but not the polarized 
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spectrum. This is illustrated in the Raman spectrum of ferrocytochrome c in Figure 12.5. Note the 1585 cm−1 
mode which is quite strong in the depolarized spectrum, but absent in the polarized. It is also apparent that 
the ρ > 1 for the 1313 cm−1 mode.

12.4  ROTATIONAL AND VIBRATIONAL DYNAMICS 
IN RAMAN SCATTERING

In this section, we examine the lineshape of a Raman transition using the time-correlation function (TCF) 
approach introduced in Chapter 5. The dynamics which take place in the ground electronic state determine 
the intensity as a function of frequency shift Δν = ν0 − νs. For ease of illustration, we assume a molecule with 
axial symmetry (a linear or symmetric top molecule), for which the Raman tensor of a totally symmetric 
mode takes the form

 α
α

α
α
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The average polarizability is thus α α α= +⊥( )/||2 3. Let us define the anisotropy γ (a scalar quantity) as α⊥ − α||. 
We express these in terms of polarizability derivatives α ′  and γ ′, where α α= ′Q  and γ = γ ′Q.

In Chapter 8, expressions were presented for the time-correlation functions CVV(t) and CVH(t), the Fourier 
transforms of which give polarized and depolarized rotational Raman scattering, respectively. The tensor 
components αM

J  of Section 8.6 are those for the molecule in its equilibrium geometry. Here, we reinterpret 
these αM

J  as components of the Raman tensor, so we can recycle Equations 8.67 and 8.71 to apply to vibra-
tional Raman scattering. We also make use of the fact that the Wigner function D J

00( )θϕχ  is equivalent to the 
Legendre polynomial PJ(cosθ). The required spherical tensor components (see Table 8.2) are
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Figure 12.5 Anomalous polarization in the resonance Raman spectrum of ferrocytochrome c. (From 
Hamaguchi, H.: Advances in Infrared and Raman Spectroscopy. 1985. Copyright Wiley-VCH Verlag GmbH & 
Co. KGaA. Reproduced with permission.)
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The polarized and depolarized spectra and the corresponding time-correlation functions can be expressed in 
terms of isotropic and anisotropic components (see Section 8.6):
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Since the total intensity I I d= ∫ ( )ω ω  integrated over the band is proportional to the TCF at zero time, we 
also have

 I I IVV = +iso anis
4

3  (12.48)

 I IVH = anis  (12.49)

Equations 12.48 and 12.49 again lead to the relationship ρ = IVH/IVV ≤ 3/4. The isotropic and anisotropic TCFs 
are given by

 C t QQ tiso( ) ( ) ( )= ′α 2  (12.50)

 C t QQ t P tanis( ) ( ) ( ) [cos ( )]= ′γ θ2
2  (12.51)

The angle θ(t) is that of the symmetry axis with respect to its direction at t = 0. More generally, the anisotropic 
TCF is given by

 C t t QQ tanis( ) ( ) ( )= ′ ⋅ ′β β  (12.52)

where β ′ is the derived polarizability tensor from Equation 12.36.
Note that Ciso(t) is independent of molecular orientation; the lineshape of the isotropic spectrum reflects 

only vibrational dynamics. The anisotropic spectrum, on the other hand, depends on both vibrational and 
reorientational dynamics. The angle brackets in Equations 12.50 and 12.51 indicate an equilibrium average 
over vibrational, rotational and translational degrees of freedom. In arriving at this result, it has been implic-
itly assumed that the motions of different molecules in the system are uncorrelated; for example, there are no 
pair terms Q1Q2(t). These pair terms are important in liquids with strong orientation-dependent (e.g., dipolar) 
interactions, but are neglected here. If the vibrational and rotational motions are uncorrelated, the rotational 
and vibrational degrees of freedom can be separated, and the average in Equation 12.51 can be written 

 C t QQ t P tanis( ) ( ) ( ) [cos ( )]= ′γ θ2
2  (12.53)

Equation 12.53 suggests a way to obtain the vibrational and reorientational TCFs from experiment. First, 
we use correlation functions �C t C t C( ) ( )/ ( )= 0  normalized to unity at t = 0. Then we can define the vibrational 
and rotational TCFs as follows:
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and

 �C t C t C tanis vib rot( ) ( ) ( )( )= 2
 (12.55)
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where the rotational correlation function is given by

 C t P tJ
Jrot

( )( ) [cos ( )]= θ  (12.56)

(Note that the rotational TCF is automatically normalized to unity at time zero, since P2(cosθ) = 1 when θ = 0.) 
C trot

( )( )2  can be obtained from Raman scattering by Fourier transforming the isotropic (Iiso) and anisotropic 
(Ianis) spectra to get the corresponding correlation functions and then taking the ratio:
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C t
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 (12.57)

The infrared spectrum can be treated similarly. Still assuming a molecule with axial symmetry, the direction 
of the dipole moment derivative μ′ coincides with the symmetry axis. The infrared TCF is

 C t QQ t t QQ t tIR u u( ) ( ) ( ) ( ) ( ) ( ) cos ( )= ′ = ′⋅μ μ θ2 2� �  (12.58)

where û  is a unit vector pointing along the symmetry axis. The normalized correlation function factors into 
vibrational and reorientational parts:

 �C t C t C tIR vib rot( ) ( ) ( )( )= 1  (12.59)

There are numerous pitfalls to the determination of vibrational and rotational TCFs from Raman and infra-
red spectra. The neglect of vibration–rotation coupling is not valid if the vibrational motion greatly perturbs 
the moment of inertia, or if the intermolecular interactions are strongly dependent on orientation. In addi-
tion, theory suggests that vibrational contributions to infrared, isotropic Raman and anisotropic Raman 
linewidths differ [7]. Experiments have found different rotational relaxation times using different Raman 
lines of the same molecule [8]. This suggests that the separation of vibration and rotation in Equations 12.55 
and 12.59 may not be valid even in the absence of strong vibration–rotation coupling. Also, the results of this 
section are based on the neglect of interaction-induced effects, which influence infrared, isotropic Raman, 
and anisotropic Raman spectra differently. Even when the separation of rotational and vibrational correla-
tion functions is valid, practical considerations can limit experimental determination of TCFs. For example, 
the vibrational transition of interest must be well separated from other bands and should not be affected 
by isotope splittings or overlapping hot bands. More complicated rotational correlation functions result for 
molecules with less than axial symmetry (Equation 12.52, see [2]). We have also neglected inhomogeneous 
broadening, to be discussed below. In spite of these limitations, we can glean considerable insight about 
liquid-state dynamics from the analysis of Raman and infrared band shapes.

Let us now focus on the vibrational correlation function 〈QQ(t)〉 obtained from the isotropic Raman 
band. The topic of vibrational relaxation is still the subject of much current research. Nonlinear spectro-
scopic techniques, to be discussed in Chapter 14, are more well-suited to the determination of vibrational 
relaxation than is analysis of the band shapes of vibrational spectra. Here, we wish to consider how vibra-
tional dynamics contribute to Raman and infrared spectra in general and reveal intermolecular interac-
tions. The literature of vibrational relaxation distinguishes two different mechanisms, population relaxation 
and dephasing, introduced in Chapter 4, and their associated timescales T1 and T2. The rate at which the 
population of the excited vibrational state relaxes is 1/T1. Although this process includes radiative as well as 
nonradiative relaxation, the former is typically slow in vibrational spectra, and the major contribution to 
population decay is from nonradiative relaxation. In the gas phase, inelastic collisions lead to nonradiative 
decay of excited vibrational states. Elastic collisions, on the other hand, can perturb the phase of a vibrating 
molecule without depopulating the excited vibrational state. Loss of phase coherence leads to destructive 
interference and thereby contributes to decay of the vibrational TCF. This dephasing process perturbs the 
amplitude of the vibration and thus contributes to Cvib(t). In the liquid phase, the idea of a collision is not so 
well defined, but we may still discuss vibrational relaxation in terms of T1 and T2 processes. Experimental 
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observations have generally found T1 to be larger than T2, with T2 in the range 10−10 to 10−12 s. Equation 4.100 
leads to T T2 12≤  . The ratio of the two relaxation times varies a great deal. Perhaps the most extreme case is 
liquid N2, where T2 is 150 ps and T1 is as long as 60 sec! (see [9,10]). For the methyl group symmetric stretch 
of CH3CCl3, on the other hand, T1 is only about twice as large as T2, the latter being 2.4 ps [11]. The qualita-
tive explanation for this comparison is the following: In order for a vibrationally excited molecule to decay 
nonradiatively, it must lose energy to other degrees of freedom. In a diatomic, the vibrational energy is not 
so easily deposited into rotational and translational degrees of freedom because of the energy mismatch. 
Larger molecules provide more channels for the degradation of vibrational energy because other vibrational 
states, including overtones and combinations, can soak up the energy lost by the relaxing mode. Relaxation 
rates also depend on the environment due to the contribution of intermolecular energy transfer. Recall the 
exponential energy-gap law for nonradiative relaxation that was exemplified by the analysis of vibrational 
overtones of liquid Br2, presented in Section 9.5.2.

If a vibrating molecule had a constant, undamped frequency ωvib, then Q(t) and Cvib(t) would just be 
proportional to exp(iωvibt), as shown in Problem 3. This would lead to a delta function spectrum: a spike at 
ω  = ωvib. In the condensed phase, however, the vibrational frequency fluctuates in time through interac-
tions with other molecules, causing band broadening. We need to perform an average of this fluctuating 
frequency, using the Kubo model introduced in Chapter 6. Making an adiabatic separation of the vibrational 
and  rotational–translational degrees of freedom, the vibrational frequency is an instantaneous function of 
molecular positions and orientations.* We can then consider the frequency to be a function of time, ω(t), and 
perform a time average inside the expression for the vibrational correlation function.

 QQ t i t dt

t

( ) exp ( )∝ ′ ′










∫ω

0

 (12.60)

(Equation 12.60 omits the scaling factor since we are interested in normalized correlation functions.) Now, 
Equation 12.60 is not a convenient expression to work with: it involves the equilibrium average of an expo-
nential function. There is a way to replace such an average by a sum of exponential functions of what are 
called cumulant averages, but unfortunately it is an infinite series. (See [12] for a discussion of the cumulant 
expansion.) The good news is that it is sufficient to truncate the cumulant expansion. Considering ω(t) to be 
a stochastic variable, that is, a random function of time, it is valid to perform the cumulant average to second 
order. This gives rise to

 QQ t i t i dt t t t

t

( ) exp( )exp ( ) ( )∝ − ′ − ′ ′










∫ω δωδωvib

0

 (12.61)

The quantity δω(t) ≡ ω(t) − ωvib, and 〈δωδω(t)〉 ≡ M(t) (see Equation 6.50) is a time-correlation function 
for solvent-induced fluctuations in the vibrational frequency. These frequency fluctuations give rise to pure 
dephasing, with timescale T2

*. Recall that pure dephasing is a loss of phase coherence without population 
relaxation, while the total dephasing rate 1/T2 includes population relaxation and pure dephasing. The quan-
tity ωvib is interpreted to be the average vibrational frequency; i. e., the first moment of the band. The model on 
which Equation 12.61 is based is physically and mathematically similar to the problem of Brownian motion. 
The vibrational frequency, like the position of a diffusing particle, is considered to be perturbed by random 
forces. The central limit theorem states that when a physical property is subject to a very large number of 
small perturbing influences, it behaves as a Gaussian random variable. This is the limit which leads to the 
second-order cumulant expression of Equation 12.61.

* The word adiabatic here is used in the same sense as in previous discussions of the separation of electronic and nuclear 
timescales. Here, we consider the vibrational motion to be much faster than rotation and translation, so that the vibra-
tional frequency is a function of position and orientation. Since position and orientation depend on time, so does the 
vibrational frequency.
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Calculation of Cvib(t) using Equation 12.61 requires a functional form for M(t). The frequently used Kubo 
lineshape function, introduced in Chapter 6, derives from assuming that the TCF for frequency fluctuations 
relaxes exponentially.

 M t t c( ) exp( / )= −∆2 τ  (12.62)

where Δ is the amplitude and Λ ≡ 1/τc the rate of the frequency fluctuations.
Now we can write the vibrational TCF as follows:

 C t i t tvib vib( ) exp( ) ( )= ω ϕ  (12.63)

where ϕ(t) is the lineshape function of Equation 6.53. Note that, for times much less than τc, ϕ(t) approaches 
a Gaussian function, while at long times the form is exponential.

The lineshape of isotropic Raman scattering is obtained by Fourier transforming Equation 12.63:
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It is apparent that the frequency variable in the Fourier transform is referenced to the average value ωvib, 
which is the first moment of the intensity spectrum. For a symmetric band, ωvib is the band center. Note that 
the time argument in ϕ(t) should be interpreted as the absolute value |t|. Thus the intensity Iiso is an even func-
tion of  ω − ωvib. There are two limits in which Equation 12.64 results in a well-known functional form for the 
lineshape. If the fluctuations which modulate the frequency vary slowly compared to the amplitude; i.e., 
Λ/Δ << 1, then ϕ(t) goes over to a Gaussian function.

 ϕ( ) exp( / ), /t t⇒ − <<∆ Λ ∆2 2 2 1for  (12.65)

The isotropic lineshape in this limit is a Gaussian function centered at ωvib and having a full width at half 
maximum (FWHM) of 2 2 2ln ∆  (see Equation 6.46). Note that in this limit the rate Λ drops out, and the 
line broadening can be considered to result from a static distribution of frequencies with width Δ. This is the 
inhomogeneous broadening or slow modulation limit.

The opposite limit of fast modulation results when Λ/Δ >> 1, in which case an exponential TCF results.

 ϕ( ) exp( / ), /t t⇒ − >>∆ Λ Λ ∆2 1for  (12.66)

On Fourier transforming Equation 12.66, a Lorentzian lineshape is obtained having a FWHM of Δ2/Λ. In 
this limit, the spectral width is much less than the range of perturbed frequencies (see Figure 6.7). The fast 
fluctuations average out the spread in frequencies and the line is said to be motionally narrowed. This limit 
is exemplified by liquid-phase NMR spectra, where a similar analysis of spin relaxation can be employed. It 
is also often observed in vibrational spectra. For example, analysis of the isotropic Raman band of liquid N2 
has found Λ/Δ approximately equal to 30 [9,10]. In the intermediate range, the resulting lineshape is neither 
Gaussian nor Lorentzian, and the broadening is intermediate between homogeneous and inhomogeneous. 
The Kubo lineshape model permits the parameters Δ and Λ to be determined from the observed spectrum.

Figure 12.6 shows Cvib(t) determined from the 2125 cm−1 isotropic Raman band of deuterated dimethyl-
sulfoxide (DMSO-d6) in the neat liquid and in solution with chloroform. The parameters τc and Δ obtained 
from fitting Cvib(t) to the Kubo function ϕ(t) are displayed in Table 12.2. The Raman band from which the 
data in Figure 12.6 were obtained is a symmetric methyl stretch, and lineshape analysis reveals that the slow 
modulation limit is approached, as Λ/Δ is on the order of 0.1. It is apparent that the amplitude Δ is rather 
insensitive to dilution, whereas the correlation time τc in the solution decreases compared to the value in 
the neat liquid. It is reasonable to speculate that dipolar interactions and hydrogen bonding (in the mixture) 
contribute to a lineshape that is close to the inhomogeneous limit.
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There are situations where the source of spectral broadening is truly inhomogeneous, for example, in the 
glass phase where environmental perturbations persist for very long times. In liquid solutions, true inho-
mogeneous broadening can arise from naturally occurring isotopes, or from long-lived interactions such as 
hydrogen bonding. It is then necessary to consider the observed lineshape Iinh to result from a convolution of 
the homogeneous lineshape Ihomo and the distribution function P(ω) of frequencies:

 I d P Iinh homo( ) ( ) ( )ω ω ω ω ω= ′ ′ − ′∫  (12.67)

The normalized probability distribution P(ω) is often taken to be a Gaussian function, but other functional 
forms can also be associated with inhomogeneous broadening. From the theory of Fourier transforms, it 
is known that the FT of a convolution is the product of the FTs of the two convolved functions. Thus we 
can write Cvib(t) = Cinh(t)Chomo(t), where C t i t P dinh( ) exp( ) ( )= ∫ ω ω ω . Cinh(t) is not a true time-correlation 
function, just a convenient representation of inhomogeneous broadening. Time-domain nonlinear Raman 
echo experiments enable the homogeneous and inhomogeneous contributions to the lineshape to be 
separated [13].

12.5 ANALYSIS OF RAMAN EXCITATION PROFILES

We have seen that the KHD Equation 12.2 is capable of explaining resonance Raman selection rules through 
the Albrecht A and B terms. The KHD equation, also called the sum-over-states expression for the polar-
izability, has been applied to the analysis of Raman excitation profiles, in which the intensity (relative or 
absolute) of a Raman active vibration is determined as a function of excitation frequency. Electronic absorp-
tion and emission spectra can also be interpreted in terms of sums over Franck−Condon active vibrational 
states. The problem with the sum-over-states approach is that, in principle, it involves an infinite number of 
intermediate states. For small molecules excited with radiation resonant with a single electronic state, this 
is not an insurmountable problem. The vibrational overlaps eventually decrease for higher vibrational states 
and the sum can be truncated. But for large molecules, such as the visible chromophores which are often of 
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Figure 12.6 Cvib(t) for the 2125 cm−1 line of DMSO-d6 in CHCl3, for mole fractions of DMSO: (a) 1.0, (b) 0.73, 
and (c) 0.53. The points are experimental data and the lines are calculated using the Kubo lineshape formula. 
(Courtesy of Dr. Douglas C. Daniel, PhD thesis, University of Idaho, 1996.)

Table 12.2 Kubo lineshape parameters for 2125 cm−1 line of DMSO-d6

Mole fraction of DMSO-d6 in CHCI3 c, ps Δ, ps−1

1.00 0.50 26

0.73 0.33 26

0.53 0.30 25
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interest in Raman spectroscopy, the sum-over-states approach of Equation 12.2 is unwieldy, as there are just 
too many terms in the sum. Especially in the condensed phase where individual eigenstates are not spectrally 
resolved, it is convenient to avoid assumptions about the intermediate states that go into the KHD equation. 
Here, we discuss two ways to avoid summing over eigenstates, both of which take advantage of the common 
features of Raman excitation and absorption profiles. The first of these is the transform method [14–16], and 
the second is a time-dependent approach due to Heller [17–20]. In either case, the goal is to account for the 
frequency-dependent Raman cross-section σR(ω0) of a particular normal mode. To exploit the full power of 
either technique, absolute Raman cross-sections are required.

12.5.1 transfOrm theOry Of raman intensity

The idea of transform theory is to use the information contained within the absorption spectrum to pre-
dict the form of the REP. The theory derives from the relationship of the absorption and resonance Raman 
intensity to the imaginary and real parts of the polarizability, respectively, which are in turn connected via 
the Kramers–Kronig transformation. The straightforward application of this theory is valid when a set of 
standard assumptions hold. These are (1) there is one resonant electronic state, (2) the Raman active vibra-
tional modes are harmonic, (3) the vibrational frequencies of the active modes are the same in the ground and 
excited electronic states, (4) the symmetry of the molecule is the same in the ground and excited electronic 
states, and (5) there is no inhomogeneous broadening. These conditions restrict the approach to the treatment 
of totally symmetric (A-term enhanced) modes. The Raman cross-section is then given by
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= ( )− −( ) ∆  (12.68)

where ω0 (ωs) is the angular frequency of the incident (scattered) radiation, n is the refractive index, Δa is 
the dimensionless displacement (see Equation 11.19) of the active mode and ωa its frequency. The function 
A(ω0) is the transform of the absorption spectrum given by
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where P indicates the principal part of the integral. The absorption cross-section σA is related to the molar 
absorptivity εM through

 σ ε
A

M

AN
=

1000 10ln( )
 (12.70)

where εM is in L mol−1 cm−1, NA is Avogadro’s number, and the quantity 1000 is the conversion from liters to 
cm3, to give σA in units of cm2 per molecule.

There are some important physical conclusions to be drawn at this point. The first is that the intensity of 
resonance Raman scattering scales as the square of the displacement of the mode in the excited electronic 
state. As our previous consideration of the Albrecht A term suggests, resonance Raman intensity is depen-
dent on the Franck−Condon activity of the normal mode. Analysis of the resonance Raman spectrum read-
ily provides information concerning the geometry change of the molecule in the excited electronic state, 
even when the absorption spectrum is too diffuse to reveal vibrational structure directly. Transform theory 
also reveals that diffuse (i.e., structureless) absorption profiles are less likely to be associated with strong 
resonance Raman scattering than those which reveal vibrational structure. The reason is that the Raman 
cross-section at excitation frequency ω0 is dependent on the difference between the absorption cross-section 
at ω0 and that at ω0 − ωa. A broad featureless absorption spectrum with a half-width large compared to ωa 
is not very different when shifted by ωa, so the transforms A(ω0) and A(ω0 − ωa) are similar. It is also appar-
ent that the resonance Raman spectrum discriminates against low-frequency modes, again due to the small 
difference between A(ω0) and A(ω0 − ωa).
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In practice, the transform theory is applied by calculating a predicted Raman profile σR(ω) from the observed 
absorption spectrum σA(ω). The displacement Δa is employed as a scaling factor to match the predicted to the 
observed absolute intensity. This requires determination of Raman cross-sections. Alternatively, if absolute 
Raman intensities are unavailable, the relative displacements of all Raman active modes can still be determined. 
One then fixes the values of the dimensionless displacements by adjusting their values to reproduce the width 
of the absorption spectrum. The use of Equation 12.68 is dependent on the validity of the Condon approxima-
tion, which assumes that the transition moment is independent of normal coordinate. If this assumption is not 
valid, the positions of the experimental and predicted REPs along the frequency axis differ. In the absence of a 
strong non-Condon contribution, the relative intensities of various normal modes are independent of excitation 
frequency, and the REP covers the same frequency range as the absorption spectrum. Champion and Albrecht 
[21,22] have shown how to modify the transform approach to allow for a transition moment which depends 
linearly on the normal coordinate, by making the following modification to Equation 12.68:

 A A C A C Aa a a aω ω ω ω ω ω0 0 0 01 1( )− −( )  ⇒ +( ) ( )− −( ) −( )   (12.71)

The non-Condon coefficient is defined by
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where Q Qa a= 〈0 02 1 2
|

/  is the root-mean-square displacement of the normal mode a. The effect of the 
non-Condon term is to shift the calculated REP to the red or the blue, according to whether the sign of Ca is 
positive or negative. If the signs of the displacements for all active modes can be determined, and if the nor-
mal coordinates are known, the change in internal coordinates (bond lengths and angles) on going from the 
ground to the excited state can be determined. This is difficult to realize in practice, due to the indeterminate 
sign of the displacement. For n Franck−Condon active modes, there are 2n different excited state geometries 
consistent with the observed Raman data. In this case it is useful to deduce the sign of each displacement from 
quantum mechanical calculations on the excited electronic state.

An advantage of transform theory is that by taking into account the information within the absorption 
spectrum, the number of adjustable parameters is kept to a minimum. The calculated REP of a given Raman 
active mode includes the effects of all the other modes, which need not adhere to all the standard assump-
tions. The other modes may be anharmonically coupled, undergo frequency shifts, or contribute to the coor-
dinate dependence of the transition moment. On the other hand, the existence of thermally populated initial 
states and inhomogeneous broadening can invalidate the direct application of transform theory. Champion 
and Albrecht [21,22] have discussed how to generalize the approach when these effects exert their influence.

Shreve et al. [15] have applied transform theory to the analysis of Raman excitation profiles of single-
walled carbon nanotubes (CNTs) as illustrated in Figures 12.7 and 12.8. Carbon nanotubes are visualized as 
resulting from rolling a single-atom thick layer of graphite, called graphene, into a cylinder with a diameter 
on the order of a nanometer. The symmetry of the resulting tube is indexed by two integers (n,m) that 
specify the direction and length of the circumference of the nanotube as a combination of two lattice vec-
tors that form a basis for the two-dimensional hexagonal graphene lattice. Raman spectroscopy and group 
theory have played important roles in accounting for the electronic (semiconducting versus metallic) and 
optical properties of carbon nanotubes. Synthesis of carbon nanotubes generally leads to a mixture of many 
different chiralities (values of n and m), with different diameters and different electronic properties. Until 
recently, separation of such mixtures has been notoriously difficult. In [15], the authors measured the Raman 
excitation profiles of the radial breathing modes and their first overtones for five different CNTs in their 
mixture. Observation of both the fundamental and overtone constrained the values of the dimensionless 
displacements. The radial breathing mode is a collective expansion and contraction of the nanotube in the 
radial direction. The frequency of this vibration decreases for increasing CNT  diameter, leading to well-resolved 
Raman modes for different CNTs, ranging from about 150 to 300 cm–1 as seen in Figure 12.7. The nanotubes 
in this mixture had diameters ranging, respectively, from about 1.2 to 0.88 nm. The  fluorescence excitation 
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and emission spectra of CNTs with different chirality are well-separated. By monitoring the intensity of 
emission for a particular (n,m) nanotube as a function of excitation frequency, the authors obtained photo-
luminescence excitation spectra (PLE) of the distinct chiralities of CNTs in their mixture. The authors used 
the PLE spectra in lieu of the absorption profiles as input to the transform theory calculation. Figure 12.8 
shows the result of their analysis for the (12,1) CNT, for which the radial breathing mode and its overtone 
are found at 236 and 473 cm‒1 respectively. It was found necessary to include non-Condon terms as discussed 
earlier. The authors determined dimensionless displacements for the radial breathing modes of the five major 
chiralities present in their sample.

12.5.2  time-dePendent theOry Of resOnance raman and 
electrOnic sPectra

The time-dependent theory developed by Heller and coworkers [17–20] is an approach to the direct modeling 
of resonance Raman excitation and electronic absorption/emission spectral profiles. This technique presented 
here goes beyond the time-correlation function method described in Chapter 5 in that it accounts for spectra 
involving more than one potential surface. Thus, while the TCF approach described in Chapter 5 is applicable 
to the analysis of lineshapes of Raman spectra, the theory described in this section is employed to interpret 
Raman excitation profiles as well as absorption and emission spectra. Applications of time-dependent theory 
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Figure 12.7 Resonance Raman spectrum of the radial breathing modes and their first overtones (inset) of a 
mixture of single-walled CNTs, excited at 766 nm. The asterisk marks the fundamental of the (12,1) nanotube at 
236 cm–1. (Reprinted with permission from Shreve, A. P. et al., Phys. Rev. Lett. 98, 037405, 2007. Copyright 2007 
by the American Physical Society.)
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Figure 12.8 Application of transform theory to resonance Raman excitation profile of the radial breathing 
mode of the (12,1) CNT (see Figure 12.7). (a) PLE spectrum used as input to the transform theory calculation 
and (b) calculated Raman excitation profiles of the radial breathing mode fundamental (solid curve) and its first 
overtone (dashed curve), for the (12,1) CNT. The points are experimental Raman intensities. (Reprinted with 
permission from Shreve, A. P. et al., Phys. Rev. Lett., 98, 037405, 2007. Copyright 2007 by the American Physical 
Society.)
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have often employed semiclassical approaches to describe the motion of “wave packets” on excited state 
potential energy surfaces. A wave packet is a superposition of plane waves, the center of which follows a 
classical trajectory in position and momentum space. The resulting pictures of excited state dynamics have 
a great deal of physical appeal, particularly in systems that undergo charge transfer, photodissociation, or 
photoisomerization. The theory readily lends itself to computational techniques developed for semiclassical 
systems. Let us derive the working equations and see how the theory leads to informative physical pictures.

We start with the Albrecht A term contribution to the transition polarizability for the i → f transition:
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It is assumed that there is a single nondegenerate resonant electronic state e. The indices i and f denote the 
initial and final vibrational quantum numbers within the ground electronic state and the energy of the elec-
tronic transition is ħωeg. The energy of the intermediate vibrational state is ħωv, and ħωi is the energy of the 
initial vibrational state. The damping term Γ is taken to be independent of the vibrational state. The transition 
polarizability αif is sometimes called the Raman amplitude; the square of its absolute value (square modulus) 
is proportional to the Raman cross-section.

The first trick is to recognize that the energy denominator is related to a half-Fourier transform.
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Using this in Equation 12.73 results in
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Since the state |v〉 is an eigenket of the excited electronic state, we can write
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Taking advantage of the resolution of the identity and using the time-evolution operators introduced in 
Chapter 4, we obtain
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 (12.77)

Note that the wavefunction for the initial state i evolves in time according to the Hamiltonian for the excited 
electronic state. We say that |i(t)〉 evolves on the excited state potential surface. Putting Equation 12.77 into 
12.75 results in
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Equation 12.78 gives the single nonzero diagonal component of the transition polarizability in the molecule 
frame, let us say that it is αyy. With the help of Equations 12.32 and 12.33, we obtain the lab-frame component 
| | /α αZZ yy

2 2 5=  related to the polarized intensity. Since the depolarization ratio is 1/3, the total differential 
cross-section is
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Using Equation 6.44 for the total cross-section gives
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Combining Equation 12.80 with Equation 12.1 and using Equation 12.78 for αyy, we obtain the Raman cross-
section in the time-dependent theory:
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Equation 12.81 is based on the Condon approximation, but is readily generalized to allow μge to depend on nor-
mal coordinates. It can also be extended to allow for a thermal distribution of initial states and inhomogeneous 
broadening, as shown below. The Raman cross-section is represented as the square modulus of the half-Fourier 
transform of the damped time-dependent overlap of the final state and the initial state as the latter evolves on 
the excited state surface. This is easier to grasp with the help of a picture such as that of Figure 12.9.

In Figure 12.9, the incident photon is envisioned to promote the ground state wavefunction to the excited 
state surface. The v = 0 wavefunction behaves as a Gaussian wave packet, which evolves on a harmonic surface 
with no change in width. At t = 0, the wave packet finds itself in the Franck−Condon region of the displaced 
upper potential surface, and the overlap 〈 f |i(0)〉 with the final state starts out at zero. The initial state is not an 
eigenfunction of the excited state potential, so it must evolve in time. Classically, the wave packet experiences a 
force and begins to move to the right as depicted in Figure 12.9. In the absence of damping, the overlap 〈 f |i(t)〉 
would oscillate in time at the frequency of the vibration. The damping term exp(−Γt), however, causes the enve-
lope of the time-dependent overlap to die off. In addition, the overlaps are in fact multimodal, and dynamics 
along other normal coordinates also contribute to moving the wave packet under consideration away from the 
Franck−Condon region, causing the overlap to decay. Note that modes which are not displaced in the excited 
state do not undergo enhancement, in agreement with the sum-over-states approach. The absence of a slope in 
the FC region of a nondisplaced mode means that the wavepacket will not evolve in time, and the overlap 〈 f |i(t)〉 
for f ≠ i remains zero at all times. In the case where the transition i → f is an overtone, the higher the overtone is, 
the longer it takes for the initial state to evolve to a point where the overlap is favorable. The larger the molecule 
is, the greater the chance that dynamics along other normal coordinates will move the wave packet out of the 
FC region before favorable overlap with highly excited final states can occur. This leads to the previously noted 
observation that overtones are weak or absent in resonance Raman spectra of large molecules.

Equation 12.81 is the working equation for applying the time-dependent theory, and more will be said 
about it shortly. First, we see how the same theoretical approach may be applied to the electronic absorption 
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Figure 12.9 Wave packet dynamics on a displaced excited state potential surface.
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spectrum. At the same level of approximation on which the Albrecht A term is based, the absorption cross-
section can be written as
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The absorption spectrum is expressed as a series of Lorentzian lines centered at the transition frequencies of 
the peaks in the Franck−Condon progression. The quantity |〈i|v〉|2 is the FC factor introduced in Chapter 11. 
Now, using the same tricks as were employed to arrive at Equation 12.78, the time-dependent expression for 
the absorption cross-section is
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Note that σA is proportional to a full Fourier transform, and the relevant overlap integral is between the 
time-evolving initial state and the initial state at time zero. Equation 12.83 is readily generalized to allow for 
an equilibrium distribution of initial states:
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where Pi is the Boltzmann probability that initial state i is occupied. Of course, Equation 12.81 can be modi-
fied in the same way:
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Next, we want to make a connection between the absorption cross-section as given in Equation 12.84 and 
the time-correlation function formula described in Chapter 5. We do this by recasting the expression as 
follows (essentially we are reversing some of the steps that led to 12.84):
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In the case where the ground and excited state Hamiltonians are the same (as in rovibrational spectra where 
transitions take place within the ground electronic surface), we can write:
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The subscript eq represents an equilibrium-averaged quantity, as in the expression for the time-correlation 
function C(t) discussed in Chapter 5:
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The absorption cross-section in this limit is given by
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To obtain this expression, the integration variable t was replaced by −t, in order to compare the result 
to that of Equation 5.15. Except for the presence of the damping factor, the present approach leads to an 
identical result to that presented in Chapter 5, in the case where the transition takes place within a single 
electronic surface.

There are important similarities and distinctions between the time-dependent expressions for absorption 
and resonance Raman cross-section. Obviously, the absorption strength scales as the square of the transition 
moment, and the Raman intensity depends on the transition moment to the fourth power. While the Raman 
amplitude depends on the time-dependent overlap of the initial and final states, the absorption strength depends 
on the overlap of the time-evolving initial state with the same state at time zero. The fact that the absorption is 
given by a full Fourier transform compared to the half-Fourier transform needed for the Raman amplitude also 
has nontrivial consequences. A full Fourier transform can be directly inverted; e.g., the damped time-dependent 
overlap can be determined from Fourier inversion of the absorption cross-section. This is not possible for the 
half-Fourier transform. Increased damping (larger Γ) has the effect of broadening the absorption spectrum 
while conserving its total intensity, since the integrated absorption cross-section depends only on the time-zero 
value of the correlation function. Resonance Raman intensities, on the other hand, are diminished in the presence 
of more rapid damping.

The time evolution of the initial state in either expression is determined from the characteristics of 
the excited state potential. General procedures are available for evolving wave packets on arbitrary poten-
tial energy surfaces. In the case of separable harmonic ground and excited state surfaces, closed-form 
expressions exist for 〈i|i(t)〉 and 〈 f |i(t)〉, as shown below. The calculation of these overlaps requires the 
displacement of each Franck−Condon active mode and the vibrational frequencies in the ground and 
excited electronic state. Thus a valid set of these parameters must simultaneously reproduce the absorp-
tion spectrum and all the Raman profiles. Similarly, the damping factor Γ and the transition moment µge

0   
are common to both σA and σR.

We are now in a position to examine the various contributions to 〈i|i(t)〉 and 〈 f |i(t)〉 more closely. The 
qualitative features of these time-dependent overlaps are illustrated in Figure 12.10. The theory of Fourier 
transforms teaches us that fast relaxation in the time domain leads to broad features in the frequency spec-
trum, while the slowest time response influences the finer details in the frequency domain. Three character-
istic timescales are depicted in Figure 12.10: the times t1 < t2 < t3. The fastest event in 〈i|i(t)〉, on the timescale 
t1, is the initial decrease in the overlap as the wave packet moves out of the FC region. This initial decay deter-
mines the overall width of the absorption spectrum, and it depends on the slope of the upper state potential 
in the Franck−Condon region. The greater the displacement, the steeper is the slope and the greater is the 
breadth of the absorption spectrum. We have already seen this correspondence in our previous analysis of 
Chapter 11. The intermediate time t2 is the time between recurrences in the overlap. It is therefore equal to the 
reciprocal of the excited state vibrational frequency. The periodic structure in the overlap gives rise to vibra-
tional structure in the absorption spectrum and Raman profile. The slowest timescale is that for the overall 
decay of the overlap. It is dictated by the damping factor Γ; the larger the value of Γ, the faster is the decrease in 
the envelope of 〈i|i(t)〉 and the broader the width of individual FC peaks in the absorption spectrum. Note that 
as the damping rate increases, the area under the Raman overlap 〈 f |i(t)〉 decreases, and the Raman intensity 
decreases. For large enough damping, whatever the cause, the vibrational structure is completely blurred and 
an unstructured absorption profile results. Again, as predicted by transform theory, unstructured absorption 
profiles correlate with weaker Raman scattering. Note that the total absorption intensity is independent of Γ; 
as the damping rate increases, the absorption spectrum broadens but the total intensity is conserved. The 
different dependence of Raman and absorption intensity on the homogeneous linewidth allows this property 
to be distinguished from inhomogeneous line-broadening factors, which have a similar effect on the Raman 
and absorption profiles.

Although it is not apparent from the simplified notation that we are using, the overlaps are multidimen-
sional functions of the normal coordinates. Let us make the convenient assumption that the vibrational 
modes are harmonic, so that they can be separated. For example, let the overlap 〈 f |i(t)〉 be that required to 
calculate the 0 → 1 transition of mode a, keeping all other modes in the ground vibrational state. The overlap 
factors as follows:
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The bra vectors here are t = 0 vibrational states within the ground electronic surface and the ket vectors 
propagate on the excited electronic surface. The subscript indexes the normal mode. It would appear that all 
3N – 6 modes need to be included in the calculation, but it turns out that only the displaced modes contrib-
ute. To see this, consider the overlaps in the case where the normal modes undergo no frequency shift upon 
excitation [23]:
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The displacement and frequency of mode k are denoted by Δk and ωk. The 0 – 0 frequency ωge appears only 
once in the product over 〈0i|0i(t)〉. Some authors prefer to factor exp(iωegt) out of the overlap and include it 
with the other frequency factors in the Fourier transform. Also, the exp(−iωkt/2) parts conspire to cancel the 
exp(iωit) term in the Fourier transform, since � �ω ωi k k= ∑ /2 is the initial vibrational energy. That leaves us 
with an exponential function of the square of the displacement in Equation 12.91, which is replaced by unity 
for modes which are not Franck−Condon active. More general expressions for the time-dependent overlaps 
can be found in [23] and references therein.

Recall that Γ represents the homogeneous linewidth of the intermediate state. As such, it ought to allow for 
the exponential population relaxation of the resonant electronic state. In condensed phases, the dephasing of 
the electronic transition also contributes to the linewidth, and though the dephasing rate should contribute 
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Figure 12.10 Time-dependent overlaps relevant to absorption (a) and Raman excitation profile (b).
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to the damping, it does not necessarily lead to a Lorentzian lineshape. In addition, inhomogeneous broad-
ening, perhaps resulting in a Gaussian distribution of electronic transition energies, ought to be included 
in the calculation. The homogeneous and inhomogeneous line broadening mechanisms affect Raman and 
absorption profiles differently. Thus the time-dependent analysis of these spectra enables the two contribu-
tions to be disentangled. The inhomogeneous contribution to σA and σR can been accounted for by replacing 
ωeg in Equations 12.91 by ωeg + δω, and averaging (integrating) the resulting expressions over a Gaussian 
distribution of solvent-induced frequency shifts δω. This incorporates the effects of solvent perturbations 
to the linewidth which are long-lived compared to the relaxation time of the initial vibrational state. On the 
other hand, if electronic dephasing is fast compared to vibrational relaxation, then frequency fluctuations 
need to be incorporated into the Raman amplitude rather than the cross-section. See [24,25] for further dis-
cussion. A modified form of the Kubo lineshape function has been proposed. Mukamel [26] and coworkers 
have employed a complex lineshape function g(t) = g′(t) + ig″(t) based on the Brownian oscillator model of 
solvent dephasing. The real part of this function derives from the previously discussed Kubo lineshape func-
tion, where Δ and Λ are interpreted here as the amplitude and pure dephasing rate of electronic frequency 
(ωeg) fluctuations. This function ϕ(t) in Equation 6.53 is the same as exp[−g′(t)]. The imaginary part of g(t) 
is found using the fluctuation-dissipation theorem, and it accounts for the solvent-induced shift in the elec-
tronic absorption spectrum (see [26]):
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The solvent reorganization energy ΔEsolv is equal to Δ2/2kBT in this model, where Δ is the displacement of the 
excited state potential, relative to the ground, along the solvent coordinate. The revised expressions for the 
absorption and Raman cross-sections are
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and
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where G(δω) is a normalized Gaussian distribution function whose width can be taken as an adjustable 
parameter. The electronic dephasing rate Λ and amplitude Δ can be obtained by using the above expressions 
to model the experimental absorption and Raman profiles. Implicit in these equations is the assumption 
that  the solvent dynamics which perturb the ground state electronic energy are the same as those which 
modulate the energy of the excited electronic state. In systems with strong solvent–solute interactions and 
large change in solute electronic structure, this assumption is not valid [27–29].

The wave packet approach can also be applied to fluorescence emission spectra. The fluorescence intensity 
If in photons per second is
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The initial states are now taken to be vibrational levels within the upper electronic state, which evolve on 
the ground state potential energy surface under the influence of exp( / )−iH tg

� � . The populations of the initial 
states adhere to the Boltzmann distribution only for relaxed emission. As will be considered in Chapter 13, it 
turns out that the Raman and fluorescence emission both spring from a common theoretical foundation, and 
in some experiments they are not separable.

Both transform theory and time-dependent theory of resonance Raman excitation profiles spring from 
the dependence of Raman and absorption spectra on a set of shared physical parameters. However, for chro-
mophores that are strongly coupled to the solvent, linear solvation response may not hold. The observation 
of strong solvent effects on Raman intensities, and the absence of similar solvent effects on the absorption 
spectrum, belie the assumptions on which common implementations of these theories are based. Such effects 
have been seen in absorption spectra and resonance Raman spectra of molecules with charge-transfer transi-
tions [27–29]. When the resonant state has a very different charge distribution than the ground, the shape 
of the excited state potential as a function of “solvent coordinate” can differ from that of the ground state. 
Further, the theories we have discussed consider that solvent and internal reorganization are uncoupled. The 
inertial solvent response on the subpicosecond timescale runs concurrently with intramolecular reorganiza-
tion, facilitating the possibility of coupling of inter- and intra-molecular reorganization.

12.6 SURFACE-ENHANCED RAMAN SCATTERING

Surface-enhanced Raman spectroscopy (SERS), first reported in the 1970s, continues to fascinate researchers 
eager to apply it to trace analysis and even single molecule detection. The SERS effect can be defined as a dra-
matic enhancement—by orders of magnitude—of Raman cross-sections of molecules adsorbed at conductive 
substrates. Early observations of SERS effects were seen in the intense enhancement of the Raman spectra of 
molecules adsorbed at roughened silver electrodes. Raman intensity enhancement has now been observed 
for molecules adsorbed on a variety of nanoscale metal substrates, such as colloidal suspensions, metal island 
films, and lithographically produced nanoparticle arrays. The technique of tip-enhanced Raman spectros-
copy exploits the effect in a scanning probe configuration, without the requirement that the analyte be chemi-
cally or physically adsorbed on the metal. The emphasis on SERS enhancement by the coinage metals, Cu, 
Ag, and Au, hints at the role of electrical conductivity in this phenomenon. Ni, Pd, Pt and the alkali metals 
also give rise to Raman enhancement. The bulk of experimental observations concerning surface-enhanced 
Raman, and other related linear and nonlinear surface-enhanced spectroscopies, can be explained handily 
by electromagnetic theory. Nevertheless, vigorous discussion continues on the importance of the so-called 
chemical enhancement mechanism, a sort of resonance enhancement deriving from a new coupled electronic 
state of the adsorbate and substrate. The observation of modest Raman intensity enhancements of molecules 
adsorbed on semiconductor surfaces argues that there is some contribution from this mechanism. For Ag 
and Au substrates, on the other hand, SERS enhancement factors as large as 1010 can be achieved, though ~106 
is more typical. Along with other observations discussed below, these enhancement factors and theoretical 
treatments confirm that SERS effects derive from enhanced electric fields associated with the surface plasmon 
resonance (SPR), a collective oscillation of free electrons in the metal. This transition dipole associated with 
this resonance radiates an electromagnetic field which is strong in the vicinity of the surface of a metal nano-
structure. The electromagnetic enhancement theory of SERS is considered further in this section.

The surface plasmon resonance can be described in a classical picture, called the Drude model, in which 
free electrons of the metal oscillate against the fixed lattice of positively charge nuclei. This simple model is a 
periodic extension of the Lorentz model of the atom, treated in Chapter 3. Therefore, we use the expression for 
the polarizability α(ω) given in Equation 3.43. Taking the polarization as 

� � �
P N E Er= = −α ε ε0 1( ) , where N is the 

number density of electrons, the Lorentz model leads to the relative permittivity as a function of frequency:
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We are interested in frequencies in the vicinity of the SPR. We take the oscillator strength fj = 1 and define 
ω εp Ne m= ( / ) /2

0
1 2 as the bulk plasma frequency to obtain
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The approximation above results from recognizing that the weak binding of conduction electrons to nuclei 
translates to a small harmonic frequency, ω0. The damping constant Γ in this case is the electron scattering 
rate and is inversely proportional to the conductivity of the metal. The Drude model can be made more gen-
eral by adding to the right-hand side of Equation 12.97 a background permittivity εb that depends less sharply 
on frequency than the SPR, taking into account interband transitions in the metal:
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In bulk metal crystals the SPR is forbidden, owing to a selection rule on the conservation of momentum. Note 
that the k-dependence of the electromagnetic field, neglected for molecules small compared to the wavelength, 
must be considered when treating the collective excitations of crystalline materials. The selection rules are 
relaxed for nanoparticles, and for the roughened electrodes on which SERS was first observed. The SPR then 
becomes allowed and leads to an enhanced field near the particle when it is illuminated at incident frequencies 
determined by ωp, as illustrated below. The frequency and width of the resonance depends on the shape of the 
nanoparticle. For the case of a spherical metal nanoparticle of radius R, the polarizability is given by
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Using Equation 12.98 for the relative permittivity leads to:
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The polarizability is enhanced for frequencies near ω ω εR p b= +/ 3 , the frequency of the dipolar surface plas-
mon. For Cu, Ag and Au, �ωp is on the order of 9 eV, but ωR is in the visible. The SPR of silver is typically in 
the vicinity of 3.5 eV (350 nm), while that of gold is lower energy, about 2.4 eV (520 nm). Cu, though less often 
used as a SERS substrate owing to poor stability and weaker enhancement, has its SPR at a visible wavelength. 
The width of the resonance is Γ( )εb + 3 . Electromagnetic theory predicts enhancement that is stronger when 
the width of the SPR is small compared to the peak frequency. Thus, better electrical conductivity fosters a 
more narrow resonance and stronger SERS effects. It is also desirable for the background permittivity εb to 
be small. Poor conductivity and the contribution of interband transitions to εb result in a broader resonance 
and less enhancement. This explains why transition metals other than the coinage metals, which may be good 
conductors but have significant d–d interband transitions, are relatively poor SERS substrates.

Continuing with the idea of a single spherical metal particle, we can explore how the SPR leads to enhance-
ment of the field. For an incident field 

�
E0 in the z direction, the resulting field outside the metal sphere is
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We rewrite the polarizability α by modifying 12.99 to account for a surrounding medium with relative permittivity 
given by εs:
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It must be remembered that the permittivities, and thus g, where g r s r s= − +( )/( )ε ε ε ε2 , are complex and 
 frequency-dependent quantities. Equation 12.102 predicts enhanced polarizability (large g) at frequencies such 
that ε r  is close to −2εs. The resulting induced dipole radiates a field which is greatly enhanced when this condi-
tion is met. Since εs ≈ n2, where n is the (real) refractive index of the solvent, enhanced electric fields require 
that the relative permittivity of the metal particle be negative, a condition adhered to by typical SERS substrates 
at optical frequencies. The relative permittivity ε r  for a metal tends to negative infinity at zero frequency and 
becomes less negative as frequency increases, as per Equation 12.97.

Putting r equal to R and using the Drude model for the permittivity, the field on the surface of the sphere is

 E E g g gout
2

0
2 2 2 21 3 2= − + +( )
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Here, cosθ = ⋅k r� �   is the cosine of the angle between 
�
E0 and the vector 

�
r  locating a position on the surface of the 

sphere. In the vicinity of the SPR where g is large, Equation 12.103 simplifies:
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The enhanced field is largest in the directions θ = 0° and 180°, where we can take E E gout
2

0
2 2

4= . Now, in a 
Raman scattering experiment, both the incident and scattered fields are enhanced if their frequencies are 
near the surface plasmon resonance. The observed Raman intensity is proportional to the product of the 
incident and scattered light intensities, and the intensities are proportional to the square of the field. Thus the 
maximum enhancement factor EF for a Raman active molecule at the surface of a metal sphere is
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The quantities ′Eout  and ′g  pertain to the field and the value of g at the frequency of the scattered light, while 
unprimed quantities refer to the incident field. For a typical narrow resonance, where Γ is on the order of 
ωp/10, this difference becomes significant for modes with larger Stokes shifts, such as C–H stretches at about 
3000 cm‒1. Equation 12.105 assumes the Raman tensor of the molecule is unperturbed by adsorption at the 
metal. It is reasonable to envision that the interaction of a molecule with a metal surface would perturb the 
transition polarizability for Raman scattering by introducing new coupled metal-molecule states, akin to 
the charge-transfer transitions of discrete metal–ligand complexes. Such effects, if present, contribute to the 
so-called chemical enhancement effect, but since they are not readily generalized and contribute more weakly 
to Raman enhancement, these are ignored here.

Now we must admit that the simple model above can only qualitatively account for SERS phenomena; it 
leads to predicted Raman enhancements much smaller than the factors of 106 to 1010 that are typically seen. 
The problem is not just that the Drude model is admittedly crude. SERS is not generally observed from isolated 
spherical nanoparticles but from assemblies of particles. Improving on the treatment above, one can allow 
for nonspherical particle shapes, which lead to larger enhancements and red-shifted plasmon resonances. 
For spheroidal shapes, one finds then that the enhancement of the field is largest near the regions of highest 
curvature, and that it increases with increasing aspect ratio. In addition, the largest SERS effects are seen for 
molecules located at so-called “hot spots,” regions of enhanced local field in the interstices between particles 
or between particles and plane surfaces. Calculations on simple dimers of spherical metal nanoparticles reveal 
enhancements for fields directed along the interparticle axis. A practical consequence of hot spots is that 
aggregated noble metal colloids, achieved for example by the addition of salt to the colloidal suspension, can 
be used to obtain stronger SERS signals. This aggregation also leads to red-shifting and broadening of the 
plasmon resonance which may be beneficial for achieving a convenient wavelength range within which to 
excite the Raman spectrum.

Electromagnetic theory explains why selection rules for SERS differ from those in ordinary Raman 
spectroscopy. Surface enhancement does not boost all Raman modes by the same factor, and their relative 
intensities depend on the frequencies of the incident and scattered light. Near a metal surface, a molecule 
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sees a superposition of the incident and reflected fields. The amplitude of the reflected field is governed by 
the Fresnel coefficients for s and p polarization, which depend on the angle of incidence and the dielectric 
function of the metal. At frequencies below the SPR, the net field for s-polarized light is zero, and at higher 
frequencies, both s- and p-polarized net fields coexist. Thus the selection rules vary with excitation wave-
length. The enhancement factors for Raman modes of molecules adsorbed at a metal nanoparticle depend 
on the orientation of the molecule, the values of the components of the Raman tensor, and the strength of 
the fields in the directions normal, En, and tangential, Et, to the surface. The net field strengths depend on 
g r s r s= − +( )/( )ε ε ε ε2  as follows:
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We define Z as the direction normal to the surface. There are three categories of SERS transitions. Those that 
derive from the αZZ component of the polarizability depend on E En n

2 2′ , while off-diagonal elements  mixing 
the normal and tangential directions, such as αZX and αZY, depend on E En t

2 2′ , and αXX, αYY and αXY depend on 
E Et t

2 2′ . To the red of the SPR, the normal component of the field dominates over the tangential component. 
In this case, vibrations for which there is a polarizability change in the direction perpendicular to the surface 
are more strongly enhanced, enabling the determination of the orientation of the molecule provided some 
information on the Raman tensor is available. To the blue of the SPR, on the other hand, the selection rules 
are more liberal owing to the coexistence of the normal and tangential components of the field. The selec-
tion rules for Raman scattering by a molecule adsorbed at a planar metal surface and on a spherical metallic 
particle were derived by Moskovits [30,31]. In addition to the above considerations, the existence of a non-
negligible field gradient in the vicinity of a metal nanostructure can lead to the activity of normal modes not 
permitted by electric dipole selection rules.

Very strong Raman intensities are seen when the exciting radiation is resonant with both an electronic 
transition of the molecule and the surface plasmon, leading to surface-enhanced resonance Raman scatter-
ing, or SERRS. Under these conditions, enhancement factors are large enough to detect single molecules 
using the technique of single-molecule surface-enhanced Raman spectroscopy (SMSERS). For example, Van 
Duyne and colleagues have reported SMSERS of the laser dye rhodamine 6G on arrays of Ag nanotriangles. 
Electrodynamic calculations predict enhancements on the order of 108 in the vicinity of the tips of these 
nanotriangles. Using a mixture of two isotopomers of rhodamine 6G, Zrimsek et al. [32] proved that spectra 
of single molecules were obtained. In that study, the SPR of the nanotriangle array was resonant at 546 nm, 
while the dye absorption maximum was 527 nm. The excitation wavelength of 532 nm provided a good over-
lap with both these resonances.

Now, the fact that rhodamine 6G is a strongly fluorescent laser dye poses the following question: isn,t the 
fluorescence of the molecule also enhanced at the same excitation frequency that leads to SERS? One expects 
that would be true, were it not for the fact that a molecule adsorbed on a metal surface undergoes enhanced 
nonradiative decay owing to energy transfer, and possibly charge transfer, to the metal. This serves to quench 
the fluorescence that would otherwise overwhelm the resonance Raman spectrum of a dye such as rhoda-
mine 6G in the absence of SERS enhancement. We have seen above that damping of the resonant excited 
state also has the potential to reduce Raman intensities. However, this nonradiative relaxation is slower than 
the subpicosecond Raman timescale but fast enough to compete with the typically nanosecond timescale of 
fluorescence emission. The result is that this damping has little effect on the Raman intensity, but considerably 
quenches the fluorescence, making SERS attractive for Raman studies of fluorescent molecules.

Figure 12.11 illustrates the absorption spectrum of an aqueous colloidal suspension of silver nanoparticles, 
and the SERS spectrum of rhodamine 6G adsorbed on the colloid, excited at 457.9 nm. The colloidal suspen-
sion shows the Ag SPR at 440 nm superimposed on background absorption and scattering. (The net absorption 
plus scattering in this case is referred to as extinction.) The SERS spectrum was obtained using a rhodamine 6G 
concentration of only 10–8 M. For comparison, the background spectrum of 10–7 M aqueous rhodamine 6G is 
shown, revealing only a weak water Raman band at ~1600 cm‒1 and slight background from fluorescence. The 
latter is weak owing to low absorption of the exciting light and the low concentration of rhodamine 6G.
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The same field enhancements that lead to SERS can also enhance the photochemistry of molecules adsorbed 
on nanoscale metals, an effect that can be a curse or a blessing depending on the goal of the experiment. In 
addition, enhancements of infrared absorption and of nonlinear spectroscopies such as second harmonic 
generation and hyper-Rayleigh scattering (a two-photon excited version of Rayleigh scattering) are also seen.

12.7 SUMMARY

This chapter has examined resonance and nonresonance Raman scattering from first principles. We have seen 
how the selection rules and expected depolarization ratios differ in the two experiments. Dynamical contribu-
tions to the Raman spectrum and the resonance Raman profiles have been explored. Lineshapes in the Raman 
spectrum depend on vibrational and rotational dynamics within the ground electronic state. The intensity pro-
file of a given Raman band as a function of incident frequency (the Raman excitation profile) reveals dynamics 
of the excited electronic state. The REP is intimately linked to the electronic absorption spectrum, and the two 
depend on the same factors: normal mode displacements, vibronic couplings, and the lifetime and dephasing 
rate of the resonant electronic state. Two theoretical approaches for the analysis of Raman excitation profile were 
presented: transform theory and time-dependent theory. In the first of these, the absorption spectrum is used 
as input to a calculation of the REP. In the second, the absorption spectrum and the Raman profiles are mod-
eled simultaneously with a common set of parameters. Though it is not always the case that the parameters for 
modeling absorption and Raman excitation profile should be the same, the time-dependent theory is of great 
conceptual value in the interpretation of Raman intensities in terms of dynamics on excited state potentials.

We have also introduced the topic of surface-enhanced Raman spectroscopy. While not without con-
troversy, this field continues to advance in parallel with advances in nanotechnology and development of 
biological and material science applications. Electromagnetic theory has been shown to account for the large 
enhancement of Raman signals of molecules in the vicinity of metal nanostructures. The ability to detect even 
single molecules using SERS ensures continued interest in the technique.

PROBLEMS
 1. Show that Equation 12.2 leads to a symmetric tensor, αρσ = ασρ, in the limit ω0 << ωeg.
 2. How can combination bands be accounted for within the Kramers−Heisenberg−Dirac formula?
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Figure 12.11 (a) SERS spectrum of 10−8 M rhodamine 6G adsorbed on aqueous colloidal silver and (b) Raman 
spectrum of 10−7 M rhodamine 6G in aqueous solution, both excited at 458 nm. The feature at about 1600 cm−1 in 
(b) is a Raman band of water. The inset shows the extinction spectrum of the Ag colloid, indicating the proximity 
of the laser wavelength to the peak in the SPR.
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 3. The correlation function for vibrational relaxation 〈QQ(t)〉 can be written in second quantized 
form, using dimensionless normal coordinates, Q a a= ++( )/ 2 , where [a, a+] = 1. (a) Show that the 
Heisenberg representations of the operators a and a+ are
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 where ˆ ( )H a av0 1 2= ++�ω  is the harmonic oscillator Hamiltonian. (Hint: First show that for two opera-
tors A and B, [expB] A[exp(−B)] = (expBX)A, where the superoperator BX is defined by BXA ≡ [B, A]. (b) 
Show that the correlation function 〈QQ(t)〉 is the sum of four terms 〈a+a(t)〉, 〈aa+(t)〉, 〈aa(t)〉 and 〈a+a+(t)〉. 
The last two terms average to zero at t = 0, so they do not contribute to the intensity, while the first two, 
in light of part (a), give rise to anti-Stokes and Stokes Raman scattering.

 4. Show that the second moment of the Kubo lineshape is Δ2. How can the second moment remain 
 constant as the motional narrowing limit is approached?

 5. Explain each of the following observations using the sum-over-states formalism (KHD equation), 
 transform theory, and wave packet theory: (a) low intensity of low frequency modes; (b) effect of 
 homogeneous absorption linewidth on Raman intensity; (c) weak Raman activity of high-order 
 overtones in large molecules.

 6. (a) Using a bulk plasmon frequency �ωp of 9 eV, account for the background permittivity εb (assumed to 
be real) that leads to a surface plasmon resonance �ωR  of 2.4 eV. (b) Assuming ωp/Γ is on the order of 10, 
use the result from part (a) to find the value of the relative permittivity at the frequency of the SPR. Is 
this value consistent with large enhancement (large value of g) for aqueous solution?
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13

Nonlinear optical spectroscopy

13.1 INTRODUCTION

So far in this book, we have remained within the realm of linear spectroscopy. This means that the induced 
polarization, the dipole moment per unit volume, is a linear function of the electric field. This is a good 
approximation for electromagnetic fields which are very small compared to the internal fields of molecules, 
and it gives us a wealth of conventional spectroscopy techniques bound by the selection rules introduced in 
Chapter 4. Linear response of matter to electromagnetic radiation also gives us familiar phenomena such as 
reflection and refraction. In the presence of more intense fields such as those provided by pulsed lasers, non-
linear effects result in many new spectroscopic techniques to probe matter. At the same time, nonlinear media, 
such as doubling crystals used to generate the second harmonic frequency of incident light, provide a powerful 
means to manipulate the properties of light beams. To enter into this new territory, we have to surrender the 
notion that the light–matter interaction is weak enough to leave each relatively unperturbed by the other. For 
example, as you will show in Problem 1 at the end of this chapter, the electric field amplitude associated with a 
typical pulsed laser source is not negligible compared to the internal fields of atoms and molecules.

In Chapter 4, we used time-dependent perturbation theory to describe optical spectroscopy in the weak 
perturbation limit that leads to linear spectroscopy. The perturbed wavefunction was expanded in the basis of 
the zeroth-order (dark) eigenfunctions; i.e. the stationary states. The expansion coefficients cm(t) were taken 
to be time-dependent, where m indexes one of these stationary states. We reached a point (Equation 4.17, 
reproduced below) where we had to make an approximation to find these coefficients.
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Linear spectroscopy results from a first-order solution to Equation 13.1, where the time-dependent coefficients 
on the right hand side are replaced by their values at t = 0, leading to Fermi’s Golden Rule, Equation 4.39. 
The first-order perturbation of the electromagnetic field was visualized to result in changes in the populations 
c ci i
∗  and c cf f

∗  of the initial and final states, respectively. Since the matrix element Vif(t) of the perturbation 
operator, ′ = − ⋅ˆ ( )H E t

� �
μ , is proportional to the amplitude of the electric field E0, we obtained transition rates 

and thus intensities that were proportional to the square of this amplitude.
Remaining still in the weak-perturbation limit, we can improve on this approximation by adopting 

an iterative solution to Equation 13.1 to describe nonlinear optical spectroscopy. A second-order solution 
can be found by using the first-order solutions to the coefficients (Equation 4.33) on the right hand side of 
Equation 13.1 to solve for the coefficients c tf

( )( )2 , which could then be used to obtain c tf
( )( )3  after the third 

iteration, etc. We will continue to associate terms such as c ci i
∗  with populations, but we also want to discuss 

coherences c ci j
∗  of pairs of states. It is thus much more fruitful to use a density matrix approach as introduced 

in Section 4.6. We will still have to iterate and for simplicity we will limit our discussion to second- and 
third-order nonlinear optical experiments. This leads to an array of powerful experimental techniques, 
discussed in this chapter and the next.

Nonlinear response is as much about optics as about spectroscopy, since matter can mediate the interac-
tion between light beams leading to new frequencies, amplitudes and phases, and light can induce transitions 
and uncover dynamics that are recalcitrant to linear spectroscopy experiments. In addition to providing the 
basis for probing matter, nonlinear optical effects are exploited to generate light sources for spectroscopy 
experiments. Nonlinear spectroscopic techniques have advantages over linear methods such as improved 
spatial and temporal resolution. The high incident powers required to manifest nonlinearity makes pulsed 
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laser sources necessary, hence the discussion of nonlinear effects will carry over to the next chapter where 
time-resolved spectroscopy is considered. For more information on nonlinear phenomena in optics and spec-
troscopy, the reader is referred to [1–5].

Nonlinear effects can be classified as nth order, with n > 1, according to the proportionality between the 
induced polarization and the nth power of the incident electric field, which is determined by the nth-order 
susceptibility χ (n). In addition, we classify nonlinear processes as parametric or nonparametric on the basis of 
whether the matter undergoes a change in quantum state. A parametric process leaves the material system in 
the same energy state. A nonparametric process is associated with a change in the energy level of the material 
as a result of absorption or emission of photons. This nomenclature is used historically but is not very descrip-
tive of the two types of spectroscopy; thus, some authors prefer the categorization of active (nonparametric) 
and passive (parametric) spectroscopies. In the case of a parametric process, χ (n) is real, and for a nonpara-
metric process it is complex. By analogy, in the linear regime we have the parametric processes of refraction 
and reflection, arising from the real part of χ (1), versus absorption and emission, which are nonparametric 
processes permitted by the imaginary part of χ (1).

Advances in the field of nonlinear spectroscopy were stimulated by the invention of the laser in 1960. 
The first reported laser-induced nonlinear effect was second harmonic generation (SHG), a second-order 
parametric process, observed for a ruby laser incident on a quartz crystal [6]. Two-photon absorption 
(TPA), a third-order nonparametric process, was observed in 1961 [7]. There are now a large number of 
nonlinear experiments capable of providing information that would be difficult or impossible to obtain 
within the confines of linear spectroscopy. Nonlinearities in the light–matter coupling can reveal dynam-
ics, anharmonicities, and couplings of quantum states. Enhanced nonlinear effects are observed when 
an incident frequency is resonant with a dipole-allowed transition. We will continue to emphasize the 
role of the transition dipole moment, but we have to view the system as interacting at multiple times 
with the incident fields, leading to a visual approach to describing the theory of nonlinear polarization. 
These interactions lead to interference of quantum states and are the reason that coherence effects are 
more important in nonlinear than in linear spectroscopy experiments. Multiple field–matter interactions 
are responsible for the increased information content of nonlinear as compared to linear spectroscopy. 
As examples in this and in the following chapter will show, experimental control of the pulse sequence, 
propagation directions, and frequencies of the input fields enable a wide variety of nonlinear processes to 
be probed. In addition, the nonlinear process of interest is isolated by choice of the timing, propagation 
direction, and frequency of the detected signal.

This chapter presents classical and quantum mechanical formalisms that can be applied to a large number 
of nonlinear optical experiments. The list of second-order effects is small; consisting of second harmonic 
generation (SHG), sum-frequency generation (SFG), difference frequency generation (DFG), and optical rec-
tification. A larger number of third-order experiments exists, such as transient grating experiments, photon 
echo measurements, two-photon absorption, and coherent anti-Stokes Raman scattering (CARS). The previ-
ously discussed spontaneous Raman spectroscopy experiment (Chapter 12) is actually a third-order process, 
and we revisit this topic from this vantage point in Section 13.5.2.

Historically, coherence effects have long been known in nuclear magnetic resonance (NMR) spectroscopy, 
owing to much longer dephasing times (milliseconds) compared to those for vibrational (~1 ps) and electronic 
(~10 fs) transitions. This is a result of much weaker interactions of nuclear spins with their environment com-
pared to vibrational and electronic states. Coherence effects in NMR decay on a timescale that is longer than 
the Lamor frequency, permitting the observation of Rabi oscillations such as those depicted in Figure 4.3. 
Dephasing times in optical spectroscopy are not only shorter than in magnetic resonance, they are shorter in 
comparison to the frequency of coherence oscillations; hence, the observation of Rabi oscillations in opti-
cal spectroscopy is rare. Some of the language for discussing nonlinear optical spectroscopy, especially in 
a two-state picture, derives from pulsed NMR experiments, which were discussed briefly in Chapters 3 and 4. 
The reader is referred to Macomber [8] for more discussion of the analogies between pulsed optical and 
pulsed magnetic resonance experiments.

Relevant to our discussion of nonlinear spectroscopy effects is the distinction between homodyne and 
heterodyne detection of the resulting signal. In the homodyne case, the intensity of the signal is proportional 
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to the square of the amplitude of the generated electric field: I Es ∝| |2. The heterodyne technique mixes this 
signal with that of a weak second light beam, referred to as a “local oscillator” for historical reasons, and the 
signal is proportional to the amplitude-squared of their sum: I E Es LO∝ +| |2. If the nonlinear process gener-
ates a field with the same frequency and propagation direction as one of the input fields, the technique is 
“self-heterodyned.” The importance of the heterodyne technique is through the phase information contained 
in the cross-term Re( )E ELO

∗ . Depending on the detection scheme, a nonlinear experiment can be made to 
reveal the real or imaginary part of the nonlinear response.

13.2  CLASSICAL APPROACHES TO NONLINEAR 
OPTICAL PROCESSES

13.2.1  Polarization as an exPansion in Powers of the 
incident field

In Chapter 3, we considered the polarization P, the induced electric dipole moment per unit volume, to be 
a linear function of the macroscopic electric field E (Equation 3.54), through the linear susceptibility χ. 
(The subscript e is omitted as we are limiting our discussion to electric rather than magnetic susceptibility.) 
To go beyond this weak field limit, the polarization is expanded in a Taylor series:
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where χ ( )1  is the linear (first-order) susceptibility of Equation 3.54, χ ( )2  is the second-order susceptibility,  
χ ( )3  the third-order susceptibility, and so on, which lead to the first-, second-, and third-order polarizations, 
etc. The expansion of Equation 13.2 is only valid if successive nonzero terms are smaller than the previous 
ones. There exist focused laser powers for which the expansion does not converge, but these will not concern 
us here. Also excluded are experiments for which the photon energy is sufficient to cause ionization. Though 
such an event does not require high incident power, the abrupt change in the wavefunction on ionization 
precludes treatment by perturbation theory.

Equation 13.2 is incomplete in that it does not recognize that, due to anisotropy of matter, the induced 
polarization does not have to be in the same direction as the incident field. To account for this, χ ( )1  is a  second- 
rank tensor (like the polarizability, to which it is related), χ ( )2  is a third-rank tensor, etc. (See Appendix A for 
a review of tensor algebra.) Taking this into consideration, we get
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where i, j, k, l... denote Cartesian coordinates in the laboratory frame. For an isotropic sample, changing the 
sign (reversing the direction) of the field must change the sign of the polarization. For example, in second 
order, replacing E by −E preserves the square of the field. This implies that for an isotropic sample, χ (2) = −χ (2), 
which is only satisfied if χ (2) = 0. We conclude that all even-order susceptibilities vanish for isotropic media. 
A consequence of this is that χ ( )2  experiments such as SFG are powerful approaches to the study of interfaces 
and surfaces. Noncentrosymmetric crystals also possess nonzero χ ( )2  (and other even-order) susceptibilities 
and are useful for optical frequency conversion. Note that the susceptibilities χ ( )1 , χ ( )2 , χ ( )3 … above are bulk 
properties that correspond to molecular properties polarizability α, hyperpolarizability β, second hyperpo-
larizability γ, etc. The latter occur in the expansion of the molecular dipole moment μ in  powers of the electric 
field: μ μ α β γ= + + + +0

2 3E E �.
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In linear spectroscopy, the intensity of the spectroscopic signal (absorption or emission) is proportional 
to the number of molecules N that are interrogated. Nonlinear techniques, on the other hand, can result in a 
material response which is coherent, in that the phases of the signals emitted by different molecules are cor-
related. This can lead to spectral intensities which vary as N2. To see this, consider a collection of emitting 
molecules in which the field responsible for the signal can be expressed as the sum of the fields: 

� � �
E E EN1 2+ + ... . 

The intensity of emitted light is proportional to the square of the total field:
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The angle θij represents the relative phase of the oscillating field from molecules i and j. Consider the case 
where the field amplitudes are all the same, and separate the summation into N terms where i = j and 
N(N – 1) terms where i ≠ j:

 
I E N ij

i j

N

∝ +












≠
∑2

cosθ
 

(13.5)

In the incoherent case, the cosine averages to zero, and the intensity is proportional to the number of mol-
ecules. In the opposite limit, the emitting molecules are in step with one another and we can put cosθij = 1:

 I E N N N N E∝ + −( ) =2 2 2
1( )  (13.6)

The two extremes, intensity which is proportional to N or N2, result from random phases or correlated phases 
of the oscillators, respectively. Though we have taken a classical point of view here, picturing emitting mol-
ecules as dipole antennae, the picture is accounted for quantum mechanically using the density matrix. The 
coherence of quantum states is represented by off-diagonal elements of the density matrix. Coherent sig-
nals are highly directional. In linear spectroscopy, the off-diagonal density matrix elements average to zero, 
resulting in incoherent signals which are emitted isotropically.

13.2.2 three-wave mixing (twm)
The second-order polarization depends on χ ( )2  and can be viewed as an output field that results from two 
input fields, leading to three-wave mixing (TWM) processes. Consider the situation where the field incident 
on the sample is the sum of two fields: E = E1 + E2, where:
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where ki and ω i are the propagation vector and frequency of the ith field, and Ei0 is the corresponding ampli-
tude. We consider the second-order polarization, which is proportional to the square of the total field. On 
expanding, we find that P(2) is the sum of three terms, one proportional to the square of E1, one proportional 
to the square of E2, and a cross-term:
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This expression encompasses the four possible χ ( )2  experiments, shown schematically in the energy level 
diagrams of Figure 13.1, that result when two intense laser pulses at frequencies ω 1 and ω 2 are incident on a 
noncentrosymmetric sample. The following terms account for second-harmonic generation (SHG) at each of 
the two incident frequencies:

 
P

E
e e

E
ei k r t i k r t i k r

SHG
( ) ( ) ( ) (2 10

2
2 2 20

2
2

4 4
1 1 1 1 2∝ +  +− − − −ω ω ω22 2 22t i k r te) ( )+ 

− −ω

 
(13.9)

Equation 13.9 accounts for frequency doubling, in which the input beam results in an output beam at twice 
the frequency. We also see terms that account for sum-frequency generation, i.e., an output field at the fre-
quency ω 1 + ω 2:
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Second-harmonic generation is a special case of SFG where the two input frequencies are the same. The dif-
ference frequency signal is
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Difference frequency generation is the basis for the operation of an optical parametric amplifier (OPA), 
an often-used source in time-resolved spectroscopy. Finally, there is a constant term representing optical 
rectification:
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In analogy to the rectification of an alternating current, this effect results from the cancellation of the two light 
beams to create a DC field. Optical rectification is a special case of DFG where the two input frequencies are 
equal. Though we have considered a superposition of two input beams of different frequency, SHG and optical 
rectification are achievable with a single incident beam of sufficient intensity. The above analysis does not reveal 
how the amplitudes of the various output beams compare to those of the input light beams. It is clear that there 
are limits to the efficiency of frequency conversion and light energy must be (at best) conserved. For example, 
in the first SHG experiment reported in 1961, red light at 694 nm from a ruby laser was doubled to 347 nm, 
and only about two photons in 108 were converted. Modern Nd:YAG lasers (see Chapter 7), on the other hand, 
produce output at 1064 nm that can be frequency doubled to a wavelength of 532 nm with efficiency greater 
than 50%, defined as the power in the doubled beam relative to that of the input beam.

Phase matching is a powerful tool in nonlinear optics and allows for the experimental conditions to be 
optimized in order to collect a particular type of signal. Consider sum-frequency generation with output 
signal at ω 3 = ω 1 + ω 2 and propagation vector 

� � �
k k k3 1 2= + . Each k-vector has a magnitude depending on 

frequency and refractive index, 
�
k n ci i i= ω , where ni is the real part of the refractive index at frequency 

ωi. Constructive interference of the output beam and the source polarization leads to strong emission of 

ω1 ω1

ω1 + ω2

ω1 – ω2
ω1

ω1

ω1

ω1

ω1

a) SHG b) SFG c) DFG d) Optical
    Rectification

ω2 ω2

Figure 13.1 Energy level diagrams for (a) second-harmonic generation, (b) sum-frequency generation, 
(c)  difference-frequency generation, and (d) optical rectification.
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light at frequency ω 3 only in the direction of the propagation vector 
�
k3. Phase-matching conditions for 

SFG and DFG are illustrated in Figure 13.2. The output energy as depicted in Figure 13.1 and the output 
momentum of Figure 13.2 both spring from Equation 13.8. Note that if dispersion in the refractive index 
can be neglected, the lengths of the propagation vectors shown in the diagrams are proportional to their 
frequencies. The output k-vectors are found from the vector addition of the input k-vectors, taking into 
account dispersion in the refractive index. To achieve high power densities, tightly focused Gaussian 
beams (see Chapter 2) are often used rather than the plane waves envisioned in drawing Figure 13.2. 
Nevertheless, the focal volume dimensions are larger than the wavelength, and each input Gaussian beam 
can be considered to have one effective propagation direction. The directional properties of the emission 
resulting from nonlinear polarization enable efficient collection of the desired signal and spatial rejection 
of signals from other simultaneously occurring nonlinear processes.

The phase-matching conditions for difference- and sum-frequency generation are advantageously 
applied in optical parametric amplification. An OPA uses a pump frequency ω  1 incident on a nonlinear 
crystal along with a “signal” frequency ω  2 at lower power than the pump. As shown in Figure 13.2, the 
outputs are the amplified signal at ω  2, for which two photons are generated for each incident photon, 
and the difference frequency at ω  1 − ω  2 (the “idler”); hence, ω  1 = ω  2 + ω  1 − ω 2. In other words, for each 
photon that is created at the idler frequency, a pump photon is destroyed and a signal photon is created. 
The two outputs are spatially separated by the phase-matching conditions 

� �
k ksignal = 2 and 

� � �
k k kidler = −1 2 as 

illustrated in Figure 13.2b. From a quantum mechanical point of view, phase matching is a consequence of 
conservation of momentum of the incident and emitted photons. The parametric nature of the process is 
revealed in the equality of the summed frequencies of the input and output beams. Though we discuss the 
destruction and creation of photons, difference- and sum-frequency generation were obtained above using 
a purely classical treatment.

Nonlinear optical frequency conversion often employs birefringent crystals, for which the refractive index 
depends on the propagation direction and polarization of light. These take advantage of angle-tuning to 
achieve phase matching. There are also nonbirefringent crystals that are noncentrosymmetric, such as GaAs, 
and thus capable of second-order response. In other cases, for example an SFG signal from a surface, con-
sideration of the polarization directions of the input and output fields leads to information about molecular 
orientations at the interface, and the tensor properties of χ (2) are important.

The susceptibility χ (2) is frequency dependent and may have both real and imaginary parts. We can write 
a general expression for the second-order polarization that accounts for this as follows. First, we introduce 
convenient notation for writing the electric field:
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where the wave vector dependence has been absorbed into the complex amplitude:
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Figure 13.2 Phase-matching conditions for (a) sum-frequency generation and (b) difference-frequency 
generation.
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A phase factor could also be absorbed into this definition as well. In Equation 13.13 and elsewhere, c.c. 
denotes the complex conjugate of the preceding term. The amplitude 

� �
A Am m= ( )ω  is that of the component of 

the field at frequency ωm. It is not the vector potential introduced in Chapter 2, though it is proportional to 
it. (Note that some authors omit the factor of ½ in Equation 13.13.) The property Am(−ωm) = Am(ωm)* ensures 
that the electric field is real and will help us keep track of positive and negative frequency contributions. We 
follow the convention of writing the second-order susceptibility with three frequency arguments, the first 
of which is the sum of the other two. Thus the component of the second-order polarization in direction i is
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The first summation is over directions x, y and z, while the sum over m and n runs over positive and nega-
tive frequencies. Aj(ωm) is the component of 

�
A m( )ω  in direction j. Since i, j and k run independently over 

the three Cartesian coordinates, there could be as many as 33 or 27 elements of χ (2). Fortunately, symmetry 
 considerations limit the number of unique tensor elements. In the absence of resonance, χ (2) is real. Since i, j, k 
and m, n are all dummy indices, we can permute j and k if we also permute m and n:

 χ ω ω ω ω χ ω ω ω ωijk m n n m ikj n m m n
( ) ( )( ; , ) ( ; , )2 2+ = +  (13.16)

Care must be taken with the signs of the frequencies; for example, if we permute ijk on the left hand side of 
Equation 13.16 to kij, we have to make a sign change in order for the first frequency (the output signal) to be 
the sum of the second two frequencies:

 χ ω ω ω ω χ ω ω ω ωijk m n n m kij m m n n
( ) ( )( ; , ) ( ; , )2 2+ = + −  (13.17)

The above equations apply to lossless materials, for which there is no absorption of light. They show that 
the second-order susceptibilities for SFG and DFG are the same. Far from resonance we can neglect the fre-
quency dependence (dispersion) of χ (2). As shown below, this leads to the susceptibility being real: χ χijk ijk

( ) ( )2 2= ∗. 
Under Kleinman’s symmetry, valid in the frequency range where the material is transparent, the three indices 
can be permuted freely and the frequency dependence neglected. We invoke this symmetry in the following 
treatment of the second-order susceptibility for SFG:

 

P A A e Ai ijk j k
i t

j,
( ) ( ) ( )( ) ( ) ( ) ( )SFG
2

1 2
0 2

1 2 1
4

1 2ω ω ε χ ω ω ωω ω+ = +− + ∗ AA e

A A e A A

k
i t

j k

j k
i t

j k

∗ +

− + ∗ ∗

(

+ +

∑ ( )

( ) ( ) ( )

( )

,

( )

ω

ω ω ω

ω ω

ω ω

2

2 1 2

1 2

1 2 (( ) ( )ω ω ω
1

1 2ei t+ )  

(13.18)

By recognizing that the second and fourth terms are the complex conjugates of the first and second ones, this 
can be written more simply:
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Recall that we can permute j and k without changing χijk
( )2 . Consider the terms in Equation 13.19 that occur 

when the incident beams are polarized in the x and y directions. We can write
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It is convenient to contract the i, j, k indices on χ (2) according to the scheme shown in Table 13.1, where the first 
index i = 1, 2 or 3 corresponds to x, y or z and the second pair of indices are denoted by 1 through 6. The  resulting 
doubly subscripted susceptibility is referred to as d, where di jk ijk( )

( )/≡ χ 2 2. For example, χ χzxy zyx d( ) ( )2 2
362= = . 

Using this notation, we can rewrite Equation 13.20 to express, for example, the z component of the polariza-
tion as follows:
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The full expression for the SFG signal is then:
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Obviously, the use of polarized input beams limits the number of terms that need to be considered, and fur-
ther symmetry considerations of the medium limit the number of nonzero components of the d-matrix. For 
example, they are all zero for centrosymmetric crystals, as will now be shown. The operator for inversion of 
the Cartesian coordinates is:

 

R̂inv =
−

−
−

















1 0 0

0 1 0

0 0 1  

(13.23)

For a generic symmetry operation R̂ having matrix elements Rij, the effect on the susceptibility is found as 
follows:
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where the superscript (2) on χ has been suppressed for convenience. In the presence of inversion symmetry, 
Equation 13.24 leads to

 
χ δ δ δ χ χα β γ
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Table 13.1 Contracted indices for di(jk)

Contracted Index j,k

1 xx
2 yy
3 zz
4 yz, zy
5 xz, zx
6 xy, yx
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The δ ’s in this equation are Kronecker deltas. The above equation of course implies χijk = 0 as previously 
stated.

We can use a similar approach to determine the unique, nonzero elements of the susceptibility for a crystal 
of a particular symmetry. The widely used nonlinear crystal β-barium borate (β-BaB2O4 or BBO) has a unit 
cell with rhombohedral symmetry belonging to the 3m point group, meaning that it has three-fold rotational 
symmetry and three corresponding mirror planes. We take the 3-fold rotation axis to be z and one of the three 
mirror planes to be yz. The matrix representation of the reflection operation is thus

 

R̂ref =
−















1 0 0

0 1 0

0 0 1  

(13.26)

and that for 3-fold rotation about z is
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(See Appendix C for more discussion of the matrix representations of symmetry operators.) With the first of 
these, it is simple to show that any element of χ with an odd number of x subscripts must vanish. The d-matrix 
of BBO has only three unique nonzero elements, d22 (equal to −d16 and −d21), d31 (equal to d24, d15 and d32), 
and d33. For example, to show that d15 = d24 for this symmetry, use the rotation matrix above to transforma 
d15 = χxxz as follows:

 
χ χ χ χxxz xi xj zk ijk xxz yyz

ijk

R R R= =
−






 +











1

2
1

3

2
1

2 2

( ) ( )∑∑
 

(13.28)

which leads to χxxz = χyyz. Note that the terms χxyz and χyxz are absent from Equation 13.28 because they con-
tain an odd number of x subscripts. See Powers [2] for a table listing the nonzero values of the d-matrix for 
all crystal symmetries.

13.2.3 four-wave mixing (FWM)
The third-order susceptibility χ (3) does not vanish for isotropic media and is the lowest-order nonlinear sus-
ceptibility in this case. The processes that are determined by χ (3) can be broadly described as four-wave 
mixing (FWM), in that the output field is the result of three input fields, E E E E= + +1 2 3, where
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Once again, we use the definition of Equation 13.14 to define a field amplitude 
�
A which has the propagation 

vector and phase factor absorbed into it. The third-order polarization is expressed as
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A sum over positive and negative frequencies is implied. Since each field is the sum of two terms (exponen-
tials with plus and minus signs), the cube of the field E = Ej + Ek + El is the sum of 63 = 216 terms accounting 
for 108 output frequencies. Each of these occurs with a certain “degeneracy factor” equal to the number of 
times that frequency appears in the expansion of E3. For example, each of the frequency tripling terms, which 
give output polarizations at 3ω 1, 3ω 2 or 3ω 3, occurs only once, while terms with various combinations of 
three distinct frequencies, such as ω = ±ω 1 ± ω 2 ± ω 3 have degeneracy factors of six, since the three different 
fields can be ordered 3! ways. Problem 4 explores the degeneracy factors for other combinations of the input 
frequencies. As a fourth-rank tensor, χ (3) could have as many as 81 elements, but thankfully symmetry con-
siderations limit this to a much smaller number of independent tensor elements. Examples of χ (3) processes 
will be considered in Section 13.5.

13.2.4 classical calculation of χ (2) and χ (3)

In Chapter 3, we used a phenomenological, classical approach, the Lorentz model of the atom, to describe 
the polarizability on which the first-order susceptibility depends. It is mathematically straightforward to 
extend this approach to the calculation of χ (2) and χ (3). This exercise will reveal how the anharmonicity of the 
interaction of the electron cloud with the nucleus leads to nonlinear susceptibilities. The model is admittedly 
rather limiting as we consider a single resonance frequency ω 0 of the electrons of the medium. We start with 
an equation of motion that is slightly different from that of Equation 3.40:
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Recall that x is the displacement of the electron cloud, ω 0 is a harmonic frequency, Γ is the damping 
rate divided by the mass m, and E(t) is the driving field. The new term ax2 is the anharmonicity. Since 
Equation 13.31 is the force, this quadratic term represents a cubic term in the potential energy and is thus 
the leading perturbation to the previously considered harmonic case. In the case of a molecule with a center 
of symmetry, this cubic term in the potential and thus the quadratic term in the equation of motion would 
vanish. We see below that if a → 0 the second-order susceptibility vanishes. We assume that the displace-
ment can be expanded as

 x x x x= + + + ...λ λ λ( ) ( ) ( )1 2 2 3 3  (13.32)

where λ is a tag to keep track of the order. Accordingly, we consider the driving field E(t) to be first-order and 
multiply the right-hand side of Equation 13.31 by λ. We then equate the coefficients of like powers of λ to 
get the corresponding equation of motion for x(n), the nth-order correction to the displacement. We assume 
the electric field is a superposition of fields at the frequencies ω 1 and ω  2, and for simplicity we ignore the 
k-dependence of the fields and vector notation:
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First-order susceptibility in the Lorentz model. To find the first-order solution x(1), we drop the anharmonicity 
ax2, and assume a solution of the form:
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Equating the coefficients of the first power of λ on the left- and right-hand sides of Equation 13.31 leads to:
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On evaluating the derivatives and equating the coefficients of, for example, exp(iω 1t) on the left- and right-
hand sides, the following solution is obtained:
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The resonance denominator is defined as D ii i i( )ω ω ω ω= − −0
2 2 Γ. A similar solution for x2(ω 2) is obtained with 

ω 1 replaced by ω 2 and A1 by A2. If we had equated the coefficients of exp(−iωit) instead of exp(iωit), we would 
have obtained the complex conjugates of x1 and x2. Note that this solution is the same as Equation 3.42 of 
Chapter 3. The first-order polarization is expressed as follows:
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( ) ( ) ( )( ) ( ) ( ) ( )1 1

0
1ω ω ε χ ω ω= − =  (13.37)

The first-order susceptibility is obtained:
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Equation 13.38 can be compared to the molecular property of polarizability in Equation 3.43.
Second-order susceptibility in the Lorentz model. To find the second-order displacement x(2), we solve the 

equation of motion using the square of x(1) in the anharmonic term:
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There are five pairs of terms in Equation 13.39 that represent displacements oscillating at frequencies 2ω 1, 
2ω 2, ω 1 + ω 2, ω 1 − ω 2, and 0, respectively. As above, we can focus on one of the exponential terms in finding 
x(2), for example, the SHG term that varies as exp(−2iω 1t). We define
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The second-order solution is obtained by collecting the terms proportional to λ2 in the equation of motion:
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Since the input field E(t) has no component at the frequency 2ω 1, the collection of terms on the left-hand side 
of 13.41 that multiply exp(−2iω 1t) must sum to zero. The result is
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We can use the above expression to find χ (2) for second harmonic generation with the help of the following:

 P Nex ASHG
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The second-order susceptibility for SHG is thus
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Keeping in mind that this result was obtained with a simple phenomenological model, it reveals certain 
general features that will be upheld in a subsequent quantum mechanical treatment. First, we see that χ (2) 
is a result of anharmonicity in the electronic response. We also see resonance denominators that result in 
enhancement of SHG when either the fundamental ω  1 or the second harmonic 2ω  1 is resonant with the 
natural frequency ω  0 of the molecule. Finally, we see that χ (2) has real and imaginary parts, the latter being 
dependent on the damping Γ. The damping term permits the driven field resulting from the polarization 
to be out of phase with the driving field E(t), corresponding to absorption or emission of light. When the 
driving frequency is far from an absorption band, the damping can be neglected and χ (2) is real as previ-
ously stated.

The procedure can be repeated for other terms in the expansion of Equation 13.39. For example, we can 
isolate the terms for difference frequency generation (DFG) at ω  3 = ω 1 − ω  2. The desired polarization is then
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Note the dependence on the complex conjugate of the field A2 is tied to the negative sign in front of ω 2. 
The result is
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It is seen that resonance of ω 1, ω 2 or ω 3 with the natural frequency ω 0 will give enhanced DFG. We also obtain 
the result that χ (2)(ω 3; ω 1, −ω 2) is proportional to the product of the three relevant first-order susceptibilities:
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Equation 13.47 illustrates Miller’s rule:
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where Δijk is called Miller’s delta and is of similar magnitude for different materials.
Third-order susceptibility in the Lorentz model. For simplicity we consider a centrosymmetric molecule 

or medium for which the anharmonic term ax2 vanishes, such that the third-order susceptibility depends 
on the force term bx3 that derives from the quartic anharmonicity. To third order, the equation of motion 
is thus:
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To avoid computational complexity, the field is taken to be that of Equation 13.33. We cannot capture all of the 
χ (3) processes this way, but we treat third harmonic generation (THG) at 3ω 1 as an example:
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We assume that the third-order displacement has the form:
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Inserting this in Equation 13.49 and setting the coefficient of exp(−3iω 1t) equal to zero gives
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The third-order polarization for third harmonic generation is

 P Nex ATHG
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and thus
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The denominators reflect resonance effects when the natural frequency matches the fundamental or the tri-
pled frequency.

13.2.5  second-order frequency conversion 
in the small signal limit

Noncentrosymmetric crystals such as potassium niobate, potassium dihydrogen phosphate, and BBO are 
used for SHG, SFG and DFG in order to generate tunable-frequency light for spectroscopy experiments. Our 
goal in this section is to make some simplifying approximations that lead to tractable solutions to the wave 
equation for frequency conversion, solving for the driven fields as they relate to the driving field amplitudes. 
Assuming a simple geometry for the experiment and taking the output field to be weak compared to the input 
fields, we will arrive at understanding of how phase-matching and interference of the driving field with the 
induced polarization influences the strength of the nonlinear intensity.

In Chapter 2, we considered Maxwell’s equations in free space and obtained the wave Equation 2.13, which 
is reproduced as follows:
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where the product of the permittivity ε0 and permeability μ0 of free space is related to the speed of light in 
vacuum:
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As shown for example in [2], when light propagates through a nonlinear medium, Equation 13.55 is altered 
as follows:
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where εr is the (linear) relative permittivity defined in Chapter 3, equal to the square of the linear refrac-
tive index n, and 

�
PNL  is the nonlinear part of the polarization. The relative permittivity is taken to be real 
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as we assume a lossless medium (no absorption or emission of light). If the right-hand side of the above 
equation were zero, we would obtain the result for freely propagating light waves traveling with phase 
velocity c/n. The nonlinear polarization acts as a source of radiation. We solve this wave equation with 
some simplifying approximations. Consider the field to be a superposition of three fields with frequen-
cies ω 1, ω 2 and ω 3:
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We are considering plane waves propagating in the z direction. This permits us to write an equation just like 
Equation 13.57 that is valid for each frequency:

 
∇ −

∂
∂

=
∂

∂
2

2

2

2
0

2

2

2

1� � �
E

c

E

t c

P

t
m

r m m
NLε

ε
 (13.59)

where the relative permittivity is to be evaluated at the frequency ωm. Again, we define E A em m
ik zm≡ , and for 

our purposes here we keep the explicit k-dependence in the formulas. Let us consider the polarization at the 
sum frequency ω ω ω3 1 2= + .
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As shown previously, P(2) is related to the field amplitudes according to
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Consider propagation of light in the z direction. To evaluate Equation 13.59 for the field at the sum frequency, 
first we find:
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The last step in Equation 13.62 assumes that the change in amplitude of the wave occurs on a length scale 
which is large compared to the wavelength, consistent with the small signal limit considered here. This is 
equivalent to neglecting the second derivative of the field compared to k times the first derivative:
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The relationships k = nω/c and εr = n2 have been used. Equation 13.64 can be rearranged,
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where n3 is the refractive index at frequency ω 3 and we have defined the wave vector mismatch as

 ∆k k k k= + −1 2 3 (13.66)
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Since we can permute the indices 1, 2 and 3, three coupled wave equations are obtained:

 

dA

dz

i

cn
A A e

dA

dz

i

cn
A A e

dA

dz

i kz

i kz

3 3

3

2
1 2

2 2

2

2
1 3

1

=

=

=

∗ −

ω χ

ω χ

( )

( )

∆

∆

ii

cn
A A e i kzω χ1

1

2
2 3

( ) ∗ − ∆

 

(13.67)

Equations 13.67 apply to SFG at ω 1 + ω 2, DFG at ω 3 − ω 1, and DFG at ω 3 − ω 2, respectively. The symmetry 
properties of χ (2), which is the same for all three experiments, are taken into account. These equations can 
be solved to find how the amplitude of each field varies as it traverses the medium. In an optical parametric 
amplifier, for example, it is desirable for the field at the difference frequency to be amplified by the nonlinear 
medium. However, amplitudes may increase or decrease depending on the distance traveled and the phase-
matching conditions. As shown for example in [2], the net flow of energy into or out of the medium depends 
on the quantity:
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where the angle brackets represent an average over the rapidly varying part of the field and the polarization. 
Thus the phase relationship between the driven field and the time derivative of the polarization determines 
the sign of this expression and whether energy flows into or out of the system as the wave traverses the sample.

Let us now focus on the SFG term and make the assumption that the efficiency is low enough to neglect 
the change in the amplitudes A1 and A2. We can then integrate the first-coupled wave equation over the range 
0 to L, where L is the distance traveled through the nonlinear medium. The result is
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The intensity at the sum frequency is given by
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(13.70)

The above equation shows that the intensity of light at the sum frequency is proportional to the product of the 
intensities at ω 1 and ω 2, as expected. More important is the dependence of ISFG on the phase mismatch, which 
varies as the sinc-squared function that was previously encountered in Chapter 4. Figure 13.3 illustrates that 
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Figure 13.3 Phase-matching efficiency as a function phase mismatch.
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the efficiency of SFG is sharply peaked at Δk = 0. The coherence length Lcoh is defined as 2/Δk and represents 
the distance over which the output light and the polarization are in phase leading to amplification of the signal.

Perfect phase-matching, Δk = 0, is difficult to achieve. For the collinear geometry considered here, and for 
SFG, this implies
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For normal dispersion, the refractive index increases with frequency, thus n3 is greater than n1 or n2. This 
makes it impossible to satisfy Equation 13.71 at the frequency ω  3 = ω  1 + ω 2 without additional constraints. 
One approach is to use birefringent crystals for which the refractive index depends on polarization and prop-
agation direction. A negative uniaxial crystal, for example, has a larger refractive index ne for the extraor-
dinary ray than for the ordinary ray, for which the refractive index is no. The ordinary ray is polarized in 
the direction perpendicular to the plane defined by the propagation vector and the axis of symmetry of the 
crystal (the optic axis). The extraordinary ray is polarized in this plane and experiences a refractive index 
which depends on the angle θ between the optic axis and the propagation direction. For example, SHG can 
be achieved in a birefringent crystal by tuning the angle θ to achieve ne(2ω) = no(ω). More discussion of this 
and other phase-matching techniques can be found in [1,2].

Nonlinear experiments frequently use tightly focused Gaussian beams rather than plane waves. (See 
Chapter 2 for a brief discussion of Gaussian beams.) The former are preferred in order to achieve high power 
densities, but result in a finite range of directions for the wave vector. Simple geometric considerations, illus-
trated in Figure 13.4 for the case of SFG, reveal that somewhat positive Δk is favorable for efficient frequency 
conversion, while a negative Δk would make phase matching impossible.

The above solution to the coupled wave equations made the approximation that the amplitudes of the pump 
waves could be considered constant. Consider the intensity at any one of the three frequencies,

 I n cA Am m m m= ∗1

2
0ε  (13.72)

Differentiating with respect to z and defining the total intensity as I = I1 + I2 + I3, one can show that dI/dz = 0. 
In other words, the total intensity is conserved as expected for a parametric process. Further, with SFG in mind 
and ω 3 = ω 1 + ω  2, one can derive the Manley–Rowe equations:
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Since Ii/ωi is proportional to the flux of photons at frequency ωi, Equation 13.73 reveals that the rate at 
which photons at the sum frequency are created is equal to the rate at which photons at either of the two 
incident frequencies are destroyed. One can also show that with imperfect phase matching the amplitudes 
of the field components oscillate sinusoidally on traversing the nonlinear medium. This is discussed fur-
ther in [1–4].
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Figure 13.4 Phase matching of noncollinear beams can still be achieved when the phase mismatch Δk is 
positive.
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13.3  QUANTUM MECHANICAL APPROACH TO NONLINEAR 
OPTICAL PROCESSES

13.3.1 time-dePendent Perturbation theory aPProach

We begin our quantum mechanical discussion of the second- and third-order susceptibilities by extend-
ing the time-dependent approach that was used to find the first-order correction to the wavefunction in 
Chapter 4. The result is useful in the limiting case of isolated molecules. To describe nonlinear effects of 
molecules interacting with their surroundings, we need a density matrix approach to introduce relaxation 
effects in a phenomenological way. Before doing that, the notation and approach is established by extend-
ing Equation 4.17 in an iterative fashion. We begin by calculating χ (1). The nth-order correction to the 
perturbed wavefunction is given by
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where the sum is over the stationary states m . The iterative approach to finding the coefficients is obtained 
as follows:
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Recall that Vml(t) is the matrix element of the perturbation operator ˆ ( ) ˆ ( )′ = − ⋅H t E tμ
�

 connecting zero-order 
states m and l. Previously, we considered the time-dependent field to be monochromatic. Here we consider a 
field with an unspecified number of frequency components ωp:
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Note that the sum runs over both positive and negative frequencies and that Ep ≡ E(ωp) is twice the amplitude 
of the field that oscillates with frequency ωp. The k-dependence is neglected for now. The matrix element of 
the perturbation is
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Inserting this in Equation 13.75, taking c tl
( )0 ( ) = δ lg , and integrating:
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The first-order contribution to the induced dipole moment of the ground electronic state is:

 µ ψ µ ψ ψ µ ψind
( ) ( ) ( ) ( ) ( )1 0 1 1 0= +� �  (13.79)
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The derivation is identical to that of Chapter 4, where we computed the transition polarizability αif. Here, we 
are interested in the induced dipole moment of the ground state, and want to set up an iterative process for 
obtaining the higher order components of this induced dipole moment (parametric nonlinear processes). As 
in Chapter 4, the rotating wave approximation (RWA) allows us to drop contributions to the polarization 
that do not follow the field. This approximation is equivalent to dropping the lower limit of integration in 
Equation 13.78 and using a simpler form of the first-order coefficients in subsequent iterations:
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Next, we anticipate a total polarization of the following form:
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where the Cartesian components (ijk) of the polarization are P Ei p j ij j p
( ) ( )( ) ( )1

0
1ω ε χ ω= Σ . Combining Equations 

13.79 through 13.81, we obtain an expression for the first-order susceptibility:
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This expression is equivalent to Equation 4.73 of Chapter 4, with i = f = g. It reveals that the tensor nature of 
χ (1) derives from the directions of the transition dipoles in the laboratory frame. Equation 13.82 and the fol-
lowing expressions for χ (2) and χ (3) take the total polarization to be the sum of the induced dipole moments 
of individual molecules.

Using Equation 13.80 in Equation 13.75, we obtain an expression for the second-order coefficient:
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In keeping with the RWA, the lower limit of the integration over time has been dropped in obtaining the 
above equation. The next iteration of Equation 13.75 gives us the third-order coefficient:
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Next, we use Equation 13.83 to find the second-order correction to the induced dipole moment:

 µ ψ µ ψ ψ µ ψ ψ µ ψind
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 (13.85)

Using care with dummy indices in the summations, the following contributions are obtained:
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Since the summations over p and q run over both positive and negative frequencies, we are free to replace ωp 
and ωq in 13.87 by −ωp and −ωq, and similarly we replace ωq by −ωq in Equation 13.88. After collecting terms, 
the result is
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We can now use the expression for the second-order nonlinear polarization:

 
P( ) ( ) ( ) ( )( )2 2 2= + = < >− +∑

�
P e Np q

i t

pq

p qω ω µω ω
ind

 
(13.90)

and the relation
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to find the expression for the second-order susceptibility:
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(13.92)

Note that the index i is associated with the direction of the resulting polarization and is derived from the 
direction of the transition dipoles  

�
µng ,  

�
µgn  and  

�
μnm  in the first, second and third terms inside the brackets of 

Equation 13.92, respectively. The permutation operator P̂ simultaneously swaps the indices j and k, and p and 
q, since each of the three terms in Equation 13.92 can lead to two contributions; one taking the jth direction 
of the field Ep and the kth direction of Eq and vice versa.

A similar calculation can be done to obtain the third-order susceptibility, which we outline below. We 
start with the third-order induced dipole moment:
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Next we write the third-order polarization as follows:
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with the kth component of the polarization amplitude expressed as
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where ωs = ωp + ωq + ωr. The result is
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The permutation operator simultaneously permutes the fields p, q, and r and their attached indices h, i, and j, 
spawning six permutations from each of the four terms in Equation 13.96.

13.3.2 density matrix calculation of χ (2) and χ (3)

As introduced in Chapter 4, the density matrix approach is a phenomenological way to account for the influ-
ence of a medium in condensed phase spectroscopy experiments. It can be pursued within the Heisenberg 
or the Schrödinger picture (see Chapter 4), and we adopt the latter in the present discussion. As in Chapter 4, 
we take the time-dependent wavefunction to be a superposition of stationary states: Ψ( ) ( )t a t nn n= Σ . 
The density operator is defined as ˆ( ) ( ) ( )ρ t t t= Ψ Ψ , and an equilibrium averaged element of this matrix is 
ρnm n ma t a t= ∗( ) ( ). As discussed previously, diagonal elements of the density matrix represent populations, and 
 off-diagonal elements are associated with coherences of pairs of states. We use phenomenological relaxation 
rates to describe the time dependence of ρnm.
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The damping rate is given by Γ Γ Γ Γnm n m nm= + + ∗1 2( ) . Comparing this to Equation 4.100, we see that Γnm is 
the total dephasing rate, Γn is the inverse lifetime of state n and Γnm

∗  is the pure dephasing rate. Recall that Γn 
is a phenomenological population relaxation rate as presented in Equation 4.76 and accounts for both radia-
tive and nonradiative decay.

The equilibrium value of the density matrix ρnm
eq  is zero for n ≠ m, while ρnn

eq  is given by Equation 1.86 
(Boltzmann’s law). The off-diagonal elements of the density matrix arise from coherent coupling of the basis 
states under the influence of the time-dependent perturbation of the radiation field, therefore they vanish at 
equilibrium. Since dephasing pertains to the decay of coherences, we have Γnn

∗ = 0 and the time-dependence 
of the diagonal density matrix elements is given by:
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Next we separate the Hamiltonian into a zero-order part plus the time-dependent perturbation: ˆ ˆ ˆ ( )H H H t= + ′0 , 
where ˆ ( ) ˆ ( )′ = − ⋅H t E tμ

�
, which results in
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To get a perturbative approach to finding the density matrix to Nth order, we take the following 
expansion:

 ρ ρ λρ λ ρnm nm nm nm= + + + ...( ) ( ) ( )0 1 2 2
 (13.100)

As usual, we also multiply the perturbation Hamiltonian by λ. Inserting Equation 13.100 into Equation 13.99 
leads to an iterative equation for finding the Nth order correction to the density matrix:
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Linear Susceptibility. Let us find the first-order density matrix by using N = 1 in the above equation and inte-
grating over time:
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With the substitution ˆ ( ) ˆ ( ) ˆ ( )′ ′ = − ⋅ ′ = − ⋅ − ′H t E t E ep p
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This expression is then used to get the first-order correction to the induced dipole moment:
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With the first-order polarization given by P N Ep p p p
( ) ( ) ( )( ) ( ) ( ) ( )1 1

0
1ω µ ω ε χ ω ω= = ⋅ , where N is now the 

number density of molecules, the linear susceptibility is found to be
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This can be compared to Equation 13.82, which explicitly shows the positive and negative frequency com-
ponents, but lacks the population difference and damping. Equation 13.105 expresses the susceptibility as 
a second-rank tensor for which the ij Cartesian component is decided by the i and j components of the two 
transition dipole moments. Again, it is the damping term Γnm which imparts an imaginary component to 
the susceptibility. When the field frequency ωp approaches that of the m → n transition, the susceptibility 
is dominated by a single term and becomes pure imaginary. The sign is then decided by ρ ρmm nn

( ) ( )0 0− , allowing 
for the susceptibility to take on a positive (absorption) or negative (stimulated emission) value according to 
whether the population is greater in state n or m respectively.
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In the absence of local fields, the susceptibility is related to the molecular polarizability through ε0χ (1)(ω) = 
Nα(ω), and we previously expressed α(ω) using the Kramers–Heisenberg–Dirac expression of Chapter 4. 
Equation 13.105 can be rearranged by splitting the population difference into two summations, swapping the 
indices n and m in the second sum, and using ωnm = −ωmn. The result is
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The subscript p on the frequency has been dropped. Equation 13.106 contains the resonance and antireso-
nance terms and can be compared to Equation 4.74. The present form of the polarizability is a state property 
rather than a transition polarizability, and the subscripts (and superscripts) i and j denote directions in the 
laboratory frame.

Second-order susceptibility. We use the first-order solution to the density matrix on the right hand side of 
Equation 13.101 to find the second-order correction to the density matrix:
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The derivation is lengthy and a few intermediate steps will be shown. The commutator needed above is found 
to be
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The field is expressed as 
� �
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i tp( ) ( )= −Σ ω ω , with the condensed notation 
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(The definition above of Rnmk will save writing later when we consider the third-order expressions.) We then 
find the second-order polarization and susceptibility as follows (see Equations 13.90 and 13.91):
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Using i, j, k as indices for the directions x, y, z and changing the indices for n, m, k in 13.109 to a, b, c respec-
tively, we obtain
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Equation 13.111 needs further manipulation in order to reflect the intrinsic permutation symmetry dis-
cussed in Section 13.2.2. We do this by adding to it an identical expression in which the indices i and j have 
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been exchanged and similarly p and q have been swapped, dividing the sum by two. With further changes 
to dummy indices to get all the populations in terms of states a and b, χ (2) is determined to be the sum of 
four terms:
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The four terms are
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Note that if the a and b state populations are equal, χ (2) vanishes. The first quantity in parentheses in the 
denominator of each term in Equation 13.113 represents resonance with the output frequency while the 
second term permits resonance with one of the input frequencies.

It is also possible to split Equation 13.112 into two terms, one with the population ρaa
( )0  and the other with 

ρbb
( )0 . After changing dummy indices, the result is the sum of eight terms:
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This introduces four new terms:
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Figure 13.5 illustrates these eight contributions to χ (2) on an energy level diagram under resonance condi-
tions, for which input and output frequencies match those for dipole-allowed transitions. Note that the dia-
grams for K3 is the same as that for K6, and similarly the diagrams for K4 and K5 are equivalent. The arrows 
drawn in Figure 13.5 are in the order given by the chain of transition dipoles, reading them from right to 
left, reflecting transitions from a to b, from b to c and then from c back to a. Note that the transition dipole 
in the direction corresponding to the index i is always associated with the signal at sums and differences of 
the input frequencies, which can be positive or negative. For convenience, positive frequencies are assumed 
in drawing Figure 13.5.
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Third-order susceptibility. The derivation of the third-order components of the density matrix and suscep-
tibility and the resulting expressions are lengthy. Here, we present the results and refer the reader to [1,2] for 
more details. With the definition
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the third-order density matrix is
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Again, we relate the third-order polarization to χ (3).
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We find χ (3) to be the sum of eight terms:
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where P̂ is the previously used permutation operator. The terms are defined as
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Figure 13.5 Energy level diagrams illustrating the resonances in each of the terms that contribute to χ (2) in 
Equation 13.114.
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The permutation operator gives rise to six permutations for each of the above eight terms (six orderings of the 
labels p, q, and r), so that an element of χ (3) is a sum of 48 terms. Figure 13.6 illustrates the resonances associ-
ated with each of the eight terms.

Though the density matrix approach accounts for time-dependent interactions of the system with its 
environment, the screening of the fields by the medium (local field effect) is also a difficult problem in 
nonlinear as in linear spectroscopy. It is frequently neglected, such that bulk properties (susceptibilities) 
are obtained from a sum of the molecular properties, taking into account orientation of the molecular 
frame relative to the lab frame. For example, the molecular hyperpolarizability (Equation 3.29), βijk, is a 
third-rank tensor which gives rise to χIJK

( )2  in the laboratory frame. The connection between the two requires 
summations over appropriate rotation matrices which depend on the Euler angles that orient the molecular 
frame (ijk) relative to the lab frame (IJK). Neglecting the tensor nature of both, they would be connected 
by χ (2) = Nβ/ε0.
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Figure 13.6 Energy level diagrams illustrating the resonances in each of the terms that contribute to χ (3) in 
Equation 13.119.
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13.4  FEYNMAN DIAGRAMS AND CALCULATION 
OF TIME-DEPENDENT RESPONSE FUNCTIONS

An alternative approach to finding the nonlinear corrections to the density matrix and susceptibility is to 
use the interaction representation, which is intermediate between the Schrödinger and Heisenberg pictures 
presented in Chapter 4. Recall that in the former, the wavefunctions are considered to evolve in time while the 
latter considers the operators to be time-dependent. In the interaction picture, the time-dependent pertur-
bation operator ˆ ( )′H t  evolves in time under the influence of the time-independent zero-order Hamiltonian 
Ĥ0 rather than the complete Hamiltonian. The approach leads to perturbation expansions for ρab

n( ) and χ (n) 
which are found from time-ordered integrations over matrix elements of commutators of the dipole moment 
operators with the perturbation operator ˆ ( )′ = − ⋅H t E

� �
μ . The derivation of this expansion is beyond the scope 

of this book (see [3]), so we shall merely outline the formalism here. The theory leads to a convenient visual 
representation of the expansion terms in the expressions that we have obtained for χ (2) and χ (3), known as 
double-sided Feynman diagrams. In some cases, a specific Feynman diagram can be associated with a par-
ticular experiment, but more generally a sum of diagrams, each representing a particular term contributing 
to χ (n), must be considered. Caution must be exercised when associating a single diagram with an experimen-
tal technique as cancellation can occur when diagrams are summed to get the susceptibility. Nevertheless, 
the diagrammatic approach is useful for introducing the concepts of coherences and populations in the dis-
cussion of nonlinear experiments. Most important, a contributing term to the time-dependent nth-order 
response function can be written down by inspection of the corresponding Feynman diagram, as shown here.

In the Feynman diagram picture, each interaction with the field is considered to act on the bra or ket 
side of the density matrix element ρnm such that the pulse sequence results in a series of populations and 
coherences that defines the type of experiment. What does it mean to act on the “bra” or “ket” side of the 
density matrix? Equation 13.101 reveals an iterative approach to calculating the nth-order perturbation to 
ρ̂  from n nested commutators of ˆ ′H  and ˆ ( )ρ 0 . On expansion, the perturbation Hamiltonians can appear on 
the right- or left-hand side of ˆ ( )ρ 0 . These are associated with bra- and ket-side perturbations respectively. The 
light–matter perturbation results in a superposition of two states when the input frequency matches that of 
a dipole-allowed transition between them. The resulting coherence leads to polarization that oscillates at the 
beat frequency of these coupled states. In free induction decay, FID, the emission of light resulting from an 
induced polarization is observed after the field is turned off.

In Chapter 4, we introduced the Rabi frequency Ω = ⋅
� �

�µ fi E0/ , which, unlike the Bohr frequency ωfi, is a 
function of the electric field amplitude and the transition dipole. The Rabi frequency is the frequency of optical 
nutation, which is the cycling of absorption and emission that occurs at high field strength, while the field is 
on. In a two-state picture such as that used in Chapter 4, a Rabi cycle occurs when a pulse sequence results 
in the following evolution of the density matrix: g g e g e e g e g g→ → → → , where the first 
two events (arrows) result in an absorption and the third and fourth represent stimulated emission. Though 
common in magnetic resonance experiments (see Chapter 3), this kind of cycling in the case of electronic 
states is rare, though not impossible, because electronic dephasing rates are much faster than achievable Rabi 
frequencies. Note that in a two-state model, the density matrix formalism leading to the cycling of ground 
and excited state populations was achieved without recourse to perturbation theory. This is distinct from the 
perturbative (partial) transfer of population from the ground to the excited state, taking place through inter-
mediate coherences. As discussed here and in the next chapter, ultrafast time-resolved optical experiments 
can reveal the dynamics of population and coherence for sufficiently short pulse durations and time delays.

The interaction picture approach leads to the following response functions [3]:
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The Heaviside step function θ(t) is equal to unity for t > 0, and zero for t < 0. The nth-order response function is 
pictured as resulting from a series of n field–matter interactions that occur at times 0, t1, t1 + t2, t1 + t2 + t3, …, 
t1 + t2 + t3 + … tn−1, where tj is the time interval between the jth interaction and the one following it. In other 
words, t1 is the time interval between the first and second interactions, t2 is the time interval between the sec-
ond and third interactions, as so on. The signal is detected at time t1 + t2 + t3 + … tn. The overbar again repre-
sents an equilibrium average, using ˆ ˆ ( )ρ ρeq = 0  as the density operator in evaluating the trace (Equation 1.91). In 
the interaction representation, the time-dependent dipole moment operator evolves as
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The above response functions are extensions of the time-correlation function approach taken in Chapter 5 
for the linear response, e.g. Equation 5.15. Thus S(1) is the dipole correlation function, the Fourier transform 
of which yields the spectral intensity I(ω) in linear response.

The nonlinear polarization in first, second and third order is
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It should be clear how the above expressions can be extended to nonlinear response functions and polariza-
tions of any order n. The field E r t( , )

�  is the Fourier transform of the electric field which has previously been 
expressed as a function of k and ω. The variables conjugate to 

�
r  and t are respectively 

�
k  and ω, thus the Fourier 

transform takes the form:
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This equation uses the common convention of distinguishing members of a Fourier transform pair by placing a 
tilde over one of the functions. The vector nature of the field, which would lead to different elements of the ten-
sor χ (n), is neglected here for simplicity. Similarly, the time-dependent polarization can be Fourier-transformed 
to give the polarization as a function of frequency and wave vector, and the above approach leads to the same 
expressions for χ (n) as obtained earlier.

Feynman diagrams (Figures 13.7 through 13.9) provide a way to visualize the evolution of the density 
matrix in the time domain in terms of perturbations to the bra or ket side and give us a vocabulary for dis-
cussing experiments. The parallel vertical lines on the left and right indicate the time evolution of the ket 
and bra side, respectively, and time increases from bottom to top. Solid wavy arrows represent field–matter 
interactions at the indicated times, while the topmost dashed wavy arrow represents the signal. Arrows point-
ing toward the double lines represent an increase in energy level (absorption), while those pointing outward 
correlate to decrease in energy (stimulated emission). Each arrow is associated with a transition dipole and 
an exponential function of the input frequency, as summarized in Table 13.2. The frequency and wave vec-
tor of the signal are obtained by summing the input frequencies and wave vectors with appropriate signs, 
positive ω and k for arrows pointing to the right, and negative ω and k for arrows pointing to the left. The 
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Figure 13.7 Feynman diagram for linear response: (a) absorption and (b) emission.
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Figure 13.8 Feynman diagrams representing the eight resonances that contribute to χ (2).
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topmost arrow represents the signal and corresponds to the trace operation to get the equilibrium average. 
By cyclic invariance of the trace, ρeq could appear on the left- or right-hand side. By convention, the signal 
is often, but not always, written as an emission on the left (ket) side of the diagram. The sign of a Feynman 
diagram is negative (positive) when the number of bra side interactions is odd (even). Table 13.2 also depicts 
the contribution to a wave-mixing energy level (WMEL) diagram. These are similar to conventional energy 
level diagrams with up and down arrows representing absorption and emission, respectively. Solid arrows 
represent ket side transitions and dashed arrows are used for bra side transitions. Not shown in Table 13.2 is 
the signal, which is depicted as a dashed wavy arrow in Figures 13.7 through 13.9. Each interaction, and the 
signal as well, introduces a transition dipole connecting two states.

The effects of dephasing are accounted for phenomenologically. Starting from Equation 4.104 and using 
only the zero-order Hamiltonian leads to:

 ρ ρ ρω
ab

i H t
ab

i H t i t
abt e e e ab( ) ( ) ( )/ /= =− −� � � �0 00 0  (13.136)

Adding the phenomenological damping rate, we have:

 ρ ρω
ab

i t t
abt e eab ab( ) ( )= − −Γ 0  (13.137)

During the time-interval when the system exists in a coherence a b , where a ≠ b, the density matrix evolves 
according to Equation 13.137. To illustrate the use of Feynman diagrams as bookkeeping devices for calculat-
ing the response, we begin by finding χ (1).

Application to Linear Response. Consider the Feynman diagrams for linear absorption and emission 
shown in Figure 13.7. For absorption, let us take the initial state of the system as the ground state g g  
and the final excited state as e e . The Feynman diagram envisions a pulse at time zero acting on the 
ket side: g g e g→  followed by a signal at t1 acting on the bra side and resulting in e g e e→ . The 

Table 13.2 Rules for Feynman diagrams [22]
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two arrows in Figure 13.7 should not be interpreted as two photons absorbed; rather they result from 
the two dipole moment operators in the response function S(1), at times 0 and t1. Two perturbations are 
required to go from the initial to the final population. Using the rules summarized in Table 13.2 for 
this “single pulse” example, the frequency and wave vector of the signal are the same as those of the 
input field, and the signal intensity is proportional to the square of the transition dipole moment. We 
should interpret the Feynman diagram for absorption as the creation of an output signal which interferes 
destructively with the input signal at the same frequency, leading to attenuation of the incident light. The 
absorption event could also be depicted by having the first and second interactions occur on the bra and 
ket sides, respectively, depicting the evolution of the density matrix from g g  to g e  to e e . Such a 
diagram would be the complex conjugate of the one shown in Figure 13.7. The emission diagram is simi-
larly explained with the outward pointing arrows representing descending energy. In this case, the dia-
gram represents constructive interference of the input and output fields. Since the topmost arrow occurs 
at a frequency which is the sum of all the frequencies at preceding times, in the present case, this arrow 
denotes the overall transition at ω or −ω for absorption and emission, respectively. In the latter case, the 
frequency is provided by an external source if the emission is stimulated and by the vacuum radiation 
field if spontaneous. The picture is equivalent to the time-correlation function approach for describing 
linear spectroscopy as discussed in Chapter 5, where the spectral response depended on the dipole cor-
relation function µ µ( ) ( )0 t  . (We used angle brackets in Chapter 5 to denote equilibrium averages. We 
are using an overbar here in order to reserve angle brackets for bras and kets.)

Let us use the response function of Equation 13.128 to calculate the linear susceptibility, illustrating aspects 
of the formalism that apply to the calculation of the nonlinear response as well. Superscripts denoting linear 
response and vector notation are omitted for clarity in the following expressions. We assume a cosine depen-
dence for the incident field and write E E i t i t= + −0 0 0[exp( ) exp( )]ω ω . To ensure that the polarization is a real 
function, we can take

 P E e ei t i t( ) [ ( ) ( ) ]ω ε χ ω χ ωω ω= + −
0 0

0 0∗  (13.138)

This can be compared to the assumption used in the derivation of the polarizability in Section 4.4.1, where we 
used a wavefunction approach. It follows from the above expression that

 P E t t( ) [ ( )cos( ) ( )sin( )]ω ε χ ω ω χ ω ω= ′ − ′′0 0  (13.139)

Thus, the real part of the susceptibility ′χ  leads to a response which is in phase with the driving field, while 
the imaginary part ′′χ  gives rise to a π/2 phase shift. The time-dependent polarization P(t) and the frequency 
domain polarization P(ω) are Fourier transforms of one another. The former is found using Equation 13.132. 
Expanding the commutator in Equation 13.128 leads to
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We have used the fact that C(−t) = C∗(t) (Chapter 5). To find this correlation function, refer to the Feynman 
diagram for absorption shown in Figure 13.7. For now, we assume a single initial state g with a Boltzmann 
population ρgg

( )0 . The correlation function C(t) applies to this picture while its complex conjugate (not shown) 
would indicate an interaction on the bra side instead of the ket, accounting for the minus sign in front of C∗(t). 
By inspection and using the rules of Table 13.2, we write

 C t e egg ge
i t t

eg
eg eg( ) ( )= − −ρ µ µω0 Γ

 (13.141)

Reading from right to left, the interaction on the ket side gives the transition dipole μeg. The resulting 
coherence e g  evolves as e ei t teg eg− −ω Γ , which is the product of phase evolution and damping due to the 
total dephasing rate Γeg. (Since the integration is over positive times only, we could omit the absolute value 
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signs around t.) The signal then introduces the transition dipole μge associated with the absorption of light 
at ω = ωeg, and the probability ρgg

( )0  is associated with taking the trace to get the equilibrium average. The 
reader should verify that in the case where there is excited-state population at equilibrium, ρgg

( )0  should 
be replaced by ρ ρgg ee

( ) ( )0 0−  in Equation 13.141. Using E E i t i t= + −0 0 0[exp( ) exp( )]ω ω  for the field, the time-
dependent polarization is then
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The two integrals above are half-Fourier transforms of an exponential and have both real and imaginary 
parts [9]:
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With the help of this integral, we arrive at
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Finally, we find P e P t dti t( ) ( / ) ( )ω π ω= −
−∞

∞
∫1 2  and use the Fourier representation of the delta function 

(Equation 5.9). The first exponential term in Equation 13.144 gives the delta function δ ω ω( )+ 0 , and the second 
one gives δ ω ω( )− 0 , in other words, antiresonance and resonance terms. We keep the latter, consistent with its 
much larger contribution for positive frequency, and on comparing to Equation 13.138 arrive at the following 
expression for the linear susceptibility:
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We see that the imaginary part gives the expected Lorentzian lineshape, and the real part gives the 
expected dispersion. The above treatment took the point of view that the incident light would be reso-
nant with the g → e transition. More generally, there is a sum over all initial (populated) and final states.

Second-order response. Figure 13.8 shows the eight Feynman diagrams associated with the terms K1,abc 
through K8,abc of Equation 13.114. In this case, the first pulse occurs at time 0 and the second pulse arrives a 
time t1 later. The emitted frequency (topmost arrow) at ωs = ±ωp ± ωq is detected at t1 + t2. For example, the 
diagram of Figure 13.8 that correlates to K1,abc (see also Figure 13.5), is interpreted as follows. The system 
starts out in state a, with density matrix ρaa a a( )0 = . The first pulse of frequency ωp results in the coherence 
b a . Note the second term in the denominator of K1,abc permits resonance enhancement of this term when 
the (absorptive) transition from a to b is allowed. The second pulse at time t1 later with frequency ωq similarly 
acts on the ket side to result in the coherence c a  and is enhanced when the allowed transition from b to c 
is resonant with input frequency ωq. The output signal at ωs = ωp + ωq, again indicated by the dashed wavy 
arrow, occurs at time t1 + t2. Note that the changes to the ket along the time line represent the chain of three 
transition moments in the numerator of the expression for K1,abc, read from right to left. In the example at 
hand, the system returns to the original state at the end (parametric process) and the diagram describes sum-
frequency generation.



358 Nonlinear optical spectroscopy

Contrast this diagram with the third one in Figure 13.8, which goes with K3,abc. Here the first pulse again 
acts on the ket side with ωp at time 0, taking a a  to b a  by absorption. The pulse at time t1 then carries 
b a  to b c  by absorption of light at ωq. We now have a signal at ωs = ωp − ωq, where the minus sign arises 
from the bra side interaction with the field. Note that eight Feynman diagrams for χ (2) processes occur in 
pairs in which the indices p and q are swapped. Though we started from an expression for the electric field 
which was summed over positive and negative frequencies, we have adopted the convention that input fre-
quencies are considered positive for the purpose of drawing both the energy level diagrams and the Feynman 
diagrams. Feynman diagrams can be drawn to represent many different experimental situations as will be 
seen in the next section and in Chapter 14. Note that whereas the energy level diagrams for K3 and K6, and for 
K4 and K5, are equivalent, the corresponding Feynman diagrams are not.

To see how the response function of Equation 13.129 leads to various diagrams for χ (2), let us consider one 
of the eight terms that results when the commutators are expanded, for example:
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We wish to time order the transition moments by taking into account the invariance of the trace to a cyclic 
permutation.

 
µ µ µ µ µ ρ µ( ) ( ) ( ) ( ) ( ) ( )( )0 01 2 1 1 2 1

0t t t m t t t m
m

+ = +∑ �
 

(13.147)

This shows that the perturbation at time zero acts on the bra side of the density operator while that at t1, and 
the signal, occurs on the ket side. With the help of the resolution of the identity and Equation 13.131, and after 
changing some dummy indices,
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Equation 13.148 neglects the dephasing terms, which we now add to the expression. The term we have 
selected corresponds to the K5 diagram of Figure 13.8, a “bra–ket” term. Starting from population a a , 
the first interaction at time 0 (μca) causes the transition a a a c→ ; it operates on the bra side. This coher-
ence evolves during the interval t1, so we need a dephasing term Γca during this interval. The b c  coherence 
that results from the second interaction, on the ket side, evolves during t2, so we also need to include Γbc dephasing. 
The result is

 µ µ µ ρ µ µ µ ω ω( ) ( ) ( ) ( )
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This is one term in the sum of eight. Using the rules of Table 13.2, each term can be written by inspection, 
and the labor is shortened by recognizing that the expressions (and diagrams) occur in pairs which are 
complex conjugates of one another, e.g. K5 and K3, representing DFG at frequencies ω ωq p−  and ω ωp q−  
respectively.

It is also possible to associate a term in Equation 13.114 (or Equation 13.119 for χ (3)) with a particular 
Feynman diagram as follows. First, find the energy level diagram such as one of those shown in Figure 13.5 
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by looking at the transitions from state a to b to c in the numerator of a term in Equation 13.114. The transi-
tion with superscript i is associated with the output signal, and a resonance denominator with a single input 
frequency is associated with one of the other two transition moments. The remaining transition dipole is 
associated with the second input and gives rise to resonance of the output signal with the sum of the two input 
frequencies. Inputs that go with transition dipoles to the right (left) of that associated with the output signal, 
in the numerators of the expressions for Ki, abc, are drawn as arrows to the left (right) of the output transition 
in energy level diagrams such as those of Figures 13.5 and 13.6. The energy level diagram is translated into 
a Feynman diagram by drawing the input fields as acting on the ket or bra side according to whether the 
corresponding arrows in the energy level diagram occur to the left or right of the output arrow, respectively. 
Since a, b, c are dummy indices, the order of the energy levels is arbitrary, but the transitions must originate 
in state a owing to the dependence on the population of that state. For the example above (term K5), the asso-
ciated diagram corresponds to DFG and thus the Feynman diagram shows a signal which results in a final 
state different from the initial state, even though the chain of transition moments in the sum-over-states 
formula begins and ends in state a.

Similarly, when the nested commutators needed for the third-order response (Equation 13.130) are 
expanded, there are eight terms, each of which is a product of four dipole moment operators. Three of these 
correspond to light pulses acting at 0, t1, and t1 + t2, while the fourth goes with the signal detected at t1 + t2 + t3. The 
eight unique Feynman diagrams for χ (3) processes are shown in Figure 13.9. Since there are 3! permutations of 
the three input frequencies, there are actually 48 terms in the expansion of χ (3). Specific experiments invoking 
some of these terms are considered in Section 13.5. Feynman diagrams provide insight that is not apparent 
from energy level diagrams like those in Figures 13.5 and 13.6 by showing how the density matrix evolves 
through perturbations to populations and coherences.

13.5 EXPERIMENTAL APPLICATIONS OF NONLINEAR PROCESSES

We next survey a few of the many spectroscopic experiments that spring from χ (2) and χ (3). Since high laser 
powers are required to observe nonlinear effects, laser sources for these experiments are typically pulsed and 
many experiments are performed in the time domain to acquire dynamical  information. Further discussion of 
time-resolved experiments will be taken up in the next chapter, and examples in this chapter emphasize experi-
ments where the signal is often detected in the frequency domain.

13.5.1 examPles of χ (2) exPeriments

Vibrational Sum-Frequency Generation Spectroscopy. Owing to the vanishing even-order nonlinear terms 
in isotropic media, χ (2) experiments are particularly useful as interface-specific spectroscopic tools and in 
microscopy [10–13]. Vibrational sum-frequency (VSF) spectroscopy is a surface-specific technique that, 
unlike other surface techniques such as photoelectron spectroscopy, does not require high vacuum. It is 
therefore used to probe gas/liquid, solid/liquid and liquid/liquid interfaces. In this experiment, shown 
schematically in Figure 13.10, a visible beam and a tunable infrared (IR) beam are incident on the inter-
face and an output signal at the sum frequency ωvis + ωIR is observed when the IR beam is resonant with 
a molecular vibration. For the geometry shown in Figure 13.10, where signals are detected in reflection, 
the propagation vector of the output signal is close to, but not exactly collinear with, the reflected visible 
beam. As ωIR is tuned to achieve resonance with a vibrational transition that is both Raman and IR active, 
an enhanced signal at ωSF = ωvis + ωIR is detected. Were it not for the interface, this selection rule would 
preclude VSF activity of centrosymmetric molecules. In fact, intermolecular interactions and symmetry 
breaking at the interface result in nonzero VSF intensities of molecules which possess inversion symme-
try when isolated.
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The relevant susceptibility for vibrational SFG is obtained starting from Equation 13.112 and letting all 
equilibrium population reside in the ground state, ρgg

( )0 1= . The terms which are resonant when the IR fre-
quency is tuned to a vibrational transition g → v can be collected:
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Equation 13.150 is the resonant signal. There is in addition a broad background resulting from the nonreso-
nant terms. The term in the curly brackets is the IJ component of the Raman tensor (transition polarizability) 
for the vibrational transition and the last term contains the transition dipole moment µvg

K   that determines the 
IR activity of the vibration with transition frequency ωvg. Alternatively, we can write the molecular hyper-
polarizability as
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where the numerator is the product of the Raman and IR transition amplitudes. The molecular hyperpolar-
izability is written in the molecule frame ijk = xyz while the bulk measurement is dependent on lab-frame 
directions IJK = XYZ.

In either representation, it is apparent that the SFG signal is resonantly enhanced when the IR input is tuned 
to the frequency of a vibrational transition (at ωvg) that is both Raman and IR active. Detection of the output 
signal is facilitated by its occurrence at a visible rather than IR wavelength. Owing to the availability of tunable 
IR sources with wavelengths in the vicinity of 3 μm, VSF studies of higher frequency vibrational modes such as 
OH and CH stretches are prevalent in the literature. The pulsed IR and visible input beams are typically spatially 
and temporally overlapped at the surface. A signal can still be observed using a visible pulse that is delayed in 
time with respect to the IR pulse, provided the delay is shorter than the decay of the vibrational coherence. Such 
a scheme can reject the more rapidly decaying nonresonance signal. Experiments can be done by scanning the 
IR frequency to achieve resonance or by using a broadband IR source.

Figure 13.10 defines S and P polarization for the input and signal beams, which refer to light which is 
respectively polarized perpendicular or parallel to the plane of incidence. Phase matching for detection of the 
signal at ω ω ωSF IR= + vis  is met by the condition:

 n n nSF SF SF IR IR IRω θ ω θ ω θsin sin sin= ±vis vis vis  (13.152)

The plus or minus sign is used according to whether the two input beams propagate from the same or from 
opposite directions (the former is depicted in Figure 13.10). The angles θSF, θvis, and θIR are the angles between 
the designated propagation vectors and the surface normal, and nSF, nvis and nIR are refractive indices for the 
medium through which the beams propagate, evaluated at the relevant frequencies. The intensities of the 
reflected or transmitted beams depend on the linear and nonlinear Fresnel coefficients, as discussed in [10–12].
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Figure 13.10 Experimental configuration for vibrational sum-frequency spectroscopy using S or P polarized 
incident beams.
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Molecules adsorbed at isotropic surfaces such as liquids are axially symmetric with respect to the surface 
normal (Z), since the X and Y directions are equivalent. The average orientation of molecules at the inter-
face can be determined by exploiting the tensor nature of χ (2). Symmetry considerations such as those in 
Section 13.2.2 enable us to determine that many of the 27 possible values of χ IJK

( )2  are zero. Since X is equivalent 
to −X, and Y is equivalent to −Y, tensor elements of χ (2) with an odd number of X and/or Y subscripts must vanish, 
e.g. χ χ χXZZ XZZ XZZ

( ) ( ) ( )2 2 2 0= − = − =− . This leaves only four unique tensor elements: χZZZ
( )2 , χ χXXZ YYZ

( ) ( )2 2= , χ χXZX YZY
( ) ( )2 2= , and 

χ χZXX ZYY
( ) ( )2 2= . Four unique SFG experiments are done using SSP, SPS, PSS and PPP polarizations. These polar-

izations are listed in the order sum frequency, visible, IR, such that the last index correlates to the direction 
of the vibrational transition moment. Recall that S-polarized light has an electric field perpendicular to the 
plane of incidence, defined by the incident and reflected beams, whereas P-polarized light is polarized in the 
plane of incidence. Thus the intensity of the signal in an SSP experiment depends on the component of the IR 
transition moment which is parallel to the plane of incidence, while the visible and sum-frequency beams are 
polarized perpendicular. The only surviving component for the SSP configuration is thus χ χXXZ YYZ

( ) ( )2 2= . The SSP 
experiment sees vibrations for which the transition moment has a component perpendicular to the interface. 
The SPS (χ χXZX YZY

( ) ( ) )2 2=  and PSS (χ χZXX ZYY
( ) ( ) )2 2=  experiments reveal the extent to which this transition moment is 

perpendicular to the plane of incidence, or alternatively, in the plane of the interface. Since P-polarized IR has 
components in both the Y and Z directions, the PPP experiment probes all four nonzero tensor elements and 
thus sees both parallel and perpendicular components of the vibrational transition moment.

A number of VSF studies have looked at the orientation of hydrocarbons such as surfactants at the air/water 
or water/organic liquid interface. In [13], polarized VSF spectra of the isomers 1-, 2-, 3- and 4-hexadecanol were 
obtained at the air/water interface as shown in Figure 13.11, revealing the order of the molecular alignment 
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Figure 13.11 Vibrational sum-frequency spectra with SSP polarization of monolayers of 1-, 2-, 3-, and 
4-hexadecanol on water. (Reprinted with permission from Can, S.Z. et al., Structure and organization of hexa-
decanol isomers adsorbed to the air/water interface, Langmuir, 22, 8043, 2006. Copyright 2006 American 
Chemical Society.)
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at the interface. The alignment is the result of a preference for hydrogen bonding between the ‒OH group of 
the alcohol and surface water, and van der Waals interactions which favor close packing of the hydrophobic 
hydrocarbon chains. For 1-hexadecanol, these interactions work together to favor the all-trans alignment pic-
tured in the cartoon of Figure 13.12. The isomers for which the hydroxyl group is in the 2, 3 and 4 position, 
on the other hand, have to form kinks, known as gauche deformations, to optimize hydrophilic and hydro-
phobic interactions, reducing the packing density at the surface and increasing alignment disorder. Can et al. 
[13] measured VSF spectra using SSP and SPS polarization to reveal molecular vibrations with IR transition 
moments respectively perpendicular and parallel to the interface. Figure 13.12 shows the displacement vectors 
for (a) the symmetric methyl stretch r+, (b and c) the degenerate methyl stretch r−, (d) the symmetric methylene 
stretch d+, and (e) the asymmetric methylene stretch d−. For the perfectly ordered all-trans chain depicted for 
1-hexadecanol, the d+ stretch at 2841 cm−1 would not appear in SSP polarization, since its transition dipole 
moment would be parallel to the interface. As seen in SSP spectra of Figure 13.11, this feature is quite weak for 
1-hexadecanol and increases in relative intensity on moving the ‒OH group to the 2, 3, and 4 positions. All 
spectra show contributions from r+ at 2872 cm−1, reflecting the component of the symmetric stretch transition 
dipole moment, which is coincident with the local C3 axis, in the direction perpendicular to the interface. The 
intensity ratio of r+ to d+ is taken as an order parameter, and indeed it decreases on moving the hydroxyl group 
away from the chain terminus, as kinks are introduced. In addition to the r+ and d+ features, the spectra in 
Figure 13.11 all show a broad band at about 2930 cm−1 that contains contributions from r− and from a bending 
overtone of the methyl group which borrows intensity from the symmetric stretch r+ via Fermi resonance.

13.5.2 examPles of χ (3) exPeriments

The number of four-wave mixing (FWM) experiments is quite large, and some of them will be discussed in 
Chapter 14. We consider first some experiments which are often done in the frequency domain, though pulsed 
variations are also possible. We also revisit the topic of spontaneous Raman scattering (Chapter 12), which can 
be viewed as a FWM experiment where one of the three input fields is that of the vacuum field of radiation.

13.5.2.1 TWO-PHOTON AND MULTIPHOTON ABSORPTION

Absorption of n photons, for which the sum of photon energies matches the energy difference Eeg between the 
ground and excited electronic state, is a nonparametric process. While one-photon transitions depend on χ (1), 
those for two-, three-, and four-photon transitions arise from χ (3), χ (5), and χ (7), etc., respectively. It is possible to 
achieve multiphoton absorption of photons of the same or different wavelengths. Two-photon absorption (TPA) 
is referred to as degenerate or nondegenerate according to whether the two photons are the same or different 

ed

a b c

Figure 13.12 Vibrations of an all-trans hydrocarbon chain. (a) symmetric methyl stretch, (b) antisymmetric 
methyl stretch, in-plane component, (c) antisymmetric methyl stretch, out-of-plane component, (d) symmetric 
methylene stretch, and (e) antisymmetric methylene stretch. The cartoon at bottom right shows a monolayer 
of a film of hydrocarbon molecules, in the all-trans configuration, adsorbed at a surface through a polar head-
group. (Adapted from Shen, Y.R. and Ostroverkhov, V., Chem. Rev., 106, 1140–1154, 2006.)
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color, respectively. In either case, the process is determined by the imaginary part of χ (3). TPA was predicted the-
oretically by Maria Goeppert-Mayer in the 1930s but not observed experimentally until 1961. The dependence of 
TPA on the square of the incident light intensity, or product of light intensities in the nondegenerate case, pres-
ents experimental advantages for applications such as microscopy, where the fluorescence resulting from TPA is 
detected with higher spatial resolution in comparison to fluorescence excited by linear absorption. The spatial 
resolution of ordinary fluorescence-based microscopy cannot exceed the diffraction limit, which is typically on 
the order of half the wavelength. Fluorescence microscopy based on two-photon excitation exceeds this resolu-
tion limit because the strongest signals are obtained from the most intense part of the diffraction limited focal 
volume. Fluorescence detection of TPA is also advantageous because the incident light is weakly attenuated, 
and in highly scattering media lower frequency incident light contributes less background to the desired signal.

It may seem puzzling that absorption of two photons should be a third-order rather than a second-order 
nonlinear process. As shown in the energy level diagram of Figure 13.13a, the transition from ground state 
g to excited electronic state f takes place via intermediate states i. Though this diagram emphasizes the reso-
nance condition, where ω 1 + ω 2 = ω fg, a sum-over-states formula for TPA, similar to that for the Raman effect, 
includes all intermediate states, not just those with energies bracketed by those of the ground and excited 
states. Referring to the Feynman diagram of Figure 13.13b, TPA is understood as resulting from two interac-
tions with real photons and one with a virtual photon. In the nondegenerate case, the virtual photon can have 
frequency ω 1 or ω 2 resulting in attenuation of the input beam at either ω 2 or ω 1, respectively. TPA spectra 
are often graphed as a function of the sum of the input frequencies for ease of comparison to the one-photon 
spectra, in the case where the latter is also allowed.

When the intermediate state i is real rather than virtual, a resonance term dominates the sum-over-
states formula for TPA. It should be emphasized that TPA is not the same phenomenon as excited state 
absorption, to be discussed in the next chapter. The latter is a two-step process which is sensitive to relax-
ation of the intermediate state, whereas TPA is a simultaneous two-photon event. The reader should verify 
that in the diagram of Figure 13.13b, three field–matter interactions cause the density matrix to evolve as 
follows: g g  → i g  → f g  → f i . The system never passes through a population term i i , and the 
second interaction results in a coherence that oscillates at the frequency ωfg, which is larger than either of the 
two driving frequencies. In the case of excited-state absorption, on the other hand, the density matrix passes 
through such a population term, connected by coherences that oscillate at frequencies of the driving fields 
(we look at this more closely in the next chapter). This distinction between TPA and excited state absorption 
is analogous to that between the simultaneous two-photon process of resonance Raman scattering as com-
pared to sequential absorption and emission of photons in a fluorescence experiment.

Considering the case of degenerate TPA with excitation at frequency ω, the attenuation of incident light 
intensity I as it traverses the sample is given by
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Figure 13.13 (a) Energy level diagram and (b) Feynman diagram for two-photon absorption, a χ (3) process.
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where N is the number of molecules per unit volume, I is the intensity of light, and δ is the TPA cross-
section. δ is given in Göppert-Mayer units, GM, where 1 GM = 10‒50 cm4 s/photon. The TPA signal has a 
Lorentzian lineshape with maximum cross-section given by [14,15]:
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where L = (n2 + 2)/3 is the local field factor, n the refractive index, and Γ is the halfwidth of the Lorentzian. 
The angle brackets represent an orientational average. When this average is performed with the approximation 
that all transition moments are parallel, the sum Sfg can be separated into two terms:
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The first term above, called the D-term (for “dipolar”) depends on the difference in the state dipole moments 
of the ground and final states. This sort of contribution is not operative in linear absorption, but it can domi-
nate in TPA when the g → f transition results in a large change in dipole moment. The D-term also requires 
that the g → f transition be allowed in linear absorption. Thus there is much emphasis on the strong charge-
transfer transitions of dyes with donor–acceptor character. Note there is no resonance enhancement for the 
D-term. The second term, called the T-term or “two-photon” term, does permit resonance enhancement 
when the incident photon matches the ground-to-intermediate state transition frequency. For this term to 
contribute, both the g → i and i → f transitions have to be allowed by electric dipole selection rules. For 
molecules with inversion symmetry, the D-term must vanish as neither the ground nor excited state can pos-
sess a permanent dipole moment. In this case, the T-term results in selection rules opposite to that of linear 
absorption in that TPA permits transitions between states of the same inversion symmetry: a u → u transition 
takes place via an intermediate state of gerade symmetry and a g → g transition goes through an ungerade 
intermediate state.

Two-photon absorption is often detected by observing the fluorescence rather than the weak attenuation 
of the incident light. The latter measurement is required when one wants to determine the TPA cross-section, 
typically using the “z-scan” measurement. The sample is translated along the path of a focused laser beam to 
vary the incident intensity and the transmitted light is detected after passing through a large aperture. The 
technique requires care to eliminate artifacts from nonlinear refraction, the dependence of the real part of 
the refractive index on light intensity, known as the optical Kerr effect.

Chromophores which exhibit large TPA cross-sections are often of the D-π-A type, dipolar dyes consisting 
of donor and acceptor moieties bridged by a conjugated chain. Centrosymmetric TPA dyes are quadrupolar 
analogues with D-π-A-π-D or A-π-D-π-A structure. Clearly, these dipolar and quadrupolar dyes invoke the 
D- and T-terms respectively. Examples of these two kinds of donor-acceptor dyes are shown in Figure 13.14.
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Figure 13.14 (a) Example of a D-π-A molecule and (b) a D-π-A-π-D molecule.
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Figure 13.15 shows one- and two-photon absorption spectra of the molecule 4ʹ-hydroxybenzylidene-   
3-dimethylimidazolinone (HBDI) in its neutral and anionic forms, taken from [16]. HBDI serves as a 
model for the chromophore in green fluorescent protein, which is of interest for biological fluorescence 
microscopy applications. The data were gathered with two beams, a fixed frequency near-IR beam and a 
white light continuum ranging from 450 to 750 nm. In the case of the neutral form, the one-photon absorp-
tion (OPA) coincides with the TPA spectrum graphed as a function of the sum of the two input frequencies, 
as expected. In contrast, the ionized form of HBDI shows a blue shift of the TPA spectrum relative to OPA. 
Hosoi et al. [16] interpreted this to be the result of a second excited state of the ionized form that is allowed 
in the TPA spectrum but not the OPA spectrum. The putative S0 → S2 transition of the ionized form was 
concluded to have a large solvatochromism. We have seen in Chapter 11 that solvatochromism can result 
from a change in the dipole moment on going from the ground to the excite state, as in the D-term of 
Equation 13.155.

13.5.2.2 COHERENT RAMAN SPECTROSCOPY

A number of different nonlinear spectroscopy methods invoke the Raman effect and are powerful approaches 
to the determination of vibrational mode frequencies and lifetimes. A few are briefly mentioned in passing 
before going into more detail about the popular CARS experiment. One such nonlinear effect is hyperRaman 
scattering. With a sufficiently intense incident laser pulse of frequency ω 0, hyperRaman scattering is observed 
at frequencies shifted from twice the incident frequency by integral multiples of a vibrational frequency ωvib, 
i.e., 2ω 0 ± nω vib. Note that unlike vibrational overtones, the peaks are shifted by exact multiples of the fun-
damental frequency, and both Stokes and anti-Stokes peaks are observed. For the Stokes sides, for example, 
the incident laser creates a beam at 2ω 0 − ω vib, which acts as a source for further Stokes Raman scattering at 
2ω 0 − 2ω vib, which acts as a source for scattering at 2ω 0 − 3ω vib, etc. This experiment can be considered the 
two-photon counterpart to ordinary Raman scattering, and the intensity of scattered light is very weak with-
out resonance enhancement. Since the theoretical foundations of hyperRaman spring from the first hyper-
polarizability β, it is actually a second-order nonlinear phenomenon and as such is closely related to second 
harmonic generation, though the scattered light is not coherent.

Raman experiments can be classified as spontaneous (incoherent) or coherent, according to whether the 
molecular vibrations are driven by a single input field, as is the case for spontaneous Raman, or by two input 
fields, as in stimulated Raman spectroscopy. Coherence in this context represents the phase relationship of 
different molecules viewed as dipole emitters in the sample. In spontaneous Raman, the vibrations of dif-
ferent molecules are uncorrelated and the signal is proportional to the number of molecules. In stimulated 
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Figure 13.15 Neutral (a) and ionized (b) forms of HDBI and their one-photon (OPA) and two-photon (TPA) 
absorption spectra in DMSO. (Reprinted from Hosoi, H. et al., Solvent dependence of two-photon absorption 
spectra of the enhanced green fluorescence protein (eGFP) chromophore, Chem. Phys. Lett., 2015, 630, 32. 
Copyright 2015, with permission from Elsevier. .)
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Raman spectroscopy experiments, the coherence of the input fields results in molecular vibrations being 
driven with definite phase relationships, and depending on detection scheme the signal may be proportional 
to the square of the number of molecules (see [17]). A single representative Feynman diagram can be drawn 
for both spontaneous or coherent Raman scattering (Figure 13.19b); it is the origin of the second beam, a real 
or virtual photon, that differs. The state diagrams often drawn to depict Raman scattering, such as Figure 4.2, 
obscure the fact that the effect results from three field–matter interactions. A more informative energy level 
scheme is identical to that depicted for CARS in Figure 13.16.

Stimulated Raman Spectroscopy requires two input beams at frequencies ω 1 and ω 2. With ω 1 > ω 2, 
the ω 1 and ω 2 beams are referred to as the pump and the Stokes beams, respectively. When the beat fre-
quency of the two input beams is resonant with a vibrational frequency, ω 1 − ω 2 = ωvib, four nonlinear 
effects occur simultaneously: stimulated Raman gain (SRG), stimulated Raman loss (SRL), coherent Stokes 
Raman (CSRS), and coherent anti-Stokes Raman (CARS). In the SRG experiment, the induced field inter-
feres constructively with the input field E2 and, as the name implies, an increase in intensity at the Stokes 
frequency is observed. In contrast, for SRL there is destructive interference between the induced field and 
E1 and the experiment measures the attenuation of the pump beam at ω 1. CARS and CSRS result from 
scattering at the frequencies ω 1 + ω vib and ω 2 − ω vib, respectively. SRG, SRL, CSRS and CARS are all third-
order nonlinear phenomena.

The CARS experiment is an advantageous way to obtain Raman spectra with high sensitivity and 
enhanced spatial resolution compared to ordinary (spontaneous) Raman scattering. The directionality of 
the response (phase matching) and the observation of a signal at shorter wavelength than that of the incident 
beams result in rejection of the fluorescence signal that often swamps that from ordinary Raman scatter-
ing. We shall refer to two input beams at the frequencies ωP (the “pump beam”) and ωS (the “Stokes beam”). 
Interaction of the sample with these two beams drives coherent oscillations at the beat frequency ωP − ωS, 
while a second interaction with the Stokes beam probes this coherence. The resulting polarization is reso-
nantly enhanced when this beat frequency matches a vibrational frequency ωvib. A second interaction with 
the pump beam results in anti-Stokes Raman scattering. The energy level diagram and Feynman diagram 
for CARS resonances are shown in Figure 13.16. Both show that the frequency of the signal is the anti-Stokes 
frequency ωAS = 2ωP − ωS = ωP + ωvib. Phase matching permits the desired CARS spectrum to be isolated from 
the signals due to other simultaneously occurring nonlinear responses. Figure 13.17 shows the typical “folded 
boxCARS” arrangement of the propagation vectors used to achieve this phase matching.

A typical CARS experiment uses a monochromatic pump beam (such as the 532 nm pulsed output of 
a Nd:YAG laser) and a broadband dye laser which provides the Stokes beam. The latter can be scanned to 
bring the difference frequency into resonance with a vibrational frequency. Alternatively, the broadband 
dye laser is pulsed and the Raman spectrum of the sample is obtained in a single shot. The relevant sus-
ceptibility is [18]:
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Figure 13.16 (a) CARS energy levels and (b) Feynman diagram.
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The susceptibility is seen to depend on the differential cross-section for ordinary Raman scattering, (dσ/dΩ), 
thus the usual selection rules apply. It is also proportional to the population difference Ng − Na between the 
lower and upper vibrational levels. The signal depends on the square of the susceptibility and on the intensi-
ties of the pump and Stokes beams:

 I I IP SCARS CARS∝  χ ( )3 2 2

 (13.157)

As in the VSF experiment, a nonresonant background is present in addition to the desired signal. This back-
ground decays more rapidly than that of the vibrational coherences, which have lifetimes in the picosecond 
range. Thus the nonresonant contribution can be partly rejected by selecting a sufficiently long delay time 
between the pump and Stokes pulses.

The dependence of the CARS signal on vibrational populations renders it a useful probe of vibrational (or 
rotational) populations. Figure 13.18 shows an example of a CARS spectrum of N2 taken at a series of times 
following an electric discharge. The discharge creates a highly nonequilibrium population of vibrational 
levels, and numerous hot bands v → v + 1 are observed to increase in time following the discharge, permit-
ting an estimate of the vibrational populations as a function of time. The CARS signal can be detected using 
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Figure 13.17 Experimental phase-matching configuration for folded box CARS.
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either homodyne or heterodyne techniques. The heterodyne case permits the real and imaginary parts of 
the susceptibility to be determined.

13.5.2.3  SPONTANEOUS RAMAN SCATTERING AS A THIRD-ORDER 
NONLINEAR PROCESS

In this section, the origins of Raman spectroscopy as a third-order nonlinear experiment are revealed. 
When one views the state diagram for the Raman event (Figure 13.19a), the question arises as to how 
to distinguish resonance Raman scattering from absorption followed by resonance fluorescence. While 
there are clear experimental distinctions between resonance Raman and relaxed fluorescence, to be dis-
cussed below, one can embrace both effects with the concept of spontaneous light emission (SLE). In 
ordinary cases where the fluorescence is emitted following vibrational relaxation of the excited electronic 
state, SLE is the sum of easily distinguished Raman and fluorescence components. The Raman peaks are 
spectrally sharp and appear at constant frequency shift with respect to the exciting radiation, while the 
broader fluorescence is emitted at a fixed range of absolute frequencies. In the gas phase, on the other 
hand, vibrational SLE can take place before excited state thermalization, leading to unrelaxed fluores-
cence, also called “hot luminescence.”

Raman emission is coherent, while spontaneous f luorescence emission is not. In the present context, 
the word coherent refers to the phase relationship between the driving field and the induced polariza-
tion, rather than the coherence of the response from different molecules in the sample. The relative yield 
of f luorescence and Raman emission depends strongly on the dephasing rate of the coupled electronic 
states. In general, the two effects are not separable in that the total SLE is not the sum of Raman and 
f luorescence contributions. Our previously employed Kramers–Heisenberg–Dirac expression for the 
polarizability (Chapter 4) did not include the effects of dephasing, and as such is applicable to isolated 
molecules. Here, we present without derivation a more general treatment of SLE [3] which highlights the 
role of dephasing.

Consider the energy levels involved in both types of SLE (Figure 13.19a), where a and c are the ground and 
excited vibrational states within the ground electronic state, and b is an intermediate excited vibronic state. The 
Feynman diagram in Figure 13.19b can be considered typical of the Raman experiment, while Figure 13.19c is 
representative of fluorescence. The distinction is that in the latter case the system passes through a bb (i.e., b b ) 
population: aa → ab → bb → bc → cc, as it must for the two-step process of absorption/fluorescence. The path 
of Figure 13.19b never goes through a population, and while it is “typical” of Raman scattering, this diagram 
also contributes to fluorescence. In both cases, the third interaction leads to the bc coherence associated with 
the signal. The diagram of Figure 13.19c only contributes to fluorescence. Figure 13.19b can be considered to 
depict either coherent or spontaneous Raman scattering according to whether the ω 2 photon is real or virtual, 
respectively.
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Figure 13.19 Energy level diagram (a) and Feynman diagrams typical of (b) spontaneous or coherent Raman 
scattering and (c) fluorescence. See text for discussion.
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The following treatment of SLE refers to the state diagram shown in Figure 13.20, which includes an 
additional intermediate vibronic state d. As discussed in [3], the cross section for SLE is defined as follows:
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Pa is the probability that state a is occupied. The K terms are defined as follows:
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We are using Γ here for the inverse lifetime of the excited electronic state, and γ = γeg for the electronic dephas-
ing rate, considered independent of vibrational level. The above three equations assume that the inverse life-
times of the a and c states are zero: Γa = Γc = 0. This is based on the longer lifetime of vibronic states within the 
ground electronic state, compared to those of the excited electronic state. The inverse lifetimes of the b and d 
states are assumed equal: Γb = Γd = Γ, and γ = Γ/2 + γ ∗ where γ ∗ is the electronic pure dephasing rate. Lastly, 
the term iε in the second energy denominator of KIII prevents the cross-section from diverging when ω 0 − ω s is 
resonant with the vibrational transition at ωca.

How do Equations 13.160 through 13.162 account for common experimental observations concerning 
Raman and fluorescence emission? The former consists of sharp lines centered at frequencies such that 
ω 0 − ω s = ωca. Clearly, these must originate from the KIII term, but this term also includes fluorescence. 
The two processes can be distinguished experimentally by tuning the incident frequency ω 0. Raman lines 
appear at constant frequency shifts ω 0 − ω s while fluorescence appears at constant emission frequency ω s. 
In addition, the fluorescence is broad compared to the Raman lines, consistent with the neglect of the a and c 
state inverse lifetimes compared to those of b and d. This is illustrated in Figure 13.21, which shows the 
variation in the total emission of methyl iodide, excited within the UV absorption band, as the incident 
radiation is tuned [23]. Note that the wavelength of the sharp Raman-like peak shifts with the excitation 
wavelength, while the fluorescence-like component remains fixed.
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Figure 13.20 State diagram for discussion of spontaneous light emission.
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Within the limit of fast solvent-induced dephasing, the expression for spontaneous light emission, S(ω 0,ω s), 
can be written as the sum of two terms: SRaman + Sfluor. The result is
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The delta function in Equation 13.163 produces sharp lines at the Raman frequencies, and the resonance 
denominator causes enhancement when the laser frequency is tuned to the a → b electronic transition. 
Note that the fluorescence emission Sfluor is proportional to the electronic pure dephasing rate, γ  ∗. When the 
dephasing rate goes to zero, the fluorescence vanishes and all the radiation is emitted as Raman scattering. 
This is illustrated by the data in Figure 13.22, which shows the spontaneous light emission of methyl iodide 
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Figure 13.21 Spontaneous light emission of methyl iodide at three excitation wavelengths. (Reprinted with 
permission from Ziegler, L., On the difference between resonance Raman scattering and resonance fluores-
cence: An experimental view, Acc. Chem. Res., 27, 1, 1994. Copyright 1994, American Chemical Society.)
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in the presence of increasing amounts of methane [33]. As the pressure of the buffer gas increases, so does the 
rate of pure dephasing and the contribution of the broad fluorescence emission compared to the Raman line.

The partitioning SSLE = SRaman + Sfluor is obtained when the vibrational width is small compared to the 
electronic width, as is generally the case for larger molecules. If this relationship between the widths does not 
hold, then the total emission is not the sum of Raman and fluorescence components, and in general there is a 
mixing term which need not even be positive. Thus resonance Raman and resonance fluorescence processes 
may interfere in smaller molecules, and the categorization of the emitted light is not so clear-cut. The question 
of Raman versus fluorescence should not create any confusion when the fluorescence is in the form of relaxed 
emission. Relaxed fluorescence is completely dephased and clearly distinguished from Raman emission.

13.5.2.4 FEMTOSECOND STIMULATED RAMAN SPECTROSCOPY

As a final example of a third-order nonlinear spectroscopy technique, the femtosecond stimulated Raman 
experiment (FSRS or “fissors”) is an elegant time-resolved technique capable of following vibrationally 
resolved excited state dynamics [19−21]. FSRS can provide dynamical information at fast timescales and with 
high spectral resolution. Typical time-resolved vibrational spectroscopic techniques, discussed further in the 
next chapter, employ picosecond pulses in order to achieve sufficient spectral resolution. FSRS uses a series 
of pulses as follows (see Figure 13.23). An actinic visible pulse of duration ~30 fs prepares the molecule in an 
excited electronic state at time zero. Alternatively, this pulse is omitted and the FSRS spectrum of the ground 
electronic state is observed. At a delay time Δt later, two pulses arrive, both centered at a near-IR wavelength: 
an intense 3 ps Raman pulse at 800 nm, and a weaker 20 fs broadband probe pulse spanning 830 to 960 nm. 
The much larger time duration of the Raman pulse compared to the broadband probe pulse means that it is 
the latter which serves as the clock for following dynamics of the state prepared by the actinic pulse. The probe 
pulse excites vibrational coherences at beat frequencies of the Raman and probe pulses, which appear as pho-
tons transferred from the intense Raman pulse to the weak broadband pulse (Figure 13.23). These decay with 
typical vibrational dephasing times on the order of picoseconds or less, and it is this lifetime which limits 
the width of the sharp features riding atop the transmitted broadband pulse. The detected probe pulse is not 
time-resolved but rather is dispersed in the frequency domain into a multichannel detector. On subtracting 
the broadband continuum, the Raman spectrum as a function of the time interval Δt is obtained.

We can understand the presence of the sharp Raman-shifted peaks riding atop the broad background with 
the help of four-wave mixing energy level (WMEL) diagrams such as those shown in Figure 13.24. These dia-
grams convey the same information as the Feynman diagrams (see Table 13.2), with the additional advantage 
of using shading to indicate that a range of energies is accessed by the spectrally broad fs probe pulse. Time 
increases from left to right in these WMEL diagrams, and interactions on the ket and bra side are indicated 
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by solid and dashed arrows, respectively, followed by a wavy line indicating the signal. Neglecting the actinic 
pulses which prepare the excited electronic state, the FSRS experiment is a χ (3) experiment in which the three 
interactions derive from two interactions with the ps pump pulse and one with the fs probe. We have seen 
that there are eight unique diagrams for such an experiment, of which only two are shown for illustration. 
The WMEL diagram for Stokes-shifted Raman lines, Figure 13.24a, contributes to the broad baseline, while 
Figure 13.24b accounts for the sharp Stokes-shifted Raman lines. In the former, the last interaction before 
the signal accesses a range of intermediate states, and the coherence associated with this signal derives from 
a range of upper states, leading to a broad background. Figure 13.24b, in contrast, depicts a third interaction 
with the spectrally narrow ps pump pulse, which lifts the ket side to a narrow range of excited levels which 
then “emit” to the v = 1 level of the ground electronic state, resulting in Stokes-shifted Raman lines. The abil-
ity to determine sharp Raman lines at early time delays does not conflict with the time–energy uncertainty 
principle, since the frequency resolution and time delay are not connected by a Fourier transform relation-
ship. (The properties of transform limited pulses will be considered in the next chapter.)

Mathies and co-workers [19,20] have used the technique to study the excited electronic state manifold of 
accessory photosynthetic pigments such as β-carotene. As summarized in Figure 13.25, the actinic pulse at 
495 nm carries the molecule to the optically allowed S2 excited state. The rapid relaxation of this state to the 
forbidden S1 state broadens the Raman bands at early times as seen in the figure. The study ruled out the exis-
tence of states intermediate in energy between S1 and S2, in contrast to previous proposals.
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Figure 13.23 Pulse sequence (a and b) and resulting spectrum (c) for femtosecond stimulated Raman 
spectroscopy.
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and (b) sharp Stokes-shifted Raman lines, in femtosecond stimulated Raman spectroscopy. The shaded bar 
indicates a range of frequencies spanned by the fs probe pulse.
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13.6 SUMMARY

The field of nonlinear optics, like the spectral breadth of an ultrafast laser pulse, is very broad. In this chapter, 
we have attempted to highlight the theory and some of the many examples that spring from a perturbative 
expansion of the polarization in powers of the time-varying electric field. Though it is possible to approach 
this problem within a wavefunction picture that builds on the time-dependent perturbation theory of 
Chapter 4, the inclusion of interactions of the molecule with its surroundings is more readily handled within 
the density matrix formalism. The drawback of the perturbation approach is the increasingly larger number 
of terms in the expansion of χ (n) as the order n increases. We have introduced the prevalent practice of draw-
ing Feynman diagrams to represent the resonances that emphasize certain terms when an input frequency 
matches a dipole-allowed transition. We have cautioned the reader that while representative diagrams reveal 
resonances typical of a particular experiment, it is not in general possible to avoid summation of all terms. 
Nevertheless, the diagrams serve to visualize experimental pulse sequences and are useful in the discussion 
of time-resolved nonlinear experiments. In the next chapter, we will build on the present formalism to dis-
cuss time-resolved spectroscopy both in the linear and nonlinear regimes.

PROBLEMS
 1. Calculate the amplitude of the electric field associated with a 100 nJ pulse from a Ti-sapphire laser with 

a duration of 10 fs, focused to circular spot with a radius of 1 μm. Compare this to the electric field at a 
distance of 0.5 nm from an electron.

 2. Use the anharmonic Lorentz model at second order to find χ (2)(ω 1 + ω  2; ω 1, ω  2) for sum frequency gen-
eration. Does the expression you obtain agree with χ (2)(2ω 1; ω 1, ω 1) for SHG in the limit that ω 1 = ω 2?

 3. Deduce the MKS units of χ (2) and of χ (3). The Lorentz model for χ (2) can be used to estimate an order of 
magnitude value of
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  where d is the interatomic spacing. Estimate χ (2) using ω 0 = 1016 s−1 and d = 0.5 nm.
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 4. Derive a matrix equation analogous to Equation 13.22 but for DFG rather than SFG.
 5. Determine the degeneracy factors for FWM experiments resulting in the following output frequencies: 

(a) 2ω 1 + ω  3, and (b) ω  2 + ω 1 − ω 1. The latter is an example of a “self-induced process,” where the output 
frequency matches one of the input frequencies.

 6. Consider a crystal belonging to the 3m point group, possessing the symmetry operations given in Section 
13.3. (a) Prove that all elements of χ (2) with an odd number of x subscripts vanish. State the elements of 
the d tensor that are zero as a result. (b) Prove that d23 and d24 also vanish. (c) Prove that d31 = d32.

 7. Derive the expression for ck
( )3 , Equation 13.84.

 8. (a) Verify that the response function S(1)(t1) given in Equation 13.128 is real. (See Chapter 5.) (b) Write 
down the expression for the fourth-order response function S t t t t( )( , , , )4

1 2 3 4 . How many terms derive 
from expanding the commutator in this case?

 9. Expand the commutator in the expression for the second-order nonlinear response (Equation 13.129) and 
choose one of the eight terms. Assume that the zero-order density matrix is ρ δmm gm

( )0 =  (only the ground state 
is populated at equilibrium). With help from the resolution of the identity, obtain a contribution to S(2)(t1,t2) 
in terms of transition dipole moments and frequencies and associate that term with the appropriate 
Feynman diagram.

 10. (a) Assign the hot bands observed in the CARS spectrum of Figure 13.18. (b) Use the approximate rela-
tive intensities of the four strongest bands to try to estimate the temperature of the sample at 10 μs. Are 
the vibrational populations equilibrated? Use data from Chapter 9 for the vibrational frequency and 
anharmonicity of N2.

 11. Deduce the energy level diagram and Feynman diagram for CSRS, taking into account the response is 
a signal at 2ω S – ω P.

 12. Deduce the phase-matching criterion for two-photon absorption.
 13. Derive the Manley–Rowe equations (Equation 13.73) for DFG. Convert them from intensities to photon 

flux and verify that the process is parametric.
 14. For continuous-wave incident radiation, the second-order susceptibility is found from the Fourier 

transform of the second order response function:
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  Starting from Equation 13.129, derive the K7 contribution to χ (2), assuming two continuous-wave elec-
tric fields with frequencies ω 1 and ω 2 are incident on the sample. Consider all the population to be in 
the ground state.

 15. Verify that Equation 13.152 follows from phase matching and Snell’s law.
 16. Explain why the absolute intensity of the VSF spectra of Figure 13.11 decreases in the series 1-, 2-, 3-, 

4-hexadecanol.
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14

Time-resolved spectroscopy

14.1 INTRODUCTION

We have seen in previous chapters that spectral lineshapes I(ω) are related via Fourier transformation 
to time-correlation functions that depend on the dynamics of molecular motion coupled to the spectrum 
under consideration. For example, as shown in Chapter 5, the lineshape of an infrared absorption band is 
determined by the vibrational and reorientational dynamics of the dipole moment derivative with respect 
to normal coordinate. In the time-dependent theory of electronic spectroscopy, discussed in Chapter 12, the 
frequency distribution of the absorption spectrum and Raman excitation profile derives from the motion of 
vibrational wavepackets propagating on displaced excited electronic state potential surfaces. Solvent-induced 
dephasing, population relaxation, vibrational and reorientational motion, and static inhomogeneous 
broadening can all contribute to the frequency distribution I(ω). Separating these effects without models or 
assumptions is simply not tenable in the linear regime. Time-dependent spectroscopy, on the other hand, 
provides insight into the same dynamics that contribute to the lineshape, but are not readily uncovered in 
the frequency domain. As an extreme example, consider that a typical excited electronic state lifetime of 10 
ns translates into a breadth of only 0.003 cm‒1, according to the time-energy uncertainty principle, ∆ ∆ν t ≥1. 
This contribution to the spectral width is insignificant compared to other line broadening effects in the 
condensed phase, but a 10 ns (or much shorter) lifetime is readily measured in the time domain. Coherent 
time-domain experiments with a variety of pulse sequences, wavelengths and detection schemes enable 
the separation of homogeneous and inhomogeneous contributions to the spectral width. Using coher-
ent excitation of vibrational states which beat against one another, the wavepacket motion that underlies 
electronic and resonance Raman spectroscopy is revealed in real time. Following pulsed excitation, the 
effect of the solvent environment on the time-evolving transition frequency, known as spectral diffusion, 
is seen. Spectral diffusion derives from fluctuations in the transition frequency of a molecule, fluctua-
tions like that of the general dynamic variable depicted in the cartoon of Figure 5.1, as a result of interac-
tions with its environment. These dynamics give rise to the frequency fluctuation correlation function 
(FFCF), δω δω( ) ( )0 t , that influences linear and nonlinear spectra. Time-dependent experiments enable 
the determination of the effects of solvent and internal dynamics on spectroscopic transitions. Nonlinear 
and time-resolved experiments offer more information content than steady-state linear spectroscopy, as a 
result of multiple field–matter interactions. Though we limit our discussion in this chapter to the realm of 
third-order response, the number of experimental configurations embraced by χ(3) is quite large. We focus 
here on some of the more widely used techniques.

The availability of pulsed laser sources at infrared, visible and ultraviolet wavelengths enables dynamic 
studies of vibrational and electronic transitions. Time-resolved spectroscopy measurements are used to 
determine excited-state lifetimes, study photochemical processes such as vision and photosynthesis, uncover 
structural changes that accompany electronic excitation, and reveal dynamics such as reorientational motion, 
energy transfer, and solvent-induced dephasing. Historically, the measurement of fluorescence lifetimes, 
 discussed in the next section, probably provides the first example of a time-dependent spectroscopy measure-
ment. Early millisecond time-resolved absorption experiments, referred to as “flash photolysis,” have evolved 
to ultrafast timescales, providing the powerful technique of pump-probe spectroscopy, introduced in Section 
14.3.2. Later sections consider other nonlinear optical techniques in the time domain, such as photon echo 
and two-dimensional spectroscopy. Examples are presented to show the utility of time-resolved spectroscopy 
in biological systems, materials science, and fundamental chemical physics.
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14.2 TIME-RESOLVED FLUORESCENCE SPECTROSCOPY

Time-resolved fluorescence spectroscopy uses a short light pulse (the pump pulse) to excite an electronic 
state and measures the intensity of emitted light as a function of time delay following the pump. As long ago 
as 1960, gated photomultipliers were coupled with pulsed flashlamp sources to determine lifetimes in the 
nanosecond regime [1]. Later, Strickler and Berg [2] used a chopped light source and phase-sensitive detection 
to verify lifetimes calculated from absorption and fluorescence spectra as described in Chapter 6. Recall that 
integrated absorption and fluorescence spectra can be combined to reveal the radiative lifetime τrad through 
the Strickler–Berg relation, Equation 6.35. Unless the quantum yield of fluorescence is unity, however, this 
radiative lifetime is not the same as the fluorescence lifetime τfluor. (See Equations 6.28 and 6.29.) The fluo-
rescence lifetime is the inverse of the rate of population decay, which is the sum of the rates of radiative and 
nonradiative relaxation: 1/τfluor = 1/τrad + 1/τnonrad. The radiative lifetime τrad is a function of the strength of the 
spectroscopic transition (transition dipole moment squared). The nonradiative lifetime τnonrad depends on the 
dissipation of the excited state energy by energy transfer to other degrees of freedom of the molecule and its 
environment. In this section we consider three variations on the theme of time-resolved fluorescence: deter-
mination of the lifetime of the excited state through measurement of the intensity as a function of time delay, 
investigation of reorientational relaxation as revealed by the time-resolved polarization of the emitted light, 
and determination of excited state relaxation along solvent and internal coordinates through measurement of 
the time-evolving frequency of emitted light.

As previously stated, the time-resolved fluorescence experiment uses an initial pulse to prepare the excited 
state. The intensity of fluorescence is determined as a function of time t following this pulse and is propor-
tional to the instantaneous population N of excited state molecules. In the ideal case, the decay of the popula-
tion N is exponential:
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Since the intensity of fluorescence is proportional to the excited state population, the intensity also decays 
exponentially:

 I I t= −0 exp( / )τ fluor  (14.2)

Nonexponential dynamics may be observed when the lifetime is influenced by the effects of intermolecu-
lar interactions, collisions, intramolecular motion such as internal rotation, and photochemical processes. 
An average lifetime τave can be found from
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It is straightforward to show that τave = τfluor for decay via a single exponential.
Several experimental approaches exist for the determination of τfluor. Time-correlated single photon count-

ing determines the arrival time of emitted photons following a pulse of exciting light. Fluorescence upconver-
sion experiments use sum-frequency mixing of a gate pulse with the emitted light within a nonlinear crystal. 
The gate pulse is delayed with respect to the excitation pulse to measure the emission intensity as a function of 
time. By measuring the time-dependent emission at different wavelengths, for example, by tuning the angle of 
the nonlinear crystal, the spectrum can be constructed as a function of time. Another approach is to modulate 
the intensity of a continuous-wave source and detect the phase delay and demodulation of the emitted signal, as 
discussed in detail in [3]. Fluorescence lifetimes vary in accordance with fluorescence yields. Highly fluorescent 
molecules such as laser dyes have little contribution from nonradiative decay, hence τfluor ≈ τrad is typically a 
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few nanoseconds. Molecules which undergo more significant nonradiative decay, through internal dynamics 
or intermolecular energy or electron transfer, are more likely to have shorter (picosecond or subpicosecond) 
fluorescence lifetimes.

14.2.1  Polarization in time-resolved fluorescence 
sPectroscoPy

The measurement of the polarization of emitted light relative to that of the excitation beam holds useful 
information on reorientational motion of solution phase molecules. Similar to polarized Raman scattering, 
we define I⊥and I || as the intensities of emitted (rather than scattered) light which is polarized respectively 
perpendicular or parallel to the polarization of the incident light. The fluorescence anisotropy r is defined as
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The anisotropy r is zero when the emitted light is completely depolarized ( )||I I= ⊥ , and r = 1 for completely 
polarized emission ( ).I ⊥ = 0  As shown below, it is also possible for the perpendicular component of the emit-
ted light to exceed the parallel component, resulting in a negative value of r. The anisotropy is time-dependent 
as a result of rotation of the transition dipole moment during the lifetime of the excited state. r(t) decays from 
an initial maximum value, r0, which is decided by the angle between the absorption and emission transition 
dipoles in the molecular frame. The anisotropy decay may be exponential but is generally more complex for 
molecules of lower than spherical symmetry. Let us consider how determination of r(t) might reveal internal 
or external rotation of the emission dipole of a fluorescent molecule. We are considering here an ensemble of 
randomly oriented molecules such as dye molecules in liquid or glass solution.

Consider a sample of molecules in a laboratory coordinate system XYZ where the incoming light is polar-
ized along Z and propagates in the Y direction. We consider absorption with a transition dipole moment 
direction specified by the unit vector ˆ ,uabs  and let ûemis specify the direction of the transition dipole for emis-
sion. For randomly oriented chromophores, we can average over the orientation of the molecules with respect 
to the laboratory frame, but the absorption and emission transition dipoles are fixed in the frame of the mole-
cule, so we cannot average over their orientations separately. We specify α as the angle between the transition 
dipoles for absorption and emission: ˆ ˆ cos .u uabs emis⋅ = α  Figure 14.1 illustrates the geometry of the transition 
dipoles in the laboratory frame and shows a sketch of the time-dependent anisotropy r(t) in fluid solution. 
The two transition dipoles are not always parallel as a result of reorganization in the excited state or emission 
from a lower lying state than that reached in absorption. The intensities for the parallel and perpendicular 
components of the fluorescence are given by

 I I u Z u ZZZ|| ( ) ( )= ∝ ⋅ ⋅� � � �
abs emis

2 2  (14.5)

 I I u Z u XZX⊥ = ∝ ⋅ ⋅( ) ( )� � � �
abs emis

2 2  (14.6)
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Figure 14.1 Orientation of absorption and emission transition dipoles in the laboratory frame and typical 
anisotropy decay curve.
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The omitted proportionality constants depend on the inherent strength of the absorption and emission 
(Einstein B and A coefficients, respectively), and experimental details such as incident light power and col-
lection angle. We take these to be the same for both parallel and perpendicular components, so they will not 
contribute to the ratio that is the anisotropy. Let us take θ and ϕ as the polar and azimuthal angles that orient 
μabs in the lab frame, while θ′ and ϕ′ specify the orientation of μemis. The angle brackets represent orientational 
averaging. With this notation, we have

 IZZ ∝ ′(cos )(cos )2 2θ θ  (14.7)

 IZX ∝ ′ ′(cos )(sin )(cos )2 2 2θ θ ϕ  (14.8)

The sample is axially symmetric about the Z direction, so IZX = IZY. This permits us to write:
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In Equation 14.9, we can replace cos2θ  by 1/3, as we are free to average over the orientation of the absorp-
tion dipole moment. A quick way to compute this average is to recognize that for this isotropic sample, the 
averages cos ,2θ  sin cos2 2θ ϕ , and sin sin2 2θ ϕ  are equal to one another and sum to one. Next, we express 
(cos )(cos )2 2θ θ ′  in terms of the relative orientation of the two transition dipoles. Wigner D-functions, 

Dmn
j ( ),Ω   used in Section 8.6 and discussed further in Appendix A, are convenient for problems where relative 

rotations are of interest. Recall that Ω is shorthand for the set of Euler angles (ϕ, θ, χ), and in this case we only 
need the first two to specify the dipole direction. We use the relationship D Pj

j00( ) (cos )Ω = θ  for j = 2, where the 
second Legendre polynomial is P2

23 1 2(cos ) ( cos )/ .θ θ= −  Using this to solve for each of the cosine-squared 
functions, the angular function in Equation 14.9 is manipulated as follows:
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Next, we consider the orientation Ω′ of the emission dipole to be the result of successive rotations by Ω, then 
δ Ω = α, and use the addition theorem Equation A.56 to write
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With this substitution, we can average over the orientation Ω by integrating over dΩ and dividing by 
∫ =dΩ 8 2π . We use the fact that the integral ∫ D dmn

j ( )Ω Ω  is zero unless j = m = n = 0. Thus
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We have used the orthonormality of the Wigner functions as defined in A.49. Now we are ready to evaluate 
the initial anisotropy r0.
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Equation 14.13 predicts the maximum anisotropy r0 for motionless, randomly oriented molecules, for exam-
ple in a glass sample. When the absorption and emission transition dipoles are parallel, r0 = 0.4, and when 
they are perpendicular, r0 = −0.2. At the “magic angle” of 54.7°, cos2α = 1/3 leading to r0 = 0. In time-resolved 
fluorescence anisotropy measurements, the parallel and perpendicular components of the emitted light are 
determined to find the time-dependent anisotropy r(t). Reorientational motion or internal rotation of the 
emitting molecule within the lifetime of the excited state further reduces the anisotropy from the initial 
value r0 as a result of the time-dependent change in direction of the emission dipole. In the simplest case 
that the reorientational motion is diffusional and the molecule is isotropic, the anisotropy decays via a single 
exponential:

 r t r t( ) exp( / )= −0 φ  (14.14)

In the Equation 14.14, φ is called the reorientational correlation time. Clearly, if φ is long compared to the 
lifetime, the anisotropy will not be much smaller than the maximum value r0. Defining r  as the time averaged 
value of the anisotropy, one gets:
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In the case that internal rotation changes the dipole direction, Equation 14.14 is altered:

 r t r r t r( ) ( )exp( / )= − − +∞ ∞0 φ  (14.16)

The above expressions assume the anisotropy decays by a single exponential. Rotational diffusion by aniso-
tropic molecules can be more complex than single exponential, because different rotational relaxation times 
apply to different inertial axes. Nonetheless, the single exponential relaxation is convenient to apply and gives 
an estimate of the angle through which the transition dipole rotates during the excited state lifetime. If the 
excitation and emission polarizers in the experiment are set so that the polarization of the emitted light is at 
the magic angle with respect to that of the exciting light, the measurement is insensitive to rotational motion.

Fluorescence lifetime and anisotropy measurements have been advantageously adapted for imaging cel-
lular microenvironments. One example is the use of a fluorescent probe to determine viscosity in live cancer 
cells [4]. In this study, the rotational correlation time was taken to be φ η= V k TB/ , where η is the viscosity 
and V is the hydrodynamic volume. The molecular probe used in [4] undergoes internal rotation in its excited 
electronic state, and this rotation is hindered in more viscous environment. As a result, both the fluorescence 
yield and lifetime increase with increase in viscosity.

14.2.2 time-resolved fluorescence stokes shift

Consider the events that take place following electronic excitation of a molecule in solution. Immediately 
after photon absorption, at t = 0, the molecule finds itself in the vertical (Franck–Condon) state, a nonequi-
librium geometry of the excited state. At the earliest timescales, as discussed in Chapter 11, intramolecular 
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vibrational redistribution (IVR) randomizes the vibrational energy, initially invested in the Franck–Condon 
active modes, through anharmonic coupling with other vibrational modes. The timescale for IVR varies 
greatly but for typical dye molecules it is a subpicosecond process. IVR preserves the total vibrational energy 
but alters the partitioning of this energy among vibrational states. Internal (or vibrational) reorganization, 
on the other hand, is the loss of excess vibrational energy as heat when the molecule relaxes from the Franck–
Condon position to its equilibrium geometry. Solvent reorganization represents a similar thermalization as 
solvent molecules adjust to their new equilibrium positions that minimize the energy of the excited elec-
tronic state. In steady-state absorption and emission spectra, internal and solvent reorganization determine 
the magnitude of the Stokes shift, the energy difference between absorption and emission maxima. Time-
dependent fluorescence Stokes shift spectroscopy (TDFSS) permits the observation of internal and solvent 
reorganization in real time by measuring the dynamic red-shift of the emission spectrum. Below are some 
examples of the use of TDFSS to study solvent and internal reorganization. Additional applications of TDFSS 
include the study of protein and DNA dynamics.

We first consider the influence of solvent dynamics in TDFSS. We assume for now that the internal reor-
ganization is fast compared to the measurement timescale, such that the TDFSS experiment sees only the 
effects of solvent reorganization. Recall that solvatochromic molecules exhibit absorption and emission spec-
tra that depend on solvent polarity as a result of different ground- and excited-state charge distributions. 
Various types of intermolecular interactions can perturb the electronic transition energy: dispersion forces, 
hydrogen-bonding, dipole-induced dipole, dipole–dipole, etc. Dispersion forces result from distortions of 
the molecular electronic distribution and are too fast to be perceived by TDFSS, while the permanent dipole 
moments of the solute and solvent exert a strong influence. Solvatochromic molecules used as probes of sol-
vent relaxation undergo a significant change in dipole moment on electronic excitation. Thus in polar solvents 
the reorientational motion of the solvent dipoles is highlighted, and the electronically excited molecule acts 
as a probe of this dynamics. This leads to some connections with the determination of solvent dynamics via 
lineshape effects on infrared spectroscopy and depolarized Rayleigh and Raman scattering, as discussed in 
Chapter 5. Figure 14.2 depicts the assumptions of linear solvent response, in which the ground and excited 
state potential surfaces of the molecule are taken as displaced harmonic functions of a collective solvent 
coordinate. Linear solvent response assumes that the shapes of these potential surfaces do not depend on 

Solvent coordinate, Q

En
er

gy hν

Figure 14.2 Assumptions of linear solvent response, highlighting reorientation of solvent dipole moments to 
adjust to the excited-state dipole moment of the solute.
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whether the molecule is in the ground or excited state. When light is absorbed, there is an instantaneous 
change in the state dipole moment from μg to μe, and the surrounding solvent molecules find themselves in 
a nonequilibrium geometry. The ensuing motion of the solvent molecules, especially the rotation of their 
permanent dipole moments, results in an emission spectrum which red-shifts with time. As illustrated for 
example in Figure 14.3, the time-resolved fluorescence spectrum of the solvatochromic molecule coumarin 
153 (C153) exhibits the influence of solvent reorganization on a picosecond timescale [5]. In addition to the 
increasing red-shift with time, the overall decay of the excited state population results in a decrease in the 
emission intensity. The ability to observe the solvent dynamics in TDFSS hinges on the relative timescales 
for solvent motion and excited state population relaxation. In the case of C153, for example, the fluorescence 
spectrum extrapolated to infinite time is more red-shifted than the experimental steady-state fluorescence, 
revealing that the ~6 ns fluorescence lifetime is not long enough for the surrounding solvent to relax to the 
equilibrium geometry of the excited electronic state. This means that the steady-state fluorescence spectrum 
and Stokes shift result from an excited state that is not fully relaxed with respect to the surrounding solvent.

With the assumption of linear solvent response, the solvent reorganization energy ΔEsolv (often called λ solv 
in the literature) is given by

 ∆E h hsolv = − ∞
1

2
0( )ν ν  (14.17)

where ν0 is the peak frequency at time zero, and ν∞ is that extrapolated to infinite time. A spectral response 
function Sν(t) can be defined as follows:
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The first equality above is a definition and the second follows from the assumption of linear solvent response. 
The angle brackets represent an equilibrium average. The correlation function δν δν( ) ( )0 t  is the same 
FCFF discussed previously in Chapter 6. (Note that the use of angular frequencies ω in Equation 14.18 would 
not affect the value of S tν( )). Calculations show a relation between Sν(t) and the dipole correlation function 

ˆ( ) ˆ( )µ µ0 ⋅ t  that we encountered in Chapter 5:

 S t tν
αµ µ( ) ( ) ( )≅ ⋅� �0  (14.19)
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Figure 14.3 Time-resolved fluorescence spectrum of coumarin 153 in formamide from 0 to 50 ps. (Reprinted 
with permission from Horng, M. L. et al. Sub-picosecond measurements of polar solvation dynamics: Coumarin 
153 Revisited, J. Phys. Chem. 99, 17311 (1995). Copyright 1995 American Chemical Society.)
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Here, µ̂  is a unit vector in the direction of the permanent dipole moment of a solvent molecule. The parameter 
α can be found from the dipole density and the dielectric constant of the solvent, ranging from 0 for nonpolar 
solvents to a value of about 20 for very polar solvents such as water and acetonitrile. Recall from Chapter 5 
that we expect a Gaussian response on a subpicosecond timescale from the inertial motion of solvent mol-
ecules, while at later times an exponential response results from rotational diffusion. This is the basis for the 
following functional form used to fit Sν(t):
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where fG is the fraction of the response contributed by inertial motion and 1 − fG is the fraction contributed 
by diffusion. The latter is represented as a stretched exponential and accounts for a range of relaxation times. 
The initial Gaussian response at early times leads to an initial slope of zero for the function S tν( ), corre-
sponding to the sluggish inertial response of the solvent immediately following excitation. The exponential 
character of the response at longer times is seen only after a sufficient number of reorientational steps have 
taken place to treat the motion as diffusional. In the absence of sufficient time resolution, the early Gaussian 
decay may not be observed. Sν(t) is sometimes fit to a sum of exponentials with various amplitudes ai and 
relaxation times τi.
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ν ( ) /= −∑ τ  (14.21)

Some of values of the amplitudes and relaxation times for several solvents, taken from [5], are listed in 
Table 14.1 to illustrate the range of timescales for solvent relaxation. For example, the fast-relaxing solvent 
acetonitrile, CH3CN, has a large contribution (a1 = 0.686) from a 0.089 ps component, with the remainder of 
the relaxation taking place on a timescale of 0.63 ps. Note the complex multiexponential nature of the solvent 
response of alcohols, for which there are additional dynamics of hydrogen bonds. The dynamics reported 
in Table 14.1 were derived using C153 as a probe. C153 undergoes an increase in dipole moment from about 
7 to 14 Debye on electronic excitation, with a small change in dipole direction. If linear solvent response is 
operative, solvent dynamics should be independent of the probe molecule; however, effects of internal and 
external rotation of the probe may need to be considered. Recent applications of TDFSS have investigated 
the dynamics of ionic liquids [6], finding a subpicosecond component that reflects the inertial translational 
motion of the ions.

While most TDFSS measurements have emphasized dynamical solvent reorganization, they also have the 
potential to reveal internal dynamics such as IVR, vibrational relaxation, and excited state conformational 
changes. Sufficiently fast time resolution opens up a window on these picosecond or subpicosecond processes; 
however, the timescales for internal and solvent reorganization are not in general separable, and models and 
theory are needed to interpret the kinetics observed in time-resolved fluorescence. An example of excited 
state dynamics addressable by time-resolved fluorescence is that of twisted intramolecular charge-transfer, 
or “TICT-state” formation. In this case, internal rotation of the molecule is accompanied by charge separa-
tion, leading to dual fluorescence from both the unrelaxed locally excited (LE) and relaxed charge-transfer 
(CT) conformations. The large dipole moment of the latter state highlights the coupling of solvent relaxation 

Table 14.1 Examples of solvent relaxation times and amplitudes obtained using TDFSS with coumarin 153 as 
the probe

Solvent a1 τ1 (ps) a2 τ2 (ps) a3 τ3 (ps) a4 τ4 (ps)

Acetonitrile 0.686 0.089 0.314 0.63

Dimethylsulfoxide 0.500 0.214 0.408 2.29 0.092 10.7

Chloroform 0.356 0.285 0.644 4.15

Ethanol 0.085 0.030 0.230 0.39 0.182 5.03 0.502 29.6

Source: Horng, M. L. et al. J. Phys. Chem. 99, 17311, 1995.
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to internal rotation. A molecule that has provided a prototype of this motif is 4-(dimethylamino)benzonitrile 
(DMABN). The molecule has a characteristic donor–acceptor structure with the dimethylamino and cyanine 
groups serving as electron donor (D) and acceptor (A), respectively. DMABN has an absorption maximum at 
290 nm. The locally excited state emits at 350 nm, while the emission of the TICT state is observed at a longer 
wavelength that shifts to the red in more polar solvents. For example, Park et al. [7] followed the conversion 
of the LE to the TICT state using time-resolved fluorescence. By using the fast-relaxing solvent acetonitrile, 
the authors attempted to distinguish the intramolecular dynamics of the LE → TICT conversion from that 
due to solvent reorganization. They concluded that internal reorganization within the LE state takes place in 
less than 30 fs, after which the molecules may convert to a partially twisted state on a timescale of 160 fs or to 
a totally twisted state on a timescale of 3.3 ps.

14.3 TIME-RESOLVED FOUR-WAVE MIXING EXPERIMENTS

The time-resolved fluorescence experiments discussed above did not require us to consider the nonlinear 
response of the system to the incident light. We now consider time-resolved measurements that derive from 
the third-order nonlinear response. Since the second-order nonlinear response vanishes for centrosymmet-
ric samples, experiments that spring from χ(3) constitute the bulk of nonlinear spectroscopy measurements. 
These are broadly defined as time-resolved four-wave mixing (TD-FWM), where the signal results from three 
field–matter interactions. Variations in the timing, propagation vectors, and frequencies of these fields lead 
to a wide array of experiments.

First, we wish to make some general statements about the theory and practice of TD-FWM. On the theory 
side, we review the diagrammatic approach to calculation of the third-order polarization P(3)(t) in the next sec-
tion. With care, we can associate the experimental pulse sequence with a small number of Feynman diagrams: 
where E1, E2, and E3 are the fields acting at the times 0, t1, and t1 + t2, respectively, while the signal is detected at 
t1 + t2 + t3. In the impulsive limit, the incident fields are considered to be delta function pulses; a valid approxi-
mation when their duration is short compared to the dynamics of the system. In this limit, the polarization 
P t( )( )3  is directly proportional to the response function S t t t( )( , , )3

3 2 1 . (See Equation 13.132 through 13.134 and 
Problem 8 of this Chapter.) More generally, the pulse characteristics are taken into consideration, and it may be 
necessary to calculate the polarization by numerical integration.

The duration τp of the pulse is inversely related to the width of its frequency distribution via Fourier 
transformation. We account for finite duration of the field using a time-dependent envelope 
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For example, 
� �
E r t0( , ) could be a Gaussian function of both space and time. Beams for which the intensity 

is a Gaussian function of radial distance from the beam axis were considered in Chapter 2. A pulse with a 
Gaussian temporal profile contributes a time-dependence exp( / )−t p
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The factor in front of the exponent normalizes the time integral of the Gaussian function. The intensity of 
the pulse is proportional to the square of the electric field. Thus I t p∝ −exp( / )2 2τ , and the full width at half-
maximum (FWHM) of the pulse is Δτ = 2 2 1 6651 2(ln ) ./ τ τp p= . The limited time duration results in a spread 
of frequencies about the carrier frequency ω0. The Fourier transform of the temporal pulse envelope is a 
Gaussian function of frequency:

 
� �
E r ep p

0 1 2

2

2
0

2 2

( , )
( ) /

( ) /ω
τ
π

ω ω τ∝ − −  (14.24)



386 Time-resolved spectroscopy

Again, we square this function to get the intensity and find the FWHM to be ∆ω τ= /2(ln ) /2 1 2
p . Dividing 

by 2π gives ∆ν πτ τ= =(ln ) / . //2 0 2651 2
p p for the frequency distribution. Thus the frequency distribution and 

 temporal width of this Gaussian pulse satisfy the following expression [8]:

 ∆ ∆ν τ = 0 441.  (14.25)

This represents the minimum product of Δτ and Δν  for a so-called transform-limited pulse. Other functional 
forms give different values of the product, but in any case we see that as expected, the shorter the pulse the 
bigger the frequency spread. Figure 14.4 illustrates 5 fs and 20 fs pulses, both with a carrier wavelength 
of 500 nm, and their frequency distributions. Note that we arrived at Equation 14.25 using a purely clas-
sical treatment of light, rather than a quantum mechanical uncertainty principle. Recall that the classical 
treatment of light is  sufficient to describe most spectroscopy experiments, particularly laser experiments for 
which the incident photon flux is large.

The spectral breadth of ultrashort (femtosecond) pulses creates additional experimental concerns com-
pared to spectroscopy on longer timescales. Dispersion of the refractive index causes temporal broadening 
of the pulse owing to the frequency dependence of the transit times, as the beam passes through various 
optical elements. This dispersion can be compensated, for example using pairs of prisms, or avoided, using 
reflective optics.

The timescale for interaction of the molecule with the field is of course also determined by the dynam-
ics of the molecule itself. In Chapter 4, we introduced phenomenological relaxation rates of diagonal (1/T1) 
and off-diagonal (1/T2) elements of the density matrix, related by 1 1 2 12 1 2/ / / .T T T= + ∗  In what follows, we use 
the notation Γaa = 1/T1 and Γab = Γba = 1/T2 for the relaxation rates of the aa and ab elements of the density 
matrix. 1/T2 comprises the homogeneous linewidth of the spectrum. The population relaxation rate 1/T1 is the 
sum of irreversible radiative and nonradiative relaxation rates, while pure dephasing, with timescale T2

*, results 
from environmentally-induced frequency fluctuations. In addition, inhomogeneous broadening, such as that 
envisioned for chromophores immobilized in a rigid glass, leads to a static distribution of spectral frequen-
cies. It is frequently the case, particularly in electronic spectroscopy, that the homogeneous linewidth is buried 
under the inhomogeneous distribution as illustrated in Figure 14.5. In the Kubo line shape model introduced 
in Chapter 6, solvent-induced dephasing is accounted for using δω δω τ( ) ( ) exp( / )0 2t t c= −∆  for the FFCF. 
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(Compare to Equation 14.18.) An inhomogeneous (Gaussian) limit for the lineshape is obtained when the rate 
of frequency fluctuations 1/τc is slow compared to the spread of frequencies, Δ. A tremendous advantage of 
TD-FWM experiments is their ability to separate homogeneous and inhomogeneous contributions to the line 
shape. In time-domain spectroscopy, the distinction between homogeneous and inhomogeneous broadening 
depends on the duration and temporal separation of light pulses. We refer to static inhomogeneity when the 
timescale for the frequency fluctuations is long compared to that of the experiment.

Hole-burning spectroscopy is a nonlinear approach to unveiling the homogeneous line width 1/T2 buried 
under the inhomogeneous distribution. The sample is irradiated with a high power pump laser having a peak 
frequency and bandwidth within the absorption band. The absorption band is observed with a weaker light 
source, the probe, with frequencies that span the inhomogeneous spectrum. Sufficiently intense pump light 
tends to cause saturation of the transition; that is, more nearly equal populations in the ground and excited 
states, reducing the net spectral intensity at the pump frequency. If the band were purely homogeneously 
 broadened, the pump laser would diminish the overall intensity of the whole spectrum. In the presence of 
inhomogeneous broadening, on the other hand, the pump laser pokes a hole in the spectrum with a width 
on the order of 1/T2. In the transient hole burning experiment, the hole evolves in time after the pump pulse 
owing to spectral diffusion, and eventually “heals” on the timescale T1. Hole-burning experiments are often 
done at low temperature to slow the decay of the hole. The ground state bleach contribution to pump-probe 
spectroscopy, discussed below, is an example of dynamic hole-burning. The photon echo and two-dimensional 
experiments described below will be shown to provide another approach to separating homogeneous and 
inhomogeneous contributions.

14.3.1 third-order nonlinear resPonse function

We saw in Chapter 13 that the third-order response function S(3) depends on three nested commutators of 
the transition dipole, which give rise to eight terms. Upon inspection these are seen to occur in pairs which 
are complex conjugates of one another. The third-order response function (Equation 13.130) can then be 
expressed somewhat succinctly as follows [9]:
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Here, we are using the Heaviside step function θ(t), which is equal to unity for t > 0 and zero for t < 0, leading 
to integration over positive times in the calculation of P(3). The four functions R1, R2, R3 and R4 are terms in the 
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Figure 14.5 Homogeneous and inhomogeneous broadening.
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expansion in which the perturbations to the density matrix occur in the order ket–ket–ket, bra–ket–bra, bra–bra–
ket, and ket–bra–bra, respectively. In the eigenstate picture, these are expressed as a sum over intermediate states:
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The terms R1, R2, R3 and R4 are represented by the Feynman diagrams A1, C2, B2 and D1 of Figure 13.9, respec-
tively, with a change in the summation indices. The reader should verify that complex conjugates Rα

∗ also 
appear in Figure 13.9. For example, R1

* corresponds to the bra–bra–bra sequence of interactions. The Rα
∗ terms 

enter into Equation 14.26 with a minus sign as a consequence of the rule that the sign of a Feynman diagram 
is (−1)n, where n is the number of bra-side interactions. These terms will be used to deduce the response for 
particular experiments discussed below, where the sum-over-states in Equation 14.27 will be narrowed down 
to specific terms for resonance with the input fields. Four is the maximum number of states that contribute 
to a term in the expansion of the third-order polarization, and in some cases a smaller number of states may 
participate.

14.3.2 PumP-Probe sPectroscoPy

Pump-probe spectroscopy, also called transient absorption spectroscopy, is a powerful tool for preparing excited 
states of molecules and materials and following the ensuing dynamics. This experiment employs an ultrafast light 
pulse (the “pump” pulse) to prepare an excited electronic or vibrational state, followed by a probe pulse that is 
delayed by time τ. A schematic of the experiment in shown in Figure 14.6. The time delay is made possible using 
a variable path length for the probe pulse compared to the pump. The time delay for a given path length difference 
derives from the speed of light, about 300 nm/fs. The extra length of the probe path relative to the pump path 
may be as long as 30 cm to achieve a delay of 1 ns, or as short as 3 μm for a delay of 10 fs. Computer-controlled 
translation stages can vary the path length to within about 1 μm, providing a time resolution as short as 3.3 fs.

The first pump-probe experiments were done by Sir George Porter and colleagues in the millisecond time 
regime using a flashlamp with a rotating sector to provide the time delay between the pump and probe flashes 
[10]. The development of what was then called flash photolysis earned Porter the Nobel Prize in 1967, shared 
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Figure 14.6 Pump-probe experimental geometry.
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with M. Eigen and R. G. W. Norrish. A myriad of experimental discoveries permitted by this technique led to 
concepts that are now standard content in textbooks. These include the detection of free radicals, observation 
of triplet–triplet absorption spectra, charge transfer, radiationless decay, vibrational relaxation, photodissociation, 
and initial forays into the fundamental mechanism of photosynthesis. Since its inception, the time resolution 
of pump-probe spectroscopy has evolved from the millisecond to the femtosecond regime and beyond, and 
applications span a wide range of fields including biological systems, semiconductors and nanoparticles. The 
available time resolution provides a window on photon-triggered dynamics such as bond rearrangements, elec-
tron transfer, proton transfer, and isomerization. While kinetic studies often employ time-resolved detection at 
a single wavelength, acquisition of complete time-dependent spectra at a range of probed wavelengths is often 
used. With only two light pulses, it may not be obvious that pump-probe is a third-order nonlinear experiment. 
However, as shown below, the sample is considered to interact twice with the pump pulse and once with the 
(weaker) probe pulse.

In femtosecond broad-band pump-probe experiments, the probe is a spectrally broadened, white light 
pulse. As shown in Figure 14.6, the pump and probe pulses impinge on the sample in a near-collinear geom-
etry, and the transmission of the probe pulse is recorded in the direction of the probe beam after being spec-
trally resolved by a grating or prism. The polarization of the probe beam is sometimes set at the magic angle 
of 54.7° with respect to that of the pump beam to negate the effect of the rotation of the molecular transi-
tion dipole moment. Alternatively, reorientational motion can be perceived by using a probe pulse which is 
polarized perpendicular to the pump. The pump-probe experiment can follow electronic or vibrational state 
dynamics depending on the wavelength of the pulses and their time delay. A pump pulse at a visible or UV 
wavelength prepares the molecule in an excited electronic state. A probe beam at a visible or UV wavelength is 
used to follow the dynamics of excited electronic (or vibronic) states, while a probe at an infrared wavelength 
reveals vibrations within the excited electronic state. Alternatively, time-resolved vibrational spectroscopy of 
excited electronic states employs resonance Raman scattering of a visible or UV probe pulse which is resonant 
with an allowed transition from the pumped electronic state to a higher energy electronic state. In one of the 
examples below, both the pump and probe pulses are in the IR region in order to follow vibrational dynamics 
within the ground electronic state. Before discussing examples of the above experiments, let us look at some 
general aspects of pump-probe spectroscopy.

The transmission of the probe beam at time τ following the pump pulse at time zero is compared to the 
transmission of the probe in the absence of the pump pulse. This difference can be converted to an absorbance 
change ΔA, which may be positive or negative. The pump-induced depletion of the ground state population 
leads to negative ΔA, referred to as a ground state bleach (GSB). GSB is a “hole” in the spectrum resulting from 
transfer of ground state population to the excited state. The hole is as broad as the steady-state absorption spec-
trum when the spectrum is homogeneously broadened. In the limit of inhomogeneous broadening, on the other 
hand, the breadth of the hole depends on the frequency distribution of the pump. Like GSB, stimulated emission 
(SE) also leads to negative ΔA. In this case, the pump creates a population inversion which results in emission 
of light in the direction of the probe beam. This emission adds to the intensity and appears as a negative absorp-
tion change. Positive features, ΔA > 0, represent excited state absorption (ESA) resulting from transitions from 
the pumped excited state to higher lying states. Pump-probe spectra are sometimes represented as the relative 
change in transmittance ΔT/T0, or intensity ΔI/I0. In this representation, ESA appears as a negative feature while 
GSB and SE result in positive peaks.

The pump-probe experiment is said to be self-heterodyned. To explain this, consider for the moment linear 
spectroscopy. The incident electric field generates a first-order polarization that results in a signal field Esig with 
the same frequency and propagation direction as the incident field E0, but not necessarily the same phase. The 
measured intensity is proportional to E E0

2
+ sig . In the case of light absorption, destructive interference of 

the incident and signal fields results in attenuation of the transmitted beam, while stimulated emission cor-
responds to constructive interference and amplification of the transmitted beam. In either case, the experi-
ment qualifies as heterodyned by virtue of the mixing of the signal with the incident field. The pump-probe 
experiment is similar except that the probe field Epr interacts with a sample that has already interacted twice 
with the pump field at time τ earlier. The intensity I(τ) of the transmitted probe in the presence of the pump and 
for delay time τ is proportional to the square of the sum of the fields for the signal and the transmitted probe:
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 I E Epr( )τ ∝ + sig
2
 (14.28)

where Esig is proportional to the imaginary part of P(3). The intensity above is compared to that of the transmitted 
probe in the absence of the pump to get the change in intensity ΔI:

 ∆I E E E E Epr pr pr( ) Re( )τ ∝ + − ∝sig sig
2 2 ∗

 (14.29)

Equation 14.29 uses the fact that the amplitude of the probe pulse is much larger than that of the signal. The 
intensity change ΔI can be converted to a difference in absorbance ΔA.

The phase-matching condition for pump-probe requires that the two interactions with the pump field 
contribute with wave vectors 

�
kpu  and −

�
k pu. This leads to six Feynman diagrams, three of which are depicted 

in Figure 14.7 and three more left as an exercise for the reader. The diagrams shown in Figure 14.7 depict 
the pump-pump-probe sequence of interactions leading to SE, GSB, and ESA. Those drawn in the figure 
are “rephasing” diagrams in that, for SE and GSB, the coherence resulting from the first pulse is reversed 
by the second pulse. (More will be said about rephasing and nonrephasing diagrams in Section 14.4.) The 
excitation density of the pump pulse is much larger than that of the probe, and the third-order polarization 
in this experiment is proportional to E Epu pr

2 , where Epu and Epr are the electric field amplitudes of the pump 
and probe, respectively. We are interested here in diagrams in which the two pump interactions precede 
the interactions with the probe, and other orderings will lead to different nonlinear experiments to be 
discussed later. Recall that interactions represented by arrows that point to the right are associated with 
exp(ikr −iωt) phase factors while arrows pointing to the left imply exp(−ikr + iωt). Thus we have a signal at 
the frequency ω ω ω ω ωsig = − + =pu pu pr pr  and the phase-matching condition is 

� � � �
k k k kpu pu pr pr− + = . The signal 

is detected in the same propagation direction as that of the probe pulse, leading to the “self-heterodyned” 
nature of the detection. The GSB and SE diagrams differ in that following the two pump interactions the 
molecule finds itself in an excited state population e e  for SE and in the ground state population g g  
for GSB. In both cases the signal represents evolution of the density matrix from the coherence e g  to the 
population g g . In contrast, for the ESA diagram the system is in the population e e  following the two 
interactions with the pump, and the final arrow (the signal) represents the evolution from ′e e  to e e , 
where ′e  is a higher lying excited state. Note that the sign of the diagram for ESA is opposite to that for 
GSB and SE.

The distinction between the conventional pump-probe experiment and other third-order phenomena 
depends on the pulse sequence as well as the pump-probe time delay and the dephasing time of the pumped 
state. When the time delay is sufficiently long compared to dephasing and the states e and e′ are well-separated 
in energy compared to the spectral width of the pump pulse, the two pump interactions leave the molecule 
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Figure 14.7 Three of the six Feynman diagrams for pump-probe, accounting for stimulated emission (SE), 
ground state bleach (GSB) and excited state absorption (ESA). The first two of these are rephasing diagrams. 
The construction of three more nonrephasing diagrams is left as an exercise for the reader.
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in a population rather than a coherence, as seen for the Feynman diagrams discussed above. In this limit, the 
pump pulse prepares the system in a particular state, and the transmittance of the probe pulse is determined 
by the linear susceptibility of the optically prepared state. We can then consider pump-probe as a conven-
tional spectroscopy experiment in which the initial state just happens to be an excited state. In the limit that 
the pump and probe pulses are not temporally overlapped and are separated by a time interval longer than 
that for dephasing, the time dependence of the spectrum then reflects population dynamics and reveals the 
kinetics of photophysical and photochemical processes.

On the other hand, if the pump pulse is broad enough to excite more than one state, coherence effects are 
seen which show up as oscillations in the transmittance of the probe at the beat frequency of the two states. 
These effects are observable within the pump-pump-probe scheme as seen in one of the examples presented 
below. For example, pump pulses with durations on the order of a typical vibrational period are capable of 
exciting vibrational coherences v v′  within the ground or excited electronic state. These appear as oscil-
lations, also called quantum beats, in pump-probe spectra and persist for delay times which are less than 
the dephasing time. Figure 14.8 depicts wavepacket motion leading to quantum beats. These beats occur for 
displaced potential surfaces, exactly the condition for Franck–Condon activity of normal modes. The time-
dependent overlap of the initial and propagating wavepackets modulates the intensity of the transmitted 
probe beam with a frequency given by that of the vibration.

When the pump and probe pulses are separated by a time that is long compared to dephasing, the time 
dependence of the transmitted intensity reflects population dynamics only. For a two-level system where the 
pulses are resonant with the g → e transition, the transmitted signal is

 ∆ ΓI ege
ee( )τ µ τ∝ −4

 (14.30)

Γee = 1/T1 is the population relaxation of the upper state. In a two-level system the rate of decay of the upper 
state is equal to the rate of filling the hole left in level g: Γee = Γgg. More generally, population relaxation of 
additional states connected to g and e contributes to the kinetics of bleach recovery.

To understand the occurrence of quantum beats, we use a four-level system as shown in Figure 14.9 with 
vibrational levels a and c within the ground electronic state and b and d within the excited electronic state. 
Figure 14.9 shows that the diagrams for R1 and R2 correspond to vibrational coherences within the ground 
and excited electronic states, respectively. For example, the R1 diagram shown in Figure 14.9 reveals that the 
system is in a c a  coherence after the two time-coincident pump pulses. Thus the density matrix evolves 
as exp( )− −i ca caω τ τΓ  following the pump, revealing an oscillatory component at the vibrational frequency 
and an exponential damping Γca = 1/T2 like that shown in Figure 14.8. The diagram for R2 on the other hand, 
shows that the pump pulses produce the coherence d b  which then evolves as exp( )− −i db dbω τ τΓ , and the 
oscillations correspond to vibrational motion within the excited electronic state. Note that it is no coincidence 
that the diagram for the R1 term in Figure 14.9 is identical to that shown for CARS in Figure 13.16. The terms 
R3 and R4 correspond to vibrational coherence within the ground and excited electronic state, respectively, 
as explored in one of the homework problems.
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Figure 14.8 Wavepacket motion and oscillations from quantum beats.
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When the envelopes of the pump and probe pulses are not well-separated in time, so-called coherence 
artifacts result. These are not really artifacts, but rather signals that derive from “pump-probe-pump” and 
“probe-pump-pump” orderings that are not of interest in the pump-probe (or “pump-pump-probe”) experi-
ment. We next consider some examples of pump-probe experiments that highlight how populations and 
coherences are revealed.

14.3.2.1 TRANSIENT ABSORPTION SPECTRA OF EXCITED ELECTRONIC STATES

Pump-probe spectroscopy is widely used to follow photophysical and photochemical dynamics taking place in 
excited electronic states. These experiments take advantage of the ability to monitor time-dependent populations 
of excited states. A large number of studies have been aimed at determining the kinetics of fundamental processes 
such as electron transfer, a recurring motif in fields ranging from biology to materials science. One such example 
is the study of electron transfer from electronically excited dyes to the conduction band of nanocrystalline metal 
oxides, primarily TiO2. TiO2 is a wide band gap semiconductor with a separation Eg = 3.2 eV between the valence 
and conduction bands. As such, it absorbs UV but not visible light. In a dye-sensitized solar cell, nanoparticulate 
TiO2 is sensitized to visible light via adsorption of a monolayer of dye (the sensitizer) capable of excited-state 
electron transfer to the conduction band of the semiconductor. This electron transfer is the primary process in 
the conversion of sunlight to electricity in a dye-sensitized solar cell. Electron injection is thermodynamically 
favored when the excited state reduction potential of the dye, found by subtracting E e00/  from the ground state 
redox potential, is more negative than the conduction band redox potential. Early transient absorption spectros-
copy measurements of dyes adsorbed on nano-TiO2 revealed electron injection to take place on a subpicosecond 
timescale, faster than the thermalization of the vibrational levels within the excited electronic state. In order for 
dye-sensitization to lead to an efficient photovoltaic device, the collection of injected electrons in the external 
circuit has to be faster than recombination of injected electrons with oxidized dye, a feature which is facilitated by 
efficient regeneration of the original oxidation state by a redox mediator in the electrolyte. In addition, success-
ful sensitizer dyes have donor–acceptor moieties that are spatially separated. Proximity of the LUMO to the 
semiconductor surface favors faster forward electron transfer while a greater separation of the HOMO from 
the surface favors slower recombination of the injected electron with the sensitizer dye.

Transient absorption measurements have permitted the detailed kinetics of electron injection, recombina-
tion, and dye regeneration to be determined for many sensitizers on TiO2. Using the Ru-based metalorganic 
dye popularly known as N3, Heimer et al. [11] used transient absorption at visible and IR wavelengths to 
uncover the dynamics of forward (injection) and reverse (recombination) electron transfer. Their analysis 
was aided by comparison of the transient spectra of N3 adsorbed on nanocrystalline TiO2 and ZrO2. The 
latter has a conduction band for which the reduction potential is more negative than that of excited state N3, 
precluding excited state electron injection. Figure 14.10 shows transient absorption spectra for N3 on ZrO2 
and on TiO2 generated by a pump at 532 nm, which excites the S0 → S1 transition of N3. In both samples 
there is an obvious GSB resulting from depletion of the ground electronic state of the dye. On ZrO2 there is, 
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Figure 14.9 Ground and excited electronic state potential surfaces and Feynman diagrams giving rise to 
vibrational coherences in the ground (R1) and excited (R2) electronic state.
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in addition,  ESA of the dye centered at 650 nm, and a negative going feature near 760 nm assigned to stimulated 
emission of N3. These latter two features are not apparent in the transient absorption spectra of N3 on TiO2 
because electron transfer to the semiconductor effectively quenches the dye excited state. Instead, for N3 on 
TiO2, the ESA in the near-IR region is assigned to the metal-to-ligand charge-transfer transition of oxidized N3 
and absorption by conduction band electrons in TiO2. The authors interpreted the kinetics of the bleach recov-
ery to determine the rate at which the dye is regenerated by reaction of the oxidized form with a redox mediator.

Consider next an example where a sufficiently short pump pulse excites superpositions of vibrational states, 
leading to quantum beats in pump-probe spectroscopy. This process, known as impulsive stimulated Raman 
scattering, reveals wavepacket motion on either the ground or excited electronic state potential surface, depend-
ing on whether the beats are measured in the vicinity of the GSB, ESA or SE. Dean et al. [12] used transient 
absorption with 16 fs pulses and a broadband probe to investigate the excited state dynamics of methylene blue 
in aqueous solution, as shown in Figure 14.11. With an absorption band at 664 nm and fluorescence at 690 nm, 
the dye is of interest for photodynamic therapies which require red emission wavelength to minimize scattering 
by biological tissues. Oscillations in the transmitted intensity were observed to persist for up to 2 ps. Note that 
the traces presented there were obtained by subtracting the background due to population dynamics, fitted to a 
biexponential function. The time-dependent intensity changes were monitored at the wavelengths of the fluo-
rescence, the ground state bleach, its vibronic side band, and the excited state absorption, and in each case were 
Fourier transformed to give a vibrational spectrum in good agreement with results from a quantum mechani-
cal calculation. Oscillations in the time-dependent intensity change ΔI/I were dominated by the beating of the 
two most intense (highest Franck–Condon factor) modes at 450 and 500 cm−1, where the period of the beat is 
1 650/c∆ �ν ≈  fs, in good agreement with the dominant peak separations of the time-dependent intensity.
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Figure 14.10 Transient absorption spectra of Ru(4,4′-dicarboxylic acid–2,2′-bipyridine)2(NCS)2 adsorbed 
(a) on ZrO2 and (b) on TiO2. (Reprinted with permission from Heimer, T. A. et al. Electron Injection, Recombination, 
and Halide Oxidation Dynamics at Dye-Sensitized Metal Oxide Interfaces, J. Phys. Chem. A 104, 4256 (2000). 
Copyright 2000 American Chemical Society.)



394 Time-resolved spectroscopy

An important photochemical process that was the subject of some of the earliest femtosecond pump-
probe experiments is the cis–trans isomerization of bacteriorhodopsin (BR). Molecules in the rhodopsin 
 family undergo fast torsional motion in their excited S1 electronic states. Isomerization about the C13–C14 
bond of the retinal chromophore of the rhodopsin protein is the first step in a series of events that lead to 
stimulation of the optic nerve. In the purple membrane of the photosynthetic bacterium Halobacterium 
salinarum, the bacteriorhodopsin molecule acts a light-driven proton pump. Due to its stability and ease 
of preparation, this pigment has served as a convenient model for the rhodopsin family of molecules. The 
Mathies lab at UC Berkeley [13–15] has studied the light-driven isomerization of light-adapted bacte-
riorhodopsin, BR568, in which the retinal chromophore adopts the all-trans form and has an absorption 
maximum of 568 nm. Using 6 fs probe and 60 fs pump pulses, Mathies et al. looked at the pathway for 
excited state isomerization to the 13-cis form. In [13,14], the third-order polarization was calculated using 
a wavepacket approach like that introduced in Chapter 12, where i i t( )  is the time-dependent overlap of 
the initial state with that evolving on the excited state surface. As in the treatment of resonance Raman 
spectroscopy, the wavepacket description of P(3)(t) shown below is an alternative to the sum-over states 
expression used in Equations 14.27. In the time-dependent view, the polarization was found to be the sum 
of eight terms as follows:
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Figure 14.11 (a) Quantum beats resulting from vibrational coherences in broad-band transient absorption 
of aqueous methylene blue, observed at a probe wavelength near the fluorescence maximum. (b) Vibrational 
frequencies obtained by Fourier transformation of the data in (a). (Reprinted with permission from Dean, J. C. 
et al. Broadband Transient Absorption and Two-Dimensional Electronic Spectroscopy of Methylene Blue, 
J. Phys. Chem. A 119, 9098 (2015). Copyright 2015 American Chemical Society.)
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In this expression, E tpu( )  and E tpr ( ) are the time-dependent pump and probe fields. Each of the eight terms 
above can be associated with one of the eight terms in the sum-over-states description of P(3)(t). The time ti 
in the above expression is the absolute time of the ith pulse rather than the interval between two pulses. 
Equation 14.31 was obtained assuming both fields oscillate at a frequency ω1, and the vibrational dephasing 
rate for intermediate vibronic levels of the S1 excited state was ignored in comparison to electronic dephasing. 
Since these terms focus on two states resonant with the frequency ω1 = ωeg, only GSB and SE diagrams (Figure 
14.7) are relevant. With the help of these diagrams, we can rationalize the exponential terms in the integrand 
as follows. In the time interval t2 – t1 between the first and second interactions the system is in a ge coherence 
so the density matrix evolves as exp[(iω1 – 1/T2)(t2 – t1)]. After the second interaction, the Feynman diagram 
tells us we have a population (either ee or gg) and the density matrix evolves as exp[(−1/T1)(t3 – t2)]. Finally, the 
third pulse at t3 creates the eg coherence and between t3 and the detection time t, the density matrix evolves as 
exp[(iω1 – 1/T2)(t – t3)]. Note that though the peaks of the two pump pulses are time coincident, the integra-
tion is over their corresponding temporal profiles, as well as over that of the probe pulse.

The first four terms in Equation 14.31 are of the pump-pump-probe type and are associated with the con-
ventional pump-probe experiment. The fifth and sixth terms derive from the sequence pump-  probe-pump 
and are important at early delay times during the temporal overlap of the pump and probe, giving rise to the 
previously mentioned coherence artifact. The last two terms are probe-pump-pump and lead to perturbed 
free induction decay. In the limit that the first two pulses are time-coincident delta function pulses, the inte-
grals over t1 and t2 collapse, and the argument of the rightmost exponential term vanishes, taking its depen-
dence on the dephasing rate with it. At the same time, when the time interval t – t3 is long comparing to the 
dephasing rate, the contribution of dephasing to the left-most exponential becomes insignificant. These are 
the conditions for which population dynamics rather than dephasing controls the dynamics (Equation 14.30). 
More generally, however, the dephasing rate does influence the pump-probe spectrum as seen above.

Figure 14.12 shows the differential transmittance ΔT/T0 of BR568 at a range of times from −54 to 998 fs. 
Figure 14.13 is a sketch of the S0, S1 and Sn potential surfaces along the torsional coordinate for cis-trans isom-
erization. The 6 fs probe pulse spans the wavelength range 560 to 700 nm, while the 60 fs pump pulse with peak 
at 618 nm encompasses a more narrow spectral range as seen in the top trace of Figure 14.12. Positive features, 
ΔT > 0, at 618 nm and 593 nm show up at negative time delays. (Negative time delays may seem contradictory 
for the pump-probe experiment, but the delay time τ corresponds to the difference in the peaks of the pump 
and probe temporal profiles. When the pump and probe are not well-separated in time, the temporal widths 

560

∆T

580 600 620 640
Wavelength (nm)

660 680 700
-54 fs

-28 fs

-3 fs

28 fs

58 fs

98 fs

142 fs

222 fs

443 fs

998 fs

Pulse spectrum

Figure 14.12 Pump-probe spectrum of bacteriorhodopsin, BR568. The top trace is the spectrum of the pump 
pulse, and the others are the transient spectra at the indicated times. (Reprinted from Pollard, W. T. et al. Direct 
Observation of the Excited State cis-trans Photoisomerization of Bacteriorhodopsin: Multilevel Line Shape 
Theory for Femtosecond Hole Burning and Its Application, J. Chem. Phys. 90, 199 (1989) with the permission 
of AIP Publishing.)
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of the pulses permit some of the pump pulse to precede some of the probe pulse when τ < 0.) These positive 
features represent GSB, but there is more structure displayed at early times than is observed in the steady-state 
absorption spectrum. The latter is further broadened by dephasing of the electronic state, which is evidently 
slow compared to the time interval where the structured “holes” in the absorption spectrum are seen. As the 
pump-probe delay increases, one sees the emergence of ESA that blue-shifts from about 580 nm to ~560 nm, 
eventually moving out of the window of the probe spectrum. At the same time, SE is evident at wavelengths to 
the red of about 640 nm. This SE decays in concert with the ESA as the molecule moves along the excited state 
potential, which is dissociative with respect to the torsional coordinate. Beyond 222 fs, the negative features at 
a broad range of red wavelengths result from the absorption of the 13-cis photoproduct. The potential curves 
in Figure 14.13 account for wavepacket motion along the S1 excited state and qualitatively explain the blue shift 
of the S1 → Sn absorption with time, while the SE S1 → S0 shifts to the red. Note that from 58 to 142 fs, the GSB is 
much broader than the pump spectrum and does not change much with time. This is taken as evidence that the 
absorption spectrum of BR568 is homogeneously broadened.

14.3.2.2 TIME-RESOLVED VIBRATIONAL SPECTROSCOPY

For determination of molecular structural dynamics, transient vibrational spectroscopy offers several advan-
tages over time-resolved electronic spectroscopy. The diffuse bands frequently observed in the latter conceal 
underlying vibrational progressions, and overlapping electronic transitions may be unresolvable. Vibrational 
transitions on the other hand, often lead to bands which are only several cm‒1 in breadth and provide snap-
shots of molecular structure in transient states. (Exceptions arise; for example, the broader vibrational bands 
of hydrogen-bonded molecules such as liquid water, discussed below.) Frequency shifts in transient IR and 
Raman spectra provide windows into vibrational cooling, since transitions v → v ± 1 are increasingly red-
shifted for higher vibrational quantum numbers v. Raman spectroscopy has additional advantages through 
the observation of transient anti-Stokes transitions, the time-dependence for which reveals vibrational popu-
lation decay times.

Ultrafast transient IR spectroscopy has been of great utility in the study of liquid water, where absorption 
bands of stretching and bending modes span several hundred cm‒1. Hydrogen bonding of the O–H group of 
liquid water leads to red-shifting and broadening of the O–H stretch, relative to the spectrum of water vapor. 
The red-shift arises from decreased electron density (bond weakening) as a result of partial bond formation 
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Figure 14.13 Potential energy surfaces for photoisomerization of BR568. (From Pollard, W. T. et al. J. Chem. Phys. 
90, 199, 1989.)
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with the acceptor: O–H–––O. The breadth of the O–H stretch is generally considered to result from inhomo-
geneous broadening owing to a distribution of H-bond strengths. However, the lifetime and dephasing rate of 
the H-bond can also contribute to the spectral width. Femtosecond pump-probe spectroscopy using tunable 
mid-IR pulses has been applied to the study of water in confined media such as reverse micelles [16]. Reverse 
micelles are nanometer-sized spherical assemblies of surfactant molecules in organic solvent, with water mol-
ecules encapsulated within. The surfactant molecules possess polar head groups which orient inward toward 
the water pool and nonpolar hydrocarbon tails which present to the nonpolar solvent. The number of water 
molecules in the pool is controlled by the diameter of the micelles which can be varied by changing the ratio 
w0 of the water concentration to that of the surfactant. The micellar environment provides a model for inter-
facial water in biological systems. Water confined in biological cavities may play a role in protein dynamics; it 
is therefore of interest to understand how confinement perturbs the dynamics of water molecules.

Costard et al. [16] used reverse micelles of the phospholipid dioleoylphosphatidylcholine (DOPC) sus-
pended in benzene with femtosecond IR pump and probe pulses to investigate the effects of confinement 
on the dynamics of water. Phospholipids are components of cell membranes; thus this system serves as a 
simple model for water in cells. The experiments were performed as a function of variable water content in 
the range of w0 = 1 to 16, corresponding to micelle diameters from about 4 to 8 nm. In the authors’ core-shell 
model, the shell consists of water which strongly interacts with the polar interface while water molecules in 
the core behave more like bulk water for sufficiently large micelle size. Figure 14.14 shows the absorbance 
change ΔA for time delays ranging from 300 fs to 3 ps, compared to the steady-state absorption spectrum. 
Note that the sharp lines in the steady-state spectrum are C–H stretches of benzene, and the broad peak at 
~3400 cm‒1 is the O–H stretch of water. In the transient spectra, a negative peak in the vicinity of 3400 cm‒1 
is the result of GSB of the v = 0 → v = 1 transition superimposed on the SE for v = 1 → v = 0. Hot bands arising 
from v = 1 → v = 2 give rise to positive features (ESA) on the red edge of the spectral window. The breadth 
of the main negative feature reflects the distribution of O–H stretching frequencies resulting from water 
molecules in different environments; i.e., inhomogeneous broadening. The authors attributed the dynamic 
red-shift of this feature to spectral diffusion on a timescale of about 1.4 ps or more, slower than the spectral 
diffusion time in bulk water. The decay time of the GSB/SE depends on the micelle size owing to several 
mechanisms for the population relaxation of the v = 1 state. One is the coupling of the v = 1 state of the 
stretch to the overtone of the bend at a similar frequency. The authors found the timescale for decay of the 
v = 1 state of the stretch to match the rise time of the v = 2 state of the bend. Fluctuations in the frequen-
cies of these modes bring them into resonance and enhance the energy transfer. These fluctuations and the 
decay rate increase as the size of the water pool increases. These and other time-resolved studies of water in 
confined media reveal significant differences in the dynamics compared to those found in the bulk.

An example of the application of time-resolved IR spectroscopy to the study of a photochemical process 
is provided by [17], which used a UV pump and mid-IR probe to study the ring opening reaction of the spi-
ropyran 1′, 3′, 3′-trimethylspiro-[-2H-1-benzopyran-2,2′-indoline], or BIPS. As illustrated in Figure 14.15, 
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Figure 14.14 Transient IR spectrum of water in reverse micelles with w0 = 3. The top trace is the steady-state 
absorption spectrum and shows the broad water absorption and sharp peaks from benzene. (Reprinted with 
permission from Costard, R.  et al. Ultrafast Vibrational Dynamics of Water Confined in Phospholipid Reverse 
Micelles, J. Phys. Chem. B 116, 5752 (2012). Copyright 2012 American Chemical Society.)
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BIPS undergoes a ring-opening reaction in its excited S1 electronic state, which results in the formation of a 
merocyanine molecule which absorbs at 540 nm, while BIPS absorbs at about 300 nm. Photochromic mol-
ecules of this type are of interest for information storage and optical switches, motivating spectroscopic studies 
of the pathway for interconverting the two forms. Reference [17] employed 70 fs UV pump pulses at 316 nm 
to create the S1 excited state of BIPS followed by broadband 100 fs mid-IR pulses spanning about 2000 cm‒1 
(generated by SFG) with a center frequency of 1530 cm‒1. Characteristic vibrational fundamentals of BIPS, 
observed at 1458, 1486 and 1610 cm‒1 in the ground state IR spectrum, are bleached at early times, and positive 
absorption changes at 1461, 1489 and 1591 cm‒1 are assigned to the product merocyanine. Stepwise vibrational 
cooling within both the ground and excited states of the closed form affects the dynamics in the vicinity of the 
bleach. The timescale for conversion from the closed to the open form was reported as 28 ps.

Time-resolved resonance Raman (TR3) spectroscopy is a form of pump-probe, in which the Raman spec-
trum of the pumped excited electronic state is measured by observing the scattering excited by a probe pulse 
which is resonant with a transition to a higher-lying excited state. The time and spectral resolutions offered 
are a compromise because the Raman bands are at least as spectrally broad as the probe pulse, which is 
typically in the ns or ps regime. (This compromise is avoided in the FSRS experiment described in the previ-
ous chapter, where the temporal and spectral resolutions are not decided by a Fourier transform relation.) 
An example application is provided by the picosecond TR3 measurements of Wang and Tauber [18], who 
used the technique to investigate singlet fission in aggregates of the carotenoid molecule 3R,3′R-zeaxanthin 
(Figure 14.16). Singlet fission is the decay of a singlet excited state to form two excited triplet states having 
energies no greater than half that of the singlet state. It has been observed in organic crystals, conjugated 
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polymers, and in light-harvesting complexes of photosynthetic organisms. In the latter, carotenoids are 
polyenes that assist with energy transfer to the photosynthetic reaction center, and singlet fission is a pos-
sible mechanism along the pathway for this energy transfer. Recent interest in singlet fission is motivated by 
the desire to exploit the process in solar energy conversion, since a single photon could create two excited 
electronic states that would hopefully be capable of electron transfer. Though the process is considered the 
formation of two triplet states from one singlet, the total spin is conserved because the resulting state after 
fission consists of pairs of triplets with a net spin of zero:

 ψ ψ ψ ψ ψ ψ ψ1 1 1 1 1 0 0

1

3
1 2 1 2 1 2

( )
( ) ( ) ( ) ( ) ( ) ( )

TT T T T T T T= + +[ ]− −  (14.32)

This state is represented by the symbol 1(TT) to designate a singlet state formed by mixing two triplets. The 
subscripts on T indicate the spin quantum number MS = 1, 0, or −1 for the triplet state T and the numbers in 
parenthesis designate different molecules in the case of intermolecular fission, or different parts of the same 
molecule in intramolecular fission.

Wang and Tauber measured the ps TR3 spectrum of self-assembled rod-shaped aggregates of 3R,3′R-
zeaxanthin in a mixed solvent of water and tetrahydrofuran, as seen in Figure 14.16. The S0 → S1 transition of 
symmetric polyenes is symmetry forbidden, while the S0 → S2 transition is allowed. The S2 excited state lies 
14,500 cm‒1 above the ground state and the spin-forbidden T1 state is estimated at 7000 cm‒1; thus, singlet 
fission is energetically possible. The transient resonance Raman spectrum was determined at wavelengths 
resonant with the S0 → S2 transition of the monomer as well as the red-shifted absorption band of the aggre-
gate. The C=C stretch of the monomer and aggregate ground state, at 1519 cm‒1, was found to disappear on 
a ~4 ps timescale, and the triplet state C=C stretch at 1502 cm‒1 was observed. The authors examined the 
dependence of the ground state depletion as a function of pump power for both the monomer and the aggre-
gate, and used the result to determine the efficiency of singlet fission.

14.4 TRANSIENT GRATING AND PHOTON ECHO EXPERIMENTS

In this section, we consider the closely related transient grating (TG) and photon echo (PE) spectroscopy exper-
iments [9,19,20]. Both of these techniques can be visualized with the schematic shown in Figure 14.17. Three 
pulses with propagation vectors 

�
k1, 
�
k2 and 

�
k3 are overlapped in the sample. Using standard notation, the interval 

1000 1200 1400

∆ν (cm–1)~

In
te

ns
ity

1600 1800

0 ps

4 ps

12 ps

250 ps

3 ns

15
12

15
03

T

12
39

T
11

92
T

11
5411

27
T

10
09

96
2T

Figure 14.16 Transient Raman spectra of zeaxanthin aggregates in 90:10 tetrahydrofuran: water, obtained 
at a pump wavelength of 415 nm and probe wavelength of 551 nm. Raman bands of the triplet state are 
labeled T and remaining bands are from the singlet excited state. (Reprinted with permission from Wang, C. 
and Tauber, M. J. High Yield Singlet Fission in a Zeaxanthin Aggregate Observed by Picosecond Resonance 
Raman Spectroscopy, J. Amer. Chem. Soc. 132, 13988 (2010). Copyright 2010 American Chemical Society.)
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between the first and second pulses is designated as τ, the coherence time, while the interval between the second 
and third pulses is called T, the waiting time or population time, and t is the time following the third pulse when 
the signal is detected. These are respectively the time intervals we have referred to as t1, t2 and t3. Figure 14.17 
shows a configuration in which all the propagation vectors are coplanar, but boxcar geometries are also used. 
The Feynman diagrams for this pulse sequence are shown in Figure 14.18. Figures 14.18a–c show the stimulated 
emission, ground state bleach, and excited state absorption contributions to photon echo, respectively, while 
Figures 14.18d–f show SE, GSB and ESA for the transient grating phase-matching condition. In Figures 14.18a 
and b, the diagram reveals that the first pulse creates the coherence g e , while the third pulse creates the 
coherence e g . These are referred to as rephasing diagrams. As shown below, this phase reversal leads to 
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Figure 14.17 Pulse sequence and phase-matching directions for photon echo (PE) and transient grating (TG) 
experiments.
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Figure 14.18 Feynman diagrams relevant to photon echo (a–c) and transient grating (d–f) experiments, and 
for stimulated emission (a and d), ground state bleach (b and e) and excited state absorption (c and f).
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the occurrence of a photo echo. No such phase reversal is possible for the ESA diagram Figure 14.18c. There is 
no rephasing in any of the diagrams associated with the TG experiment, Figures 14.18d–f. In Figures 14.18d 
and e, the coherence initiated by the first pulse is re-established by the third pulse. In Figure 14.18f, the first 
pulse creates the coherence e g  and the third pulse creates ′e g . In all cases, the second pulse leads to a 
population, either e e  for SE and ESA diagrams or g g  for GSB diagrams. The diagrams relevant to TG and 
PE can be compared to those for pump-probe (Figure 14.7). The difference is that in the pump-probe case the 
first two interactions come from the same pulse (τ = 0) and have the same propagation direction. In the PE and 
TG experiments discussed below, on the other hand, the first two pulses are noncollinear.

14.4.1 transient grating sPectroscoPy

Whenever two optical pulses with stable phases are overlapped on a sample, they create an interference pattern 
that can act as a grating and scatter a third pulse. We begin with a discussion of the state of the sample following 
two time-coincident plane wave pulses (τ = 0) of the same frequency, ω1 = ω2 = ω. The propagation vectors of 
the two pulses are at an angle 2θ and may be resonant with a spectroscopic transition. The interference of the 
two beams causes the intensity of the light to be modulated along the length of the sample, which is specified 
to be the Z direction, as illustrated in Figure 14.19. We can understand the grating formation by considering 
the wave fronts of the two incident plane-polarized beams, which propagate along opposite diagonal directions 
inside the sample. A snapshot of the resulting nodal pattern displays a lattice of constructive and destructive 
interference. As time progresses, the nodes in the vertical direction move from left to right as the beams 
propagate, but the horizontal nodes are stationary. The time-averaged net electric field displays an interfer-
ence pattern with horizontal peaks and valleys, forming a diffraction grating in the Z direction. This grating is 
depicted in Figure 14.19 as a series of constant intensity planes aligned in a direction perpendicular to Z. The 
intensity modulation I(Z) and grating spacing Λ are given by
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The interference pattern is a volume grating, like that used to create a hologram. The modulation of the 
light intensity leads to modulation of the complex refractive index, n n ir= + κ , the real and imaginary parts 
of which govern dispersion and absorption/emission, respectively. The spatial modulation of nr results in 
a phase grating while that of κ leads to an amplitude grating. In the absence of resonance, the real part nr 
determines the grating properties. Resonant pulses lead to a spatial modulation of the ground and excited 
state populations, known as a population grating. The population grating causes a change in the absorbance 
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Figure 14.19 Formation of a transient grating from two overlapped pulses.
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A that is modulated with the same spacing Λ. The real refractive index is modulated along with this change 
in absorbance, thus the population grating also results in a phase grating. In addition, the refractive index is 
modulated by local heating as the populations relax, leading to density changes, or because of volume changes 
caused by photoproduct formation. Density changes with intensity can also result from electrorestriction, 
increased local density in regions of high electric field strength. This effect does not require resonance. 
Another nonresonant effect comes from the nonlinear contribution to the refractive index, proportional to 
the square of the electric field. We refer to Δnr and ΔA as the depth of the modulation in the refractive index 
and absorption, respectively, and express the phase and amplitude gratings as:
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The subscript zero indicates the average quantity. The diffraction efficiency of the grating depends on the 
modulation depths. A third type of grating results when the two pump beams are polarized in orthogo-
nal directions, resulting in modulation of the polarization though circular, elliptical and linear polariza-
tions along the length of the grating. Regardless of the physical mechanism for grating formation, a third 
pulse that arrives before the grating relaxes is partially diffracted at the Bragg angle. The Bragg angle of the 
transient grating is consistent with the phase-matching condition shown in Figure 14.17 and given below in 
Equation 14.36. The formation of a grating can still occur if the two pulses are temporally separated as long 
as the polarization from the first pulse has not decayed before the arrival of the second. Two pulses which 
are coincident in time but differ in frequency, ω1 ≠ ω2, result in a grating that oscillates at the beat frequency 
ω1 − ω2. This is the case for CARS, where the pump beam ω1 and the Stokes beam ω2 differ by a vibrational 
frequency. When all three input beams are the same frequency, the experiment is referred to as degenerate 
four-wave mixing.

The general phase-matching constraint for the transient grating (TG) experiment is

 
� � � �
k k k kTG = − +1 2 3 (14.36)

Here, we take the first two pulses to be coincident in time (τ = 0) and frequency (ω1 = ω2), impinging on 
the sample as in Figure 14.17. These two pulses are referred to together as the pump pulse. In the standard 
experiment we have 

� � � �
k k k kTG = − +′1 1 2  where the pump pulses 1 and 1′ have different angles but the same 

frequency and arrival time at the sample. The probe pulse 
�
k2 is then scattered at an angle which depends on 

its frequency. Resonant pulses induce a population grating, such that the decay of the signal with time delay 
of the probe reveals population relaxation. In the multiplexed TG experiment, a small angle of incidence 
is used for the pump pulses and the probe is a white light pulse. The smaller angle θ translates to a larger 
value of Λ, diminishing the spectral resolution of the grating and permitting the detection of a larger range 
of diffracted wavelengths. In creating an amplitude grating, relaxation of excited state populations releases 
heat and causes a phase grating from modulations in the density and thus the refractive index. The density 
modulations result in acoustic waves launched in counter propagating directions with wave vector magnitude 
kac = 2π/ ,Λ  which show up as oscillations of the time-dependent signal. The frequency of these waves, νac, 
 satisfies 2π νac ack= v sound , where vsound is the speed of sound in the medium. Thus the frequency of acoustic 
waves depends on the angle of incidence of the pump pulses.

An excellent illustration of broadband TG spectroscopy is seen in the study of [21] and shown in Figure 14.20. 
Vauthey et al. sought to determine the rate of back electron transfer in an exciplex formed between the 
electron acceptor 9,10-dicyanoanthracene (DCA) and a series of aromatic electron donors. An exciplex 
is an excited state complex of two molecules that is not bound in the ground state. Exciplexes generally 
have some charge-transfer  character D+A− such that back electron transfer is a significant nonradiative 
relaxation pathway. For multiplex TG experiments, the authors created a population grating using 355 nm 
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pulses overlapped at an angle of 0.3° and probed the sample with a white light pulse. Figure 14.20 shows 
the resulting TG spectra of a solution of DCA with the electron donor 1,2,4,5-tetramethylbenzene (durene) 
in acetonitrile at a range of delay times from 60 to 3300 ps. The early spectra show the 620 nm excited state 
absorption of the S1 state of DCA. At increasing times this band diminishes and transitions of the radical 
anion DCA•− are seen at 580 640, 685 and 705 nm. Using a probe wavelength of 681 nm, the authors mea-
sured the rate of decay of the TG signal and accounted for it in terms of relaxation of the population of the 
radical ion, the quenching of excited state DCA by electron transfer from the donor, and decay of the dis-
sociated D+ and A− ions. It is apparent from this example that TG spectroscopy shares similarities with pump 
probe experiments. Both are “pump-pump-probe” orderings of the interactions. The typical pump-probe 
experiment can be considered as a variation of TG with θ = 0. In the TG experiment, the diffracted signal 
intensity is measured directly and not compared to the probe beam intensity; thus, the signal is always posi-
tive. This makes it difficult to assign features to GSB, SE and ESA contributions in a transient grating experi-
ment. Though not as susceptible to errors from fluctuations in the probe beam intensity, the TG experiment 
is susceptible to scattering artifacts. The TG experiment can also be done with a nonzero time separation of 
the first two pulses, as will be considered further below after examination of the photon echo experiment.

14.4.2 Photon echo sPectroscoPy

Photon echo experiments are described by the Feynman diagrams in Figures 14.18a–b. As for the TG case, 
there are diagrams corresponding to ground state bleach, stimulated emission, and excited state absorption. 
During the dephasing and rephasing time periods, the density matrix evolves as exp(−iωegt1) and exp(iωegt3), 
respectively, leading to a net cancellation of the transition frequency in the overall phase when t1 = t3. Note 
that the TG and PE experiments can be interconverted by reversing the order of the first two pulses, which 
reverses the signs for their wave vectors. The phase-matching condition for the photon echo signal is

 
� � � �
k k k kPE = − + +1 2 3 (14.37)

The signal is generally integrated over the detection time t and may be gathered as a function of coherence time 
τ or waiting time T. We consider three implementations of the method, denoted by the acronyms two-pulse 
photon echo (2PE), three-pulse stimulated photon echo (3PSE), and three-pulse photon-echo peak shift (3PEPS).
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Figure 14.20 Transient grating spectra of the exciplex of 9,10-dicyanoanthracene and 1,2,4,5-tetramethyl-
benzene in acetonitrile solution, measured at time delays (from back to front) of 60, 300, 470, 600, 750, 1600, 
2300, and 3300 ps. The wavelength axis on the top (bottom) refers to the spectrum in the back (front). Idiff 
is the intensity of diffracted light. (Reprinted with permission from Vauthey, E. et al. Direct Investigation of 
the Dynamics of Charge Recombination Following the Fluorescence Quenching of 9,10-Dicyanoanthracene 
by Various Electron Donors in Acetonitrile, J. Phys. Chem. A 102, 7362 (1998). Copyright 1998 American 
Chemical Society.)



404 Time-resolved spectroscopy

In the two-pulse photon echo (2PE) experiment, the second and third pulses derive from the same beam. 
Hence the phase-matching condition is 

� � �
k k kPE2 1 22= − +  and the waiting time T is zero. This implies a response 

that is proportional to E E1
0

2
0 2( ) , where E1 2

0
,  is the amplitude of the first or second pulse; thus, the experiment 

can be categorized as probe-pump-pump. In the usual notation where ti is the time interval between pulse 
i and pulse i + 1, we define t1 = τ, t2 = T = 0, and t3 is the time following the third pulse when the signal is 
detected. We consider pulses resonant with the g → e transition. For a two-level system, we consult the rephas-
ing diagrams for GSB and SE, which are equivalent when t2 = 0. We write the response function using rules 
from the previous chapter as follows:

 S e eeg eg gg
i t t t teg eg( ) ( ) ( ) ( )( )3 4 0 1 3 1 3ω µ ρ ω= − − − +Γ

 (14.38)

Equation 14.38 represents the homogeneous response function. We are interested in the situation where there 
is a Gaussian distribution of transition frequencies with average ωeg  and width Δ:
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eg eg
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ω ω
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 (14.39)

We account for inhomogeneity by multiplying the response function S eg
( )( )3 ω  by this distribution function 

and integrating over ωeg, to get

 S t t e e eeg gg
i t t t t t teg eg( ) ( ) ( ) ( ) ( )( , )3

1 3
4 0 1 3 1 3 1 3

2

= − − − + − −µ ρ ω Γ ∆22 2/

 (14.40)

In the case where the inhomogeneous linewidth Δ is much larger than the homogeneous width Γeg = 1/T2, the 
Gaussian function of time is sharply peaked compared to the dephasing term and can be replaced by a delta func-
tion: e t tt t− − ≈ −( ) / ( )1 3

2 2 2
1 3

∆ δ . The response function is then sharply peaked at t1 = t3 = τ, giving rise to an echo that 
follows the second pulse (which interacts twice with the sample) by the coherence time τ. The first exponential 
in Equation 14.40 represents dephasing during the time period t1 that is exactly reversed during t3. In the limit of 
large inhomogeneous linewidth, then, the echo signal is observed when t3 = t1, and the contributions of ωeg  and 
Δ in Equation 14.40 disappear. The integrated intensity of the echo decays exponentially:

 I esig eg
eg( )τ µ τ∝ −8 4Γ

 (14.41)

Equation 14.41 represents the echo decay curve that results when one measures the intensity as a function of 
the coherence time τ in the inhomogeneous limit. The factor of 4 in the exponential of Equation 14.41 results 
from putting t1 + t3 = 2τ in the dephasing term, then squaring the field Esig to get the intensity Isig. It is remark-
able that though the distribution of slow frequency fluctuations dominates the breadth of the linear spectrum, 
only the rapid fluctuations affect the echo decay. The impulsive limit has been assumed here, meaning that 
the pulse durations are shorter than the timescales of the system, such that the polarization is proportional to 
the response function. Hence, Equation 14.41 does not capture the initial increase in the  photon echo signal 
near τ = 0. For small values of τ, less than a full echo is realized because only those parts of the first pulse that 
precede parts of the second pulse can give rise to an echo. Note that although the echo signal decays with 
a timescale characteristic of the inverse homogeneous width, it is the presence of inhomogeneous broaden-
ing that leads to the echo. In the absence of inhomogeneous broadening, Δ = 0, and Equation 14.38 leads to 
I egsig( ) exp( )τ τ∝ −2Γ . These limits and the intermediate case are explored further below.

We next examine how the 2PE signal varies as a function of detection time t3 ≡ t. In the impulsive limit, 
we have P t S t( ) ( )( , ) ( , )3 3τ τ∝ . This gives

 P t e eeg t t( ) ( ) ( ) /( , )3 22 2

τ τ τ∝ − + − −Γ ∆  (14.42)
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Figure 14.21 depicts the time-dependent polarization following the second pulse in the homogeneous (Δ << Γeg) 
and inhomogeneous (Δ >> Γeg) limits as well the intermediate (Δ ≈ Γeg) case. In the homogeneous limit, the 
polarization falls of exponentially with detection time t, P tge

( ) exp( )3 ∝ −Γ , with no reversal of coherence. In 
the opposite (inhomogeneous) limit, the echo signal appears as a Gaussian-shaped pulse with a peak at t = τ 
and a temporal width 1/Δ. The intermediate case leads to a peak at a time t < τ with a shape reflecting both 
homogeneous and inhomogeneous timescales. The ability of the system to rephase and give rise to an echo 
depends on the relative strengths of the homogeneous damping, Γeg, and the inhomogeneous broadening, Δ.

The signal in the 2PE experiment is homodyne detected by integrating over the detection time t:

 I P t dt e eeg eg eg
sig erfc( ) ( , )( ) /τ τ ττ∝ = − +





∞
− −∫ 3

0

2 4 2 2Γ Γ ∆ ∆
Γ
∆  (14.43)

Here, erfc(x) = 1 −erf(x) is the complementary error function.*
The limits of this function for Δ >> Γeg and Δ << Γeg give rise to signals which decay exponentially as 

exp(−4Γeg/τ) and exp(−2Γeg/τ), respectively, as previously noted. In the intermediate case, on the other hand, 
the function erfc(−Δτ + Γeg/Δ) increases with τ, offsetting the decay from the first exponential term. The result is 
that the signal maximizes at a coherence time τ * > 0, called the peak shift. Note that this initial increase in Isig(τ) 
for τ > 0 is obtained in the impulsive limit. It is not caused by the finite widths of overlapping first and second 
pulses; rather, it results from integrating over the detection time. The value of the peak shift as an indication 
of the ability of the system to rephase is further explored below in the discussion of three-pulse photo echo 
experiments.

Before discussing the three-pulse photo echo experiments, we consider how the 2PE experiment for a two-
level system can be compared to the spin-echo experiment of magnetic resonance presented in Chapter 3. 
How is a π/2 pulse in NMR analogous to creating a coherence in a photo echo experiment? Recall that for a 
spin-1/2 particle, the Z-component of the spin operator is diagonal in the basis of the two spin states 1 2/  and 
−1 2/ , which are split by the magnetic field B0 in the Z-direction. In the optical case, the ground and excited 

*  The error function is erf ( ) ( / ) ( ) .x t dt

x

= −∫2 2
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Figure 14.21 Polarization in the two-pulse photon echo (2PE) experiment in the homogeneous (a), inter-
mediate (b), and inhomogeneous (c) limits. (From Tokmakoff, A. Time-Dependent Quantum Mechanics and 
Spectroscopy (University of Chicago), http://tdqms.uchicago.edu/page/nonlinear-and-two-dimensional-
spectroscopy-notes (Accessed March 19, 2016). License: Creative commons BY-NC-SA. With permission.)

http://tdqms.uchicago.edu/page/nonlinear-and-two-dimensional-spectroscopy-notes
http://tdqms.uchicago.edu/page/nonlinear-and-two-dimensional-spectroscopy-notes
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states are already “split” by the zero-order Hamiltonian. The application of the oscillating magnetic field B1 
in a  direction perpendicular to B0 is responsible for M1-allowed transitions between spin states. This is so 
because the transitions in magnetic resonance are induced by magnetic dipoles which are proportional to 
the spin angular momentum. The X and Y components of the spin operators are nondiagonal, thus they con-
nect the two different spin states just as the electronic transition dipole moment permits optical transitions. 
Thus the magnetization in the X and Y directions, as suggested by the optical Bloch equations of Chapter 4, 
is a consequence of off-diagonal elements of the density matrix. In the two-state case, we can define an opti-
cal π/2 pulse as one for which the product of the Rabi frequency Ω and the pulse duration τp is equal to π/2. 
Recall that under the influence of a resonant pulse, the populations of the upper and lower states oscillate back 
and forth (as seen in Figure 4.3) at the Rabi frequency. A π/2 pulse results in a superposition state which is an 
equal mixture of the two coupled states, 1 2( ) +( )g e , i.e. c cg e

2 2= . This is far from a weak perturbation, 
which should only slightly change the equilibrium populations, c cg e

2 2
1 0≈ ≈  , . But we did not use any per-

turbation theory to arrive at the optical Bloch equations, so let us continue with this analogy with the caveat 
that we cannot rigorously extend it to the case of a weakly perturbed, multistate system. The nonzero value of 
c c i tg e eg

∗ ∝ −exp( )ω  represents the coherence. Following a π/2 pulse, the precessing spins spread out in the rotat-
ing coordinate system as a result of an inhomogeneous magnetic field B0 (static inhomogeneity). There are also 
frequency fluctuations resulting from spin–spin interactions (T2 processes). A subsequent π pulse converts the 
system to another 50:50 mixture of the two states but of opposite phase: c c i tg e eg

∗ ∝ exp( )ω . The π pulse reverses 
the directions of precessional motion, and the spins rephase after a time equal to that of the first coherence 
period. The greater the static inhomogeneity, the greater the spread in precessional frequencies and the larger 
is the temporal width of the echo pulse. As for the case of photo echos, the appearance of a spin echo itself 
requires inhomogeneity. In its absence, the spin vectors would remain aligned with one another, undergoing 
only free-induction decay with rate 1/T2. The formation of an echo requires frequency fluctuations that affect 
different molecules differently; i.e., inhomogeneity.

Three-pulse stimulated echo experiment. In a three-pulse, or stimulated, photo echo experiment, 3PSE, the 
waiting time T is nonzero and the second and third pulses may be of different frequency. The phase-matching 
condition is now

 
� � � �
k k k kPSE3 1 2 3= − + +  (14.44)

Comparison of the phase-matching conditions and Feynman diagrams for both the three-pulse PE and TG 
reveals that, at least for SE and ESA, the two experiments differ by exchanging the time ordering of the first two 
pulses. (This is not possible for the GSB diagram because we cannot start out with a de-excitation of the ground 
state.) Experimentally, we can go from 3PSE to TG by changing the coherence time from τ to −τ and observing 
the signal at the appropriate phase-matched direction. The two experiments are equivalent when the coherence 
time τ is zero. The integrated intensity using homodyne detection is I T P T t dtPSE3

3 2
( , ) ( , , ) .( )τ τ= ∫  This signal 

is measured as a function of the coherence time τ and waiting time T. As seen above, for T = 0, the interplay of 
inhomogeneous and homogeneous broadening results in a peak shift τ * > 0 for which the integrated intensity is 
a maximum. On introducing a waiting time T between the second and third pulses, spectral diffusion and homo-
geneous dephasing degrade the memory of the coherence established by the first pulse, hindering echo formation 
and causing the peak in the integrated intensity versus τ, I TPSE3 ( , )τ , to tend toward τ = 0. In order for rephasing 
to occur, the response of the system during the time t3 = t has to be correlated to that during the interval t1 = τ. 
This is the basis for the 3PEPS experiment discussed next. 

The three-pulse echo peak shift (3PEPS) experiment incorporates the phase-matching conditions for PE and 
TG and measures the signal as a function of positive and negative τ for fixed time T. As seen in the example 
of Figure 14.22, taken from [22], the 3PSE signal as a function of coherence time τ results in two Gaussian 
functions symmetrically displaced with respect to the origin, one for each of the phase-matched directions � � � �
k k k ksig = − + +1 2 3 and 

� � � �
k k k ksig = − +1 2 3 . The difference in the maxima of these two Gaussians is twice the peak 

shift τ *. By recording the signal for both the rephasing and nonrephasing directions, the peak shift can be 
determined with subfemtosecond precision. The peak shift is maximum when T = 0 (2PE), and shifts toward 
the origin as T increases. At sufficiently long population times, the system has lost memory of the coherence 
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that existed before the arrival of the second pulse. There is then no rephasing, only free-induction decay, when 
T is longer than the timescale for frequency fluctuations. The shift in the peak τ * toward the origin reflects 
the transition from inhomogeneous to homogeneous broadening as defined by a timescale compared to T. 
A graph of τ * versus T reveals dephasing dynamics directly. Figure 14.23 displays such a graph for two samples 
of CdSe nanocrystals and for a solution of rhodamine 6G. Superimposed on the overall decay in τ * are oscil-
lations that result from vibrations that are coupled to the resonant electronic transition, as seen clearly in the 
3PEPS data for CdSe nanocrystals. Static inhomogeneous broadening on the timescale of the experiment 
results in a nonzero asymptotic value of τ * as T → ∞. The data for CdSe quantum dots reveals such an effect, 
resulting from a static distribution of quantum dot size that in turn influences the electronic transition energy. 
Note that the asymptotic value of τ * is larger for the CdSe sample with a larger size distribution. On the other 
hand, the peak shift τ * for a solution of rhodamine 6G does decay to zero at large T, indicating the absence of 
true static inhomogeneity.

Fleming and Cho [23] have shown that the dependence of τ * on T is directly related to the FFCF, defined 
here as C t t( ) ( ) ( ) .= δω δω0  3PEPs experiments provide another window, often with higher time-resolution, 
into the same solvent dynamics that are manifested in time-dependent fluorescence Stokes shift measurements. 
In a two-state picture, the peak shift as a function of population time is expressed as

 τ
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Figure 14.22 Three-pulse photon echo signal of 1.8 nm radius CdSe nanocrystals as a function of coherence 
time τ for three different population times T. Curves on the right-hand side correspond to the phase-matching 
condition 

� � �
k k k2 1 3− +  and those on the left to 

� � �
k k k1 2 3− + . (Reprinted from Salvador, M. R. et al. Exciton-Bath 

Coupling and Inhomogeneous Broadening in the Optical Spectroscopy of Semiconductor Quantum Dots, 
J. Chem. Phys. 118, 9380 (2003), with permission of AIP Publishing.)
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Here, ∆ = ( )
/

δω 2 1 2
 is the amplitude of the frequency fluctuations. In addition to revealing solvent dynamics, 

3PEPS has been used to follow the dynamics of protein motion coupled to a chromophore, for example in 
light-harvesting photosynthetic complexes.

14.5 TWO-DIMENSIONAL SPECTROSCOPY

Two-dimensional (2D) electronic and vibrational spectra reveal the correlations between pairs of spec-
troscopic transitions [24,25]. If two spectroscopic transitions are coupled to one another, pumping at the 
frequency of one transition influences the response at the probe frequency of the second transition. A 2D 
spectrum represents the intensity of the signal as a function of pump (or excitation) and probe (or emission) 
frequencies as a contour map as seen in the cartoon of Figure 14.24. A linear spectrum with two transitions ωa 
and ωb is sketched along the top and right side of the figure. These correlate to the diagonal peaks at (ωa, ωa) 
and (ωb, ωb). If these two transitions were uncoupled, for example, if they were merely from two noninteract-
ing components of a mixture, there would be no cross-peaks (ωa, ωb) and (ωb, ωa). Cross-peaks arise when the 
transitions at ωa and ωb are correlated.

Two-dimensional NMR spectroscopy, which reveals the coupling of nuclear spins in a molecule, is the 
historical and conceptual precedent for 2D optical spectroscopy. The first demonstration of two-dimensional 
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Figure 14.23 Peak shift τ * versus population time T  for CdSe nanocrystals with broad size distribution (top), 
with a narrow size distribution (middle), and for rhodamine-6G (bottom). (Reprinted from Salvador, M. R. et 
al. Exciton-Bath Coupling and Inhomogeneous Broadening in the Optical Spectroscopy of Semiconductor 
Quantum Dots, J. Chem. Phys. 118, 9380 (2003), with permission of AIP Publishing.)
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Figure 14.24 Two-dimensional spectrum for two coupled transitions with frequencies ω a and ω b. The curves 
at the top and right depict the linear spectrum.
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electronic spectroscopy was reported by Jonas and co-workers in 1998 [24]. In 2D infrared spectroscopy, 
couplings of fundamental transitions derive from anharmonicity, and the technique can be used to deduce 
molecular structure. A prominent example of coupling in 2D electronic spectroscopy is excitonic coupling, 
which derives from the interaction of electronic transition dipoles in molecular assemblies. Evolution of the 
2D spectrum with population time T is used to reveal the nature of the couplings and their timescale. 2D 
spectra as a function of time T, called relaxation experiments, can reveal population dynamics, spectral dif-
fusion, coherence times, and energy flow.

A 2D optical spectrum could be generated by measuring the pump-probe spectrum as a function of pump 
frequency and for various pump-probe delays. This is the so-called dynamic hole-burning experiment, a fre-
quency domain analogue to the time-domain measurement of 2D spectra. For example, dynamic hole-burning 
IR spectra were measured by Hamm et al. [26] on a series of peptides, using pulses resonant with the amide-I 
vibration at about 1650 cm‒1. The coupling of local modes on adjacent amide groups makes the frequency of this 
vibration dependent on the tertiary structure of the peptide. In addition, the strong transition dipole dμ/dQ 
of this mode leads to partial delocalization over a number of peptide units and contributes to the 30–40 cm‒1 
width of the linear IR spectrum. Hamm et al. used a pump pulse sufficiently broad to excite the entire manifold 
of amide-I vibrations. Thus it was not possible to discern which frequency in the pump pulse was responsible 
for modifying a feature in the probe spectrum. If one attempts to circumvent this limitation using a more nar-
row range of pump frequencies, the time-resolution is accordingly diminished. 2D spectroscopy uses Fourier 
transformation of the signal obtained as a function of pulse delay times to obtain frequency resolved informa-
tion. The technical and mathematical details of the approach are explained in detail in [25]. Below, we consider 
some of the general features of 2D spectroscopy to highlight the type of information that can be obtained.

Two-dimensional spectra are obtained from time-resolved 3PSE data that is Fourier transformed with 
respect to coherence time τ and detection time t at a fixed value of population time T. Heterodyne detection 
enables phase information to be obtained; i.e., the real and imaginary parts of the response. The 2D spectrum 
at a given T is

 I T d dte e E iP t Tt
i t i

LO
t( , , ) ( , , )( )ω ω τ τω ω ττ

τ ∝ ⋅  
−∞

∞ ∞
−∫ ∫

0

3�  (14.46)

where ωτ and ωt are the excitation and emission frequencies, respectively, and ÊLO is a unit vector in the 
direction of the field of the local oscillator. Alternatively, the Fourier transform involving ωt is performed 
optically by spectrally resolving the emitted light with a prism or grating. The spectrum above is the sum 
of rephasing and nonrephasing contributions. As described in [27], addition of the rephasing (τ > 0) and 
nonrephasing (τ < 0) contributions leads to absorptive signals, which enable excited state absorption to be 
distinguished from oppositely signed ground state bleach and stimulated emission.

The resulting 2D spectra are gathered as a function of waiting time T and displayed as contour maps such 
as those shown in the cartoon of Figure 14.24. Diagonal peaks, where ω τ = ω t, represent populations, and 
off-diagonal features (cross-peaks), where ω τ ≠ ω t, arise from couplings. In some literature, ω τ is called the 
pump frequency ωpu, and ωt is referred to as the probe frequency ωpr. Alternatively, these are called ω 1 and 
ω 3 to indicate they are respectively conjugate to the time delays t1 and t3. When ω τ and ω t are presented on 
the x and y axes, respectively, vertical slices of the graph represent the pump-probe spectrum at a given pump 
frequency. Diagonal and antidiagonal features represent positive and negative correlations, respectively, of 
the pump and probe frequencies.

Like the 3PSE experiment, 2D spectra permit the separation of inhomogeneous and homogeneous broad-
ening. Static broadening on the timescale of the experiment results in a distribution of diagonal frequen-
cies (Δ), while homogeneous broadening contributes to the width in the antidiagonal direction (Γ), as shown 
in Figure 14.25a. When the population time T is much larger than the dephasing timescale, information on 
homogeneous dephasing is lost and the diagonal peak evolves into a more symmetric shape, as sketched in 
Figure 14.25b. In this limit, the extent of the signal in both the horizontal and vertical directions is deter-
mined by the inhomogeneous width Δ. In the case of an electronic 2D spectrum, horizontal and vertical slices 
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of the diagonal peaks at sufficiently long waiting time T resemble the steady-state excitation and emission 
spectra, respectively, and a Stokes shift (ω t < ω τ) is sometimes seen.

2D electronic spectroscopy has been applied to the study of light-harvesting molecular aggregates of pho-
tosynthetic organisms. The excited electronic state of chlorophyll or bacteriochlorophyll molecules within a 
supramolecular assembly is delocalized to some extent by transition–dipole moment coupling. This coupling 
leads to a manifold of collective excited electronic states, known as excitons, which differ in the phase rela-
tionship of the component monomer wavefunctions. The excited electronic state of an excitonically coupled 
aggregate of n molecules is split into n different excitonic states, with a bandwidth proportional to the coupling 
strength J of adjacent molecules. In principle, these excited states are delocalized over the entire assembly, but 
static and dynamic disorder tend to localize the excitation. Excitonic coupling within light-harvesting aggregates 
of photosynthetic organisms enhances energy transfer, funneling energy to the reaction center where electron 
transfer takes place. In addition to excitonic states, charge-transfer excited states exist in which the electron and 
hole reside on different molecules.

2D spectroscopy is well-suited to uncover the electronic couplings and energy flow within a molecular 
aggregate [28,29]. Cross-peaks observed at early times T reveal the coupling strength J. Indeed, in the absence 
of such coupling the cross-peaks vanish as a result of cancellation of different Feynman pathways. The coupling 
strength depends on the relative orientation of transition dipole moments. Cross-peaks resulting from coher-
ences oscillate at the beat frequency of the two states, while those from energy transfer are nonoscillatory and 
arise at longer waiting T. Recently, the observation of vibrational coherences in photosynthetic complexes has 
attracted a great deal of excitement, and the role of coherent vibrational motion in efficient energy transfer is 
being debated [29].

For the rest of this section, we turn our attention to 2D IR spectroscopy and use an example from the lit-
erature to illustrate the information that can be obtained. Cross-peaks in 2D IR spectra reveal vibrations that 
are coupled by mechanical or electrical anharmonicity. We have seen that mechanical anharmonicity leads, 
for example, to a red-shift of the excited state absorption v = 1 → v = 2 compared to the v = 0 → v = 1 transition. 
In the absence of anharmonicity, cross-peaks connecting these two transitions cancel exactly, as shown in 
one of the homework problems. As we have seen in the previous chapter, nonlinear signals in general depend 
on some kind of anharmonicity.

Khalil et al. [27] used 2D IR spectroscopy to study the strongly coupled symmetric (ωs) and asymmetric 
(ωa) carbonyl stretches of Rh(CO)2C5H7O2, or RDC, dissolved in hexane and chloroform. The linear IR spec-
trum of RDC in either solvent displays fundamental transitions of the asymmetric and symmetric stretch at 
2015 and 2084 cm‒1, respectively. (Strong coupling of the two CO groups attached to Rh leads to a significantly 
larger frequency for the symmetric stretch, in contrast to the common observation of a larger frequency for 
the asymmetric stretch.) Interestingly, the spectral widths (FWHM) are much smaller in hexane (< 3 cm‒1 for 
both ωs and ωa) than in chloroform (about 9 and 15 cm‒1 for ωs and ωa, respectively). This suggests stronger 
coupling of the molecule to the solvent in chloroform. Using pulses with a center frequency of 2050 cm‒1 and 
a FWHM of 160 cm‒1, the 2D experiment sees the effects of transitions connecting the ground state (va, vs) = 
(0,0) to the excited states (1,0) and (0,1), as well as those connecting the single quantum excited states (1,0) and 
(0,1) to the double quantum excited states (1,1), (2,0), and (0,2).
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Figure 14.25 Diagonal peak in a two-dimensional spectrum at (a) short and (b) long waiting time, T.
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Figure 14.26 illustrates the 2D IR spectrum of RDC in hexane at T = 0. The diagonal peaks 1 and 1′ rep-
resent the fundamental transitions of the symmetric and asymmetric stretch, respectively, while the cross-
peaks 2 and 2′ derive from coupling of these fundamentals. Alternatively, one can say that the cross-peaks 
result from the transfer of coherence from one fundamental transition to the other. Positive features, for 
which the contours are drawn with full lines, derive from coherences of the ground and single quantum 
vibrational states, while negative features (dashed contours) come from coherences connecting one- and two-
quantum states. As indicated in Figure 14.26, the peaks 1, 1′, 2 and 2′ are positive in sign, while those labeled 
3, 3′, 4, 4′, 5, and 5′ are negative. The separation of each member of the latter set of peaks from a diagonal or 
cross-peak reveals diagonal and off-diagonal anharmonicities as defined in Equation 10.65. (Here, we follow 
the notation of [27] and use the symbol Δij instead of xij for the anharmonicity. Recall that the anharmonic-
ity for polyatomic molecules is defined to have units of cm‒1.) Peak 3 arises from the transition between the 
overtone of the symmetric stretch, (va, vs) = (0,2) and its fundamental (0,1). It is red-shifted along the ωt axis 
by the (diagonal) anharmonicity Δs. Similarly, peak 3′ reveals the diagonal anharmonicity of the asymmetric 
stretch, Δa. Peaks 4 and 4′ result from transitions between the (1,1) state and the symmetric (0,1) and asym-
metric (1,0) fundamentals, respectively. Both features are shifted from the cross-peak by the off-diagonal 
anharmonicity Δas. The weak features labeled 5 and 5′ derive from the nominally forbidden transitions 
(0,1) → (2,0) and (1,0) → (0,2), respectively.

The symmetric diamond shapes of the peaks in Figure 14.26 reveal that the vibrational transitions of RDC 
in hexane are homogeneously broadened; i.e., the linear IR spectrum is in the motional narrowing limit. In 
contrast, the 2D IR spectrum of RDC in chloroform displays peaks which are elongated and tilted in the diago-
nal direction at T = 0. This is consistent with inhomogeneous broadening, which evidently leads to the larger 
linewidth in the linear spectrum of RDC in chloroform. At longer waiting times (2D spectra were measured 
with T = 2.9 and 6.2 ps), the peaks are not as tilted and elongated. The authors of [27] simulated this effect 
using a Kubo lineshape model: δω δω τ( ) ( ) exp( / )0 2t t c= −∆ . They found the product Δτc to be 2.5, consistent 
with the slow modulation limit. The frequency fluctuations become uncorrelated on a picosecond timescale. 
Simulated 2D spectra were obtained using a model that included the six states (0,0), (1,0), (0,1), (1,1), (2,0) and 
(0,2). This led to a response function which was the sum of 66 resonant Feynman diagrams.

2000

2000

2050

∆as

∆as

∆a

∆s

2100

4'

1'

3'

5'

2' 1

3

5

2

4

2050
~ντ (cm–1)

~ ν t
 (

cm
–1

)

~νa
~νs

~νs

~νa

2100

Figure 14.26 2D IR spectrum of Rh(CO)2C5H7O2 in hexane at T = 0. (Reprinted with permission from Khalil, M. 
et al. Coherent 2D IR spectroscopy: Molecular Structure and Dynamics in Solution, J. Phys. Chem. A 107, 5258 
(2003). Copyright 2003 American Chemical Society.)
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14.6 SUMMARY

In this chapter, we have explored time-resolved measurements that derive from both the linear and nonlinear 
response of the material. Compared to steady-state, linear experiments, time-domain spectroscopy provides 
additional information content and direct observations of molecular dynamics. Enhanced structural informa-
tion, such as that revealed by vibrational couplings and anharmonicity, is also provided in pulsed experiments. 
The examples of nonlinear and time-resolved techniques presented in this chapter and the previous one are 
a mere sampling of this rapidly evolving branch of spectroscopy. We have emphasized those techniques that 
dominate when the incident fields are resonant with dipole-allowed transitions. There are in addition nonreso-
nant, nonlinear responses that influence the real part of the refractive index. One such effect is the optical Kerr 
effect (OKE), which derives from the nonlinear part of refractive index and has been used to study dynam-
ics in liquids. We have also not discussed important applications of nonlinear spectroscopy to imaging. For 
example, CARS is exploited in microscopy to zero in on particular functional groups with vibrational modes 
resonant with the frequency difference of two input beams. The formalism that we have used to understand 
second- and third-order nonlinear spectroscopy is readily extended to higher orders (particularly fifth and 
higher odd orders). Fifth-order multidimensional coherence spectroscopies have been developed, for example 
three-dimensional infrared spectroscopy [30]. The Raman echo experiment is a seventh-order technique [31]. 
Though cross-sections tend to smaller values as the order increases, higher-order nonlinear techniques offer 
increasing information content. The technique of high harmonic generation is pushing the limits of spatial and 
temporal resolution to subfemtosecond and subÅngstrom regimes. Applications of spectroscopy also continue 
to grow, in fields such as materials science and biology. It is the author’s hope that the background provided by 
this book will serve to encourage future work in this vibrant field.

PROBLEMS
 1. Derive an expression relating the anisotropy r to the depolarization ratio ρ used in Raman spectroscopy. 

What is the value of ρ for completely depolarized scattered light? Is such a situation possible in Raman 
scattering? Is it possible to achieve r = 0 in a fluorescence experiment? Is it possible to achieve r = 1 in a 
fluorescence experiment? Comment on the difference in the anisotropy of scattered versus emitted light.

 2. In [4], the long-time limit of the anisotropy r∞ was found to be approximately 0.12. Find the angle 
between the absorption and emission transition dipole moments.

 3. Would a non-Condon contribution to the transition dipole moment, (dμge/dQ)0Q, influence the mea-
surement of fluorescence lifetime and time-resolved anisotropy? Explain.

 4. Using standard bond distances and angles for acetonitrile, CH3CN, estimate the moment of inertia 
for rotation of the dipole moment. Use this value to estimate the time constant for inertial (Gaussian) 
relaxation at room temperature. (See Chapter 5.) Compare this value to the fast response of CH3CN from 
TDFSS as shown in Table 14.1.

 5. Convert Equation 14.25 to units of cm‒1 fs. Find the frequency distribution ∆ �ν  for 1 fs, 1 ps, and 1 ns 
Gaussian pulses.

 6. Construct the Feynman diagrams for stimulated emission and ground state bleach in pump-probe 
spectroscopy, analogous to those of Figure 14.7, but of the “nonrephasing” variety.

 7. Construct the Feynman diagrams that correspond to the response functions R3 and R4 for a four-level 
system leading to quantum beats. Write down the mathematical expressions for these contributions.

 8. Show that for delta function pulses, i.e. 
�
E t E t( ) ( )− = −τ δ τ0  the third-order polarization is proportional 

to the response function.
 9. Verify Equations 14.33 and 14.34 by computing the intensity I which is proportional to 

� �
E E1 2

2
+ .

 10. Consider the transient grating experiment described in [21] and depicted in Figure 14.20, where 355 
nm pulses were used at an angle of 0.3° to create the grating. Use phase-matching considerations to 
 determine the scattering angles for probe light at 550 and 750 nm, incident normal to the grating.
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 11. Hamm et al. [26] used dynamic hole-burning spectroscopy to show that the homogeneous bandwidth 
of the amide I vibration is 10 cm‒1 and that the population relaxation time is T1 = 1.7 ps. Find the pure 
dephasing time T2

*.
 12. Write the contributions to the response function for the three diagrams Figures 14.18a–c, using the 

vibrational levels v = 0, 1 and 2. Show that the sum of the three is zero for a harmonic oscillator. Hint: 
μ12 = 2 01µ   for a harmonic oscillator.

 13. In the presence of true static inhomogeneity with width Σ, the expression for the peak shift in Equation 
14.45 can be modified by replacing Δ2 by Δ2 + Σ2. Show that this leads to a nonzero value of the peak 
shift τ * as T → ∞.

 14. Derive the form of the 2PE signal, Equation 14.43, in the slow (Δ >> Γeg) and fast (Δ << Γeg) modulation 
limits.
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Appendix A: Math review

A.1 VECTORS AND TENSORS IN THREE DIMENSIONS

We are interested here in functions in three-dimensional space. A scalar function F(x, y, z) may depend on three 
spatial coordinates, but has only a single value at a given point x, y, z. A vector function 

�
F x y z( , , ), on the other 

hand, has both a value and a direction at any given point in space, and thus we require three numbers (compo-
nents) to describe the function. We will discriminate between these two types of functions merely by placing an 
arrow over the vector function. Each of the three components of the vector function depends on the position; thus

 
�
F x y z iF x y z jF x y z kF x y zx y z, , , , , , , ,( ) = ( )+ ( )+ ( )� � �  (A.1)

where î , ĵ , and k̂  are unit vectors in the x, y and z directions, respectively. A vector may also be considered to 
be a tensor of rank one.

The dot product of two vectors, say 
�
F  and 

�
G, where 

�
G iG x y z jG x y z kG x y zx y z= ( ) + ( ) + ( )ˆ , , ˆ , , ˆ , , , is given by

 
� � � �
F G F G F G F G F Gx x y y z z· | || | cos= = + +θ  (A.2)

where θ is the angle between the two vectors. The result is a scalar. The cross-product, on the other hand, is 
a vector quantity:

 
� �
F G i F G F G j F G F G k F G F Gy z z y z x x z x y y x× = −( ) + −( ) + −( )ˆ ˆ ˆ

 (A.3)

The magnitude of the cross-product of 
�
F  and 

�
G is | || | sin

� �
F G θ , and the direction is perpendicular to the plane 

of 
�
F  and 

�
G as given by the right-hand rule. If you imagine using the fingers of your right hand to push 

�
F  into 

�
G, 

through the angle between them which is less than 180°, your thumb will point in the direction of 
� �
F G× . 

Another way to express the cross-product uses the following determinant:

 
� �
F G

i j k

F F F

G G G

x y z

x y z

× =

ˆ ˆ ˆ

 (A.4)

Determinants are discussed in Section A.2.
The “del” or “grad” operator, specified by the symbol ∇, can operate on a scalar function and return a 

vector quantity. It is defined by

 ∇ =
∂
∂

+
∂
∂

+
∂
∂

ˆ ˆ ˆi
x

j
y

k
z

 (A.5)

For example, operating on the scalar function F, we get

 ∇ ( ) =
∂
∂

+
∂
∂

+
∂
∂

≡ ( )F x y z i
F

x
j

F

y
k

F

z
G x y z, , , ,� � � �

 (A.6)
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The resulting vector, arbitrarily defined as 
�
G in the above expression, points in the direction of the greatest 

rate of change of F, and has a magnitude equal to the slope of the function.
When the ∇ operator is applied to a vector function, the result is a second-rank tensor, ∇ =

�
F G, having com-

ponents G F xxx x= ∂ ∂ , G F xxy y= ∂ ∂ , etc., as follows:
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∂
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 (A.7)

G is a second-rank Cartesian tensor having 3 × 3 = 9 components. A good example of such a tensor is the 
electric field gradient ∇

�
E  discussed in Chapter 3. The trend may be continued: ∇∇

�
F  is a third-rank tensor, 

with 27 components of the type Gxxx, Gxxy, etc. Operations involving both Cartesian and spherical tensors are 
considered in Section A.3.

The divergence of a vector function, div
� �
F F≡ ∇· , is given by

 ∇ ( ) =
∂
∂

+
∂
∂

+
∂
∂

· , ,
�
F x y x

F

x

F

y

F

z
x y z  (A.8)

As usual for a dot product, the result is a scalar. The curl of a function, curl
� �
F F≡ ∇× , can be written using 

Equations A.2 or A.3 with ∇ given by A.5. For example,

 ∇× =
∂
∂

∂
∂

∂
∂

≡
� �
F

i j k

x y z

F F F

H

x y z

ˆ ˆ ˆ

 (A.9)

where the components of the vector are defined as 
�

H iH jH kHx y z= + +ˆ ˆ ˆ  and
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 (A.10)

Another important operator is the Laplacian ∇2 = ∇ . ∇. By operating on the scalar function F twice with the 
del operator, we get

 ∇ =
∂
∂

+
∂
∂

+
∂
∂

2
2

2

2

2

2

2
F

F

x

F

y

F

z
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A.2 MATRICES

A matrix is just an array of numbers. Let us say that the matrix A has n rows and m columns. Then A is 
referred to as an n × m matrix, and the element aij is the number in the i-th row and j-th column of the matrix.

 A =

…

















a a a

a a a

a a a

m

m

n n nm

11 12 1

21 22 2

1 2

�
� � � �

�

 (A.12)

Two matrices can be added (or subtracted) only if they have the same dimensions, that is, the same number of 
rows and the same number of columns. The result of adding two such matrices, A + B = C, is obtained merely 
by adding corresponding elements: aij + bij = cij.

A square matrix has n = m. A diagonal matrix is a square matrix with nonzero elements only along the 
diagonal: aij = 0 if i ≠ j. The unit matrix I is a diagonal matrix with ones along the diagonal; i.e., the elements 
of I are δij. The delta function δij is equal to one when i = j and zero when i ≠ j. A column vector is a matrix of 
dimension n × 1, while a row vector is one of dimension 1 × n.

In order to multiply two matrices: AB = C, the number of columns in the matrix on the left must be the 
same as the number of rows in the matrix on the right. If A is a k × l matrix and B is l × m, then C has dimen-
sion k × m. Each element of C is obtained as

 c a bij ir

r

l

rj=
=

∑
1

 (A.13)

The product of a row matrix and column matrix, where the row matrix is on the left, results in a scalar.
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�
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On the other hand, if an n × 1 matrix multiplies a 1 × n matrix from the left, the result is an n × n matrix:
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 (A.15)

The transpose of a matrix, CT, is obtained by interchanging rows and columns. That is, if the matrix B = CT, 
then bij = cji. Note that the transpose of a column vector is a row vector and vice versa. The inverse of a square 
matrix C−1 is defined such that CC−1 = C−1C = I, where I is the unit matrix.

The determinant of a square matrix (let us say it is n × n) is symbolized by enclosing the matrix in vertical 
lines: detA = |A|. It is a number that results from summing n! products of the n elements of the matrix. Each 
product contains elements taken one from each row, or one from each column. The sign of each term in this 
sum depends on the permutation of these elements. The determinant of a 2 × 2 matrix is the following:

 
a a

a a
a a a a

11 12

21 22
11 22 21 12= −  (A.16)
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For larger dimensions, the determinant can be reduced to a sum involving lower-order determinants. This 
procedure employs the minor of a matrix element, which is the determinant of the matrix that is obtained 
when the row and column containing that element are deleted. Let us define Aij to be the minor of element aij. 
The determinant of A is obtained by summing across any row or column of A as follows:

 

A

A

= −

= −

=

+

=

+
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for any

for any

 (A.17)

For example, the determinant of a 3 × 3 matrix is expanded as follows:
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= − − − + −( ) ( ) ( ) (A.18)

The form of Equation A.18 results from summing across the first row, but in the end it does not matter which 
row or column is chosen. Determinants have the property that if any two rows or two columns of the matrix 
are interchanged, the determinant changes sign. Also, if two rows or two columns are identical, the determi-
nant vanishes. If one row or one column contains only zeros, then the determinant is zero.

Determinants are important in the solution of linear simultaneous equations. Suppose that we have n 
linear equations for n unknowns. In matrix form, we write these n equations as
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 (A.19)

The coefficients cij are numbers and the xi’s are unknowns. In matrix notation, Equation A.19 is written more 
concisely: CX = B. To proceed to find the xi’s, we define the matrix Ci as that which is obtained by replacing 
the i-th column of C by the column vector B. For example

 C2

11 1 1

21 2 2

1

=



















c b c

c b c

c b c

n

n

n n nn

�
�

� � � �
�

 (A.20)

The unknown xi is found from the ratio of two determinants.

 xi
i=

C

C
 (A.21)

The above approach fails when all the bi’s are zero, in which case |Ci| = 0 and the only solution obtained is the 
trivial one: x1 = x2 = … = xn = 0. A nontrivial solution to this set of equations,
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exists only if the determinant of the coefficients, |C|, is zero. This is the case in matrix eigenvalue problems. 
Suppose that we have CX = λX, where λ is the eigenvalue (constant) and X is an eigenvector. This matrix 
expression can be rearranged to get
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 (A.23)

A nontrivial solution exists only if

 

c c c
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 (A.24)

Expanding the determinant in Equation A.24 results in a polynomial of order n in λ. Thus one obtains n 
values of λ by setting this determinant equal to zero. For each root λ, Equation A.23 can be solved for the 
corresponding eigenvector X. The xi’s of each eigenvector are determined only to within a multiplicative con-
stant, so one may impose normalization:

 1 2=∑xi

i

 (A.25)

to fix the values of the xi’s.

A.3 OPERATIONS WITH CARTESIAN AND SPHERICAL TENSORS

A tensor property depends on the orientation of the system. In a Cartesian coordinate system, an ordinary 
vector is such a tensor. A vector such as 

�
F iF jF kFx y z= + +ˆ ˆ ˆ  is a first-rank tensor; each of its three components 

is indexed by one of the three directions in space. A second-rank tensor, on the other hand, requires two 
indices for each component, and since each of these runs over the directions x, y, z there are 3 × 3 = 9 com-
ponents of a second-rank tensor. We could think of a second-rank tensor property, such as polarizability, 
as a square matrix, and the math would be the same as employed in matrix problems. The tensor notation 
is more general and can be applied when vectors and matrices do not provide enough dimensions for the 
physical property.

For example, consider expanding the dipole moment of a molecule in a power series in the electric field.
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(A.26)

where μ(0) is the permanent dipole moment, a first-rank tensor. The second-rank tensor α, the polarizability, 
leads to the part of the induced dipole moment 

�
µ( )1   which is linear in the field. The third-rank tensor β, the 

hyperpolarizability, results in an induced moment 
�
µ( )2   which depends quadratically on the field, and so on. The 

quantity 
� �
EE  is itself a second-rank tensor having components ExEx, ExEy , etc. Similarly, γ is a fourth-rank tensor, 

and 
� � �
EEE is of third rank. The single and double dots represent tensor contractions, to be defined below. The 

relation 
� �
µ α( )1 = ⋅E  can be written in matrix form as follows:
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We can express any particular component of 
�
µ( )1   as follows:

 
µ αi ij

j

jE( )1 =∑
 

(A.28)

where i and j range over x, y, and z. Equations such as A.28 are readily generalized when higher-rank tensors 
are involved. The part of the induced moment that derives from the hyperpolarizability is written

 
µ β βi ijk

j k

j kEE E E( )

,

:2 = =∑
� �

 
(A.29)

Similarly, the third-order component of the dipole moment is

 
µ γ γi ijkl

j k l

j k lEEE E E E( )

, ,

:3 = =∑
� � �

 
(A.30)

Note that the summation always runs over the repeated indices.
It is often preferable to work with spherical rather than Cartesian tensors. The spherical forms are con-

venient when one is interested in how a tensor transforms under a rotation, to be discussed in Section A.5. 
A spherical tensor of rank l is denoted by Tm

l , where the index m takes on the 2l + 1 values: − l, −l + 1,…, l − 1, l. 
The spherical tensor components are just combinations of the Cartesian components, as will be illustrated 
below for the case of a first-rank tensor (a vector). Let us call the elements of the Cartesian tensor Tx, Ty, 
and Tz. The spherical tensor components are
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A second-rank Cartesian tensor such as α has irreducible spherical tensor components having l = 0, 1, 
and 2. Each of these has 2l + 1 components, so the 1 + 3 + 5 = 9 components of α are accounted for. Each 
spherical tensor component αm

l  is a linear combination of the Cartesian components. (See Table 8.2.) An 
arbitrary second-rank Cartesian tensor T is decomposed into the following irreducible spherical tensor 
components [1]:

 T T T Txx yy zz0
0 1

3
=

−
+ +( ) (A.32)

 T
i

T Txy yx0
1

2
= −( ) (A.33)

 T T T i T Tzx xz zy yz± = − ± −1
1 1

2
[( ) ( )] (A.34)
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 T T T Tzz xx yy0
2 1

6
2= − −[ ] (A.35)

 T T T i T Txz zx yz zy± = + ± +1
2 1

2
∓ [( ) ( )] (A.36)

 T T T i T Txx yy xy yx± = − ± +2
2 1

2
[( ) ( )] (A.37)

A.4 SPHERICAL HARMONICS

The spherical harmonics Ylm(θϕ) appear in problems having spherically symmetric potential functions, such 
as the hydrogen atom or rigid rotor. The orientation of a linear object in three dimensions can be specified 
by the polar and azimuthal angles, θ and ϕ, described in Figure 1.3. The spherical harmonics Ylm(θϕ) form 
a complete set in this space. Thus an arbitrary function f(θ,ϕ) in this coordinate system can be expanded in 
terms of the spherical harmonics. The Ylm(θϕ) are products of functions of θ and ϕ, as follows:

 Y
l l m

l m
Plm

m
lm

im( ) ( )
( )!

( )!
(cos )

/

θϕ
π

θ ϕ= −
+( ) −

+









1

2 1

4

1 2

e  (A.38)

Equation A.38 applies for m ≥ 0. For negative values of m, the following relationship is useful:

 Y Ylm
m

lm( ) ( ) ( )θϕ θϕ= −1 ∗
 

The notation m m≡ −  is often used. The number l can be any nonnegative integer, and m ranges from −l to l 
in steps of one. Plm(cos θ) is an associated Legendre function, which is defined in terms of the Legendre poly-
nomial Pl(cos θ) as follows:

 P x x
d

dx
P xlm

m
m

l( ) ( ) ( )/= − 





1 2 2  (A.39)

The first few Legendre polynomials are tabulated in Table A.1. The recursion relation

 ( ) ( )l P l xP lPl l l+ = + −+ −1 2 11 1 (A.40)

may be used to generate higher order Pl’s. The recursion relation for the associated Legendre functions is

 l m P x l xP x l m P xl m lm l m− +( ) = +( ) − ++ −1 2 11 1, ,( ) ( ) ( ) ( ) (A.41)

Table A.1 Some Legendre polynomials

P0(x) = 1

P1(x) = x

P x x2
2( )

1
2

(3 1)= −

P x x x3
3( )

1
2

(5 3 )= −
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Equation A.41 is useful in the derivation of selection rules. The spherical harmonics and the Legendre polyno-
mials obey the following orthonormality relations:
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 (A.42)

The spherical harmonics (Table A.2) are eigenfunctions of the angular momentum operators L̂2 and L̂z . Using 
Dirac notation, Ylm = |lm〉, the eigenvalue relations are

 
ˆ

ˆ

L lm l l lm

L lm m lmz

2 21= +( )

=

�

�
 (A.43)

A.5 WIGNER ROTATION FUNCTIONS AND SPHERICAL TENSORS

When we need to define the orientation of a three-dimensional object, three angles are needed. The Euler 
angles defined in Figure 8.2 are convenient, and the Wigner rotation functions D Dmn

l
mn
l( ) ( )ϕθχ ≡ Ω  form a 

complete set in this space. The Wigner functions are useful when we need to rotate a space-dependent quan-
tity or operator from one reference frame to another. Often, we are interested in the orientation of a molecule 
relative to the laboratory. We imagine a coordinate system (xyz) embedded in the molecule, the so-called 
body-fixed frame, which rotates with the molecule. The laboratory coordinate system (XYZ) is referred to as 
the space-fixed frame. (Throughout this book, lower case letters are employed for the body-fixed frame and 
upper case letters for the space-fixed frame.) If we consider a specific direction z in the body-fixed frame, 
then the angles ϕ and θ orient this axis in the lab, and these angles are equivalent to those used in the linear 
molecule case. The additional angle χ is the rotation of the object about its own z axis. If the molecule has 
enough symmetry, it is convenient to take the z direction as one of the symmetry axes, for example the n-fold 
rotation axis of a molecule belonging to a Cnv point group. The Euler angles pictured in Figure 8.2 describe 

Table A.2 Some spherical harmonics
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the three-step process which rotates the molecule frame from XYZ to xyz. The first step (XYZ → X′Y′Z′) is a 
rotation by the angle ϕ about the space-fixed Z axis. The second step (X′Y′Z′→ X″Y″Z″) is rotation by θ about 
the Y′ axis, and finally rotation about the Z′′ axis by χ results in the final orientation X′′′Y′′′Z′′′ = xyz.

There is an operator which accomplishes this three-step process that we have envisioned. The rotation 
operator ˆ ˆ ( )D DΩ( ) = ϕθχ  may be applied to a function in the original coordinate system XYZ in order to 
convert it to the new reference frame X′′′Y′′′Z′′′. This operator must be equivalent to the product of three suc-
cessive rotation operators.

 ˆ ( ) ˆ ˆ ˆD D D DZ Y Zϕθχ χ θ ϕ= ( ) ( ) ( )′′ ′  (A.44)

It can be shown (see for example, [2] or [3]) that the operation of Equation A.44 can be cast in terms of rota-
tions about axes in the original coordinate system, and that each of the three required rotation operators is an 
exponential function of an angular momentum operator.
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The Wigner functions Dmn
l ( )ϕθχ  are defined as matrix elements of the above operator.

 D lm Dmn
l ( ) ( )ϕ θ χ ϕθχ, , = � ln  (A.46)

The matrix elements in Equation A.46 are taken with respect to the angular momentum operators in the 
exponents.

 lm L mZ nm
ˆ ln = �δ  (A.47)
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and
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 (A.49)

The form of the Wigner functions is then

 D dmn
l im

mn
l in( ) ( )ϕθχ θϕ χ= − −e e  (A.50)

where d Dmn
l

mn
l( ) ( )θ θ= 0 0  is given by
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The sum in Equation A.51 runs over values of k for which the argument of the factorial is nonnegative. Note 
that the values of m and n each range from −l to l in integral steps. Thus for every value of l there are (2l + 1)2 
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Wigner functions. This is consistent with the physical interpretation of l, m, and n as angular momentum quan-
tum numbers. The Dmn

l ’s are in fact eigenfunctions of the operators L̂2, L̂Z , and L̂z :
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 (A.52)

The complex conjugate Dmn
l ( )Ω ∗  satisfies the following equation:

 D Dmn
l m n

mn
l( ) ( ) ( )Ω Ω∗ −= −1  (A.53)

The Wigner functions obey the orthogonality relation
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where d∫ Ω is a shorthand notation for the three-dimensional integral
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and integration over all Euler angle space gives d∫ =Ω 8 2π .
Some other important integral relations are the following:
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and
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The first of these follows from D00
0 1( )Ω =  and Equation A.54. The Clebsch–Gordan coefficients which appear 

in Equation A.57 arise in angular momentum coupling problems. For now, consider them to be numbers 
which can be found in tables. They are discussed further in Section A.6 and also in Chapter 7. They are pro-
portional to the 3j symbols used in Equation A.58.

The product of two Wigner functions adheres to
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(A.58)

In the case where either m or n is zero, the Wigner function reduces to a spherical harmonic.
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When both subscripts are zero, a Legendre polynomial is obtained.

 D Pl
l00( ) (cos )ϕθχ θ=  (A.60)

The addition theorem applies when the orientation Ω is considered to result from the rotation Ω1 followed by 
Ω2, in which case,

 D D Dmn
l

mk
l

k

kn
l( ) ( ) ( )Ω Ω Ω=∑ 2 1  (A.61)

The components of an irreducible spherical tensor transform under a rotation in the same fashion. Letting Tm
l  

denote the components of the tensor in the new reference frame and Tk
l  those in the old reference frame, the 

transformation relation is

 T T Dm
l

k
l

k

km
l=∑ ( )Ω  (A.62)

where Ω is the set of Euler angles that rotates the old coordinate system into the new one. This relationship 
is used in Chapter 8 (Equation 8.62) to relate the lab-frame and molecule-frame components of the polariz-
ability tensor.

A.6 THE CLEBSCH–GORDAN SERIES AND 3j SYMBOLS

The quantum mechanical addition of angular momentum vectors is a ubiquitous problem in spectroscopy. 
Consider the coupling of two generalized angular momentum eigenfunctions |j1m1〉 and |j2m2〉. The index j 
represents any type of angular momentum quantum number: orbital, electron or nuclear spin, rotational 
angular momentum, or any coupled angular momentum such as J = L + S. The magnitude of the angular 
momentum vector is j(j + 1)ħ and the z component is mħ, where m ranges from −j to j in steps of one. If a 
perturbation causes the states |j1m1〉 and |j2m2〉 to mix to give new states having quantum numbers J and M, 
the perturbed states can be expressed as linear combinations of products of these states.
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The permitted values of J range from j1 + j2 to |j1 − j2| in steps of one, and the permitted values of M satisfy 
m1 + m2 = M. The Clebsch–Gordan coefficient C(j1 j2 J;m1m2M) vanishes unless the triangle rule is satisfied, 
and the z component of the resulting angular momentum state is the sum of those for the two added states. 
The 3j symbols are often preferred over the Clebsch–Gordan coefficients because they have useful symmetry 
properties. They are defined by
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The sum of the elements in the second row of the 3j symbol must equal zero or the quantity vanishes. Also, 
any even permutation of the columns leaves the value unchanged.
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An odd permutation of the columns multiples the value by ( )− + +1 1 2 3j j j .
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Also, changing the signs of all the mi results in multiplication by −( ) + +
1 1 2 3j j j .
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A consequence of Equation A.67 is that the 3j symbol vanishes if m1 = m2 = m3 = 0 and the sum of the j values 
is odd:

 
j j j1 2 3

0 0 0









 = + +0, if  is odd1 2 3j j j  (A.68) 

The properties of the 3j symbols are used to derive selection rules for atomic and rotational spectra in 
Chapters 7 and 8, respectively.
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Appendix B: Principles of electrostatics

B.1 UNITS

With a few exceptions, the MKS (meters–kilograms–seconds) system of units is used in formulas of electro-
statics throughout this book. The use of MKS units is apparent in expressions which contain the permittivity 
of free space: ε0 = 8.85419 × 10−12 F m−1. The farad (F) is a unit of capacitance, equivalent to C V−1, or C2 J−1. So 
the fundamental units of ε0 are C2 N−1 m−2. By definition, the value of ε0 is found from

 1

4
10

0

7 2

πε
= − c  (B.1)

where c is the speed of light in m s−1 and the implied units of the number 10−7 are N/A2. The permeability of 
free space is μ0 = 4π × 10−7 N/A2. Therefore Equation B.1 is equivalent to the expression c2 = 1/(ε0μ0). In the 
MKS system of units, Coulomb’s law is written

 F
q q

r
= 1 2

0
24πε

 (B.2)

where the force F is in Newtons, the charges q1 and q2 are in Coulombs, and the distance r is in meters. In 
working problems, it is convenient to use the fact that 1/4πε0 is approximately equal to 9 × 109 N m2 C−2.

In the centimeter–gram–second (cgs) system of units, the permittivity of free space is ε0 = 1/4π, and the 
unit of charge is the statcoulomb (statC) or esu (for electrostatic unit). For example, the charge on an electron 
is e = 1.60218 × 10−19 C in the MKS system and e = 4.80320 × 10−10 esu in the cgs system. In the cgs system, we 
write Coulomb’s law as follows:

 F
q q

r
= 1 2

2
 (B.3)

where the force is in dynes, the charge in esu, and the distance in cm. Note that 1 dyne is equal to 1 esu2 cm−2, 
a convenient conversion factor. Some authors prefer the cgs system in expressions like B.3 because it is cleaner. 
The cgs-system Debye unit for the dipole moment, equivalent to 10−18 esu cm, is also used prevalently. In what 
follows, the expressions are given in the MKS system, but can be converted to cgs by replacing ε0 by 1/4π.

B.2 SOME APPLICATIONS OF GAUSS’ LAW

The basic formulas of electrostatics relate the electric field 
�
E  to the charge density ρ. Two key expressions are

 ∇ =·
�
E

ρ
ε0

 (B.4)

 ∇× =
�
E 0 (B.5)
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These may be compared to two of Maxwell’s equations, presented in Chapter 2. In the absence of a time-
dependent magnetic field, the curl of the electric field, ∇×

�
E , is zero. Equation B.4 is called the differential 

form of Gauss’ law. The integral form is

 ∫ =
�
E ndA

Q
· ˆ

ε0
 (B.6)

where the integral is over a closed surface, and n̂  is a unit vector perpendicular to the surface. Q dr qi= =∫ ∑ρ
�

 
is the total charge enclosed by the surface.

The electric field is the negative gradient of the electrical potential ϕ.

 
�
E = −∇ϕ (B.7)

The potential is related to the work W done to move a unit charge q between two points,

 
W q E ds= − = −∫( ) •ϕ ϕ2 1

1

2 � �
 (B.8)

where the integral in Equation B.8 is a line integral. Equation B.5 follows from Equation B.7, because for any 
scalar function ϕ, ∇ × ∇ϕ = 0. The electric field is the force per unit charge, and the potential is the work per 
unit charge.

Another way to relate the charge distribution to the potential is through the Poisson equation.

 ∇ =
−2

0

ϕ ρ
ε

 (B.9)

which follows from combining Equation B.7 with Equation B.4.
The integral form of Gauss’ law leads directly to some important principles of electrostatics. For example, 

we know that the field due to a uniformly charged sphere behaves as if all the charge were concentrated at the 
center of the sphere. We can show this by drawing a Gaussian surface in the form of a concentric sphere of 
radius r surrounding a charged sphere of radius a. The field is radial, so it is normal to this surface. The charge 
enclosed by the surface is Q a= ( )4 3 3π ρ. Applying Equation B.6, we have

 E r
a Q

( )4

4

32

3

0 0

π
π ρ

ε ε
= =  (B.10)

 E
Q

r
=

4 2
0π ε

 (B.11)

This is the same field that would be obtained at a distance r from a point charge of magnitude Q.

B.2.1 The LorenTz modeL of The aTom

In Chapter 3, a classical approach to the frequency-dependent polarizability is presented, based on the Lorentz 
model of the atom. This model considers the atom to consist of a positive point charge +Q surrounded by a 
uniform sphere of total negative charge −Q. Let us say that the radius of this sphere is a, and ask what is the 
force when the nucleus is displaced by the distance d from the central position, under the action of an external 
electric field 

�
E. (We could just as easily consider the positive charge to be stationary, and the electron cloud to 

be displaced by the distance d.) The force due to the external field, QE, is balanced by the attractive Coulombic 
force. According to Gauss’ law, we can calculate the field due to the negative charge within the smaller sphere of 
radius d as follows:
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 E d
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3
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=  (B.12)

As far as the force on the nucleus is concerned, we only need to consider the charge within the smaller sphere, 
because only the enclosed charge contributes to the field at distance d. Equation B.12 follows from the fact 
that the charge within the sphere of radius d is equal to the total charge Q times the ratio of the volumes d3/a3. 
Solving for the electric field, we get

 E
Qd

a

d
= =

4 30
3

0πε
ρ
ε

 (B.13)

Note that the displaced nucleus experiences a restoring force proportional to the displacement:
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At equilibrium, the force due to the external field (Equation B.13 gives the field due the internal charges) is 
equal to the Coulombic force of Equation B.14:

 QE
Q d

a
=

2

0
34πε

 (B.15)

The polarizability α is the induced dipole Qd divided by the field E. Thus we have

 α πε= 4 0
3a  (B.16)

Equation B.16 confirms the intuitive notion that polarizability scales as the volume of the electron cloud.

B.2.2 eLecTric fieLd wiThin a capaciTor

In the study of dielectrics, the parallel plate capacitor is an important concept. Let us first imagine that we 
have a single infinite sheet of charge with surface charge density σ = Q/A. We surround a portion of this sheet 
with a rectangular box with surface area A in the direction normal to the field. The electric field is directed 
outward from the sheet of charge, and the box is oriented with two faces parallel to the sheet. The electric 
field penetrates these two faces, and there is no component of E through the remaining four faces. Thus, by 
Gauss’ law, we have

 2
0

EA
A

=
σ
ε

 (B.17)

 E =
σ
ε2 0

 (B.18)

Now, if there are two oppositely charged sheets, the fields within the capacitor (between the sheets) add, 
while the fields outside the capacitor cancel. Well within the capacitor (so we can neglect edge effects), 
the field is

 E =
σ
ε0

 (B.19)

This equation is employed in Chapter 3 in the discussion of dielectrics.
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B.3 Some maThemaTicaL deTaiLS

The potential due to a collection of charges is discussed in Chapter 3. It is often of interest to know the poten-
tial ϕ at a distance R which is large compared to the extent of the charge distribution which gives rise to the 
potential. This leads naturally to expansions of the type given in Equation 3.12, involving ∇(1/R), ∇∇(1/R), etc. 
The function 1/R is a scalar, and the result of operating with the grad operator ∇ is a vector, or first-rank 
tensor. Similarly, ∇∇(1/R) is a second-rank tensor. The form of each can be obtained as follows. Consider the 
first-rank tensor, defined by

 T
R

1 1
= ∇






 (B.20)

Using R = (x2 + y2 + z2)1/2 and the grad operator as defined in Appendix A, we obtain
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where R̂ is a unit vector in the direction of 
�
R i x j y kz= + +( )� � � . In general, we have

 ∇
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1
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nR

Rn n

ˆ
 (B.22)

From the Taylor series expansion of Equation 3.12, the potential due to a dipole 
�
µ  is
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in agreement with Equation 3.7.
The potential due to the quadrupole moment Θ depends on T2 = ∇∇(1/R). To find the second-rank tensor 

T2, we first recognize that ∇
�
R is found as follows:
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 (B.24)

where I is a unit tensor:

 I =
















1 0 0

0 1 0

0 0 1

 (B.25)
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Then, using the results from Equations B.22 and B.24, we get
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Writing Equation B.26 as an array, we have
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Note that the trace of this tensor is zero.
The tensor T 2 is often called the dipolar tensor. The interaction energy of two dipoles can be found from

 W T= −
� �
µ µ1

2
2· ·  (B.28)

Equation B.28 can be compared to Equation 3.9.
Returning to the potential due to a quadrupole, it was stated in Chapter 3 that this potential is unchanged 

if a term is added to each diagonal element of Θ. We show here why this is true. Suppose that the quadrupole 
moment is altered as follows:

 Θ Θ′ = + cI (B.29)

where c is a scalar. The potential due to the quadrupole moment is then
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The last line of Equation B.30 follows from

 c
R

c TI : ∇∇





 = ( ) =

1
02Tr  (B.31)

The addition of a constant term to each diagonal element of the quadrupole tensor has no effect on the poten-
tial due to the quadrupole moment. Thus, by convention, the quadrupole tensor is chosen to have zero trace, 
as defined in Equation 3.16.
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Appendix C: Group theory

The classification of molecules into point groups on the basis of symmetry provides a platform on which 
much of the discussion of spectroscopy is based. While group theory in itself can be the subject of purely 
mathematical discourse, the chemical applications are straightforward and concrete. After introducing 
some basic theorems and language, group theory can be employed to deduce selection rules and to derive 
symmetries of molecular orbitals and normal modes. All that is needed is a pencil, some scratch paper, and a 
set of character tables. The starting point is the classification of molecules into point groups. It is hoped that 
the reader has had some previous introduction to basic concepts of molecular symmetry. If not, the book 
by Cotton [1] or the chapter on symmetry in Levine [2] should be consulted. The principles of symmetry 
are reviewed below in order to relate them to group theoretical tools needed for the study of spectroscopy. 
It should be kept in mind that the discussions here apply to molecules in their equilibrium geometries.

C.1 POINT GROUPS AND SYMMETRY OPERATIONS

The symmetry of a molecule is specified by a set of operations that leave the molecule unchanged. Consider 
a water molecule. Though the hydrogens may be labeled, they are of course indistinguishable. If you turned 
your back and someone rotated the water molecule about the axis that bisects the bond angle, you could not 
tell. We say that the rotation operator Ĉ2  is a symmetry operator for the water molecule. Symmetry operators 
commute with the Hamiltonian and thus share a common set of eigenfunctions. In the example at hand, 
the eigenvalue relationship is Ĉ2ψ ψ= ± . In other words, the rotation either preserves the wavefunction or 
changes its sign. Either way, the probability ψ*ψ is unaffected by the symmetry operation.

There are five symmetry operations which a molecule can possibly possess. Each one, except for the identity 
operation, is performed with respect to a particular symmetry element. The operations and elements are as 
follows: 

 1. Identity operation Ê : This operation does nothing! It is required by the theory, and every molecule is of 
course symmetric with respect to this operation.

 2. Rotation operation Ĉn : If a molecule possesses an n-fold rotation axis (the symmetry element), then 
rotation by 2π/n (the operation) about this axis leaves the molecule unchanged. The water molecule has 
one C2 rotation axis.

 3. Reflection operation σ̂ : The reflection operation is performed with respect to a plane. The water molecule 
has two reflection planes: one containing the molecule (the yz plane) and a second one perpendicular to 
the first and containing the C2 axis (the xz plane).

 4. Inversion î : This operation is performed with respect to a point: the center of symmetry. If one considers 
this point to be the origin of a Cartesian coordinate system, the inversion operation consists of replac-
ing every point (x, y, z) by (−x,−y,−z). Since symmetry operations leave the center of mass unmoved, 
the center of symmetry, if it exists, must be at the center of mass of the molecule. Water molecule lacks 
inversion symmetry.

 5. Improper rotation Ŝn: There is not really anything improper about this rotation, so some books refer to 
it as the rotation–reflection operation, which is more descriptive. There are two symmetry elements and 
two steps to this operation. First the molecule is rotated by 2π/n about an axis, followed by a reflection 
through a plane perpendicular to the rotation axis. Water molecule lacks this symmetry operation.
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A molecular orbital or normal mode can be characterized by the set of eigenvalues for each of the group opera-
tions. This defines the symmetry of the MO (or other function) in a precise way. We say that the MO belongs 
to a particular irreducible representation of the group. These “ir. reps.” are listed in the left-hand column of the 
character table. Before we can use them, we have to know which character table to use for the molecule of interest.

To assign a molecule to a molecular point group, one needs to know the set of symmetry operations which 
apply. Consider a tetrahedral molecule such as CH4. A three-fold rotation axis can be aligned with any one of the 
four C–H bonds. For each of these C3 axes, there are two such operations that can be performed: Ĉ3 and Ĉ3

2. The Ĉ3
2 

operation results from applying Ĉ3 twice; that is, it is rotation by 2 × 2π/3. While it is true that the operation Ĉ3
3 also 

leaves the molecule unchanged, this operation is equivalent to the identity operation, which is already included. 
So there are eight Ĉ3 operations in this class, two for each of the four three-fold rotation axes. The idea of a class 
is discussed further below. There are also three mutually perpendicular C2 axes, and associated Ĉ2  operations, for 
CH4. There are six planes of symmetry, called dihedral planes σd. (This notation denotes a reflection plane which 
bisects the angle between two rotation axes. A vertical reflection plane σv, on the other hand, contains the axis of 
highest symmetry, called the principal axis, while a horizontal reflection plane σh is perpendicular to the principal 
axis.) Each σd reflection plane bisects one H–C–H bond and contains the other. Finally, there are six Ŝ4 operations: 
three axes of rotation and an Ŝ4 and Ŝ4

2  operation for each. The rotation is performed with respect to an axis which 
bisects one of the H–C–H bonds. This set of operations relegates the CH4 molecule to the Td point group. The top 
row of the Td character table (see Section C.4) lists the operations that we have just enumerated.

For simple molecules, it is straightforward to count the symmetry operations and assign the point group 
on that basis. See [1] or [2] for a flow chart that can be used to find the point group in the general case.

C.2 INFORMATION CONVEYED BY CHARACTER TABLES

Consider the character table for the C2v point group, shown below in Table C.1. There are four symmetry 
operations: the identity, the twofold rotation, and two mutually perpendicular reflection planes. The letters 
A1, A2, B1 and B2 denote the irreducible representations. In this section we want to understand the meaning 
of the entries in the table, called characters.

The operations of the group R̂1, R̂2 , ˆ ,R3 . . . obey a set of multiplication rules which define a group. In  particular, 
each operation must have an inverse, such that ˆ ˆ ˆR R Ei i

− =1 . The product of two operations of the group must be 
equivalent to another operation of the group. Multiplication is not necessarily commutative: i.e., ˆ ˆR R1 2  may not 
be the same as ˆ ˆR R2 1. In the C2v point group, it turns out that each operation is its own inverse.

The operations of the group can be applied to any function, not just the molecular framework. These 
operations may be represented by matrices which obey the same multiplication rules as the operations of the 
group. A set of functions on which the symmetry operations are considered to act is called a basis for a rep-
resentation of the group. We will write the basis as a column vector. Consider a simple example. Let the point 
x, y, z form a basis for the representation of the C2v point group. This is the point group to which the water 
molecule belongs, and we imagine setting up a coordinate system with its origin at the center of mass (close 
to the oxygen atom). The z axis is coincident with the C2 rotation axis, and the molecule lies in the zy plane. 
The identity operation is represented by the identity matrix:
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 (C.1)

The Ĉ2  operation leaves the z coordinate alone and reverses the sign of x and y:
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Reflection through the xz plane, ˆ( )σ xz , is represented as follows:
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And the reflection through the yz plane, ˆ( )σ yz , is written:
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 (C.4)

You can verify that these four square matrices obey the same multiplication rules as the operators that they 
represent. For example, the square of any operation belonging to the C2v point group gives the identity opera-
tion. The product of the operations ˆ ˆC xz2 ×σ  is equal to σ̂ yz, and so forth.

The choice of a representation is not unique. For the water molecule example, we could just as easily take 
the two O–H bonds, call them r1 and r2, and the bond angle θ, as a basis. The operations are still represented 
by 3 × 3 matrices, but not the same as those given above. For example, the effect of the Ĉ2  rotation is repre-
sented as follows:
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Notice that the trace of the 3 × 3 matrix in Equation C.5, −1, is the same as that of the matrix representa-
tion of the Ĉ2  operation given in Equation C.2. It is quite general that the trace of a matrix is independent of 
representation. This is proven as follows. Consider a set of operations which obey the group multiplication 
rules, say AB = C, CD = A, etc. It is always possible to apply a similarity transform to the matrices (operations) 
as follows:

 ′ = ′ = ′ =− − −A S AS B S BS C S CS1 1 1, ,  (C.6)

where S−1S = SS−1 = I, the identity matrix. These transformed matrices obey the same multiplication rules as 
the original ones:

 A B S AS S BS S ABS S CS C′ ′ = = = = ′− − − −( )( )1 1 1 1
 (C.7)

In addition, since the trace of a product of matrices is invariant to a cyclic permutation,

 Tr Tr Tr TrC S CS CSS C′ = = =− −( ) ( )1 1
 (C.8)

the trace of the matrix is unaffected by a similarity transform.
What if we had used a larger basis for the C2v point group? For example, we could take the set of 

Cartesian coordinates locating the three atoms in H2O. The matrix representations of the operations 
would be of dimension 9 × 9, and the traces would be different from those obtained previously. For 
example, we would get a trace of nine for the identity operation rather than three as obtained above. 
So obviously the trace is only independent of representation if we compare representations of the same 
dimension. This leads us back to the concept of irreducible representations, which is based on the set of 
smallest matrices capable of representing the group operations. In the case of water molecule, the smallest 
matrices that multiply like the operations of the group are mere numbers, or 1 × 1 matrices if you prefer. 
We refer to A1, A2, B1, and B2 as one-dimensional ir. reps. The trace of each matrix is the number itself. 
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The character χi(R) of the ith irreducible representation for operation R̂  is the trace of the matrix which 
represents that operation. We write this in general as

 
χi i nn

n

R R( ) ( )= [ ]∑ Γ
 

(C.9)

where Γi(R) is the matrix representation of the operation R in the ith irreducible representation.
In the C2v point group, there are four irreducible representations, and we cannot find all of them using 

the three-dimensional representation given previously. How do we know there are four ir. reps.? There is a 
 theorem which states that the number of ir. reps. is equal to the number of classes. In the C2v point group, 
each of the four operations is in a class by itself; we conclude there are four ir. reps. Another theorem is that 
the order of the group, h, which is equal to the number of operations of the group, is equal to the sum of the 
squares of the dimensions of the ir. reps. This relation is symbolized by

 
h li

i

=∑ 2

 
(C.10)

where the sum is over the ir. reps. and li is the dimension of the ith representation. In any molecule having 
less than threefold rotation symmetry, all ir. reps. are one-dimensional. (The reason for this will be exposed 
below.) Again, we conclude that there are four ir. reps. in C2v. We can fill in a table (Table C.2) based on what 
we obtained from the matrices of Equations C.1 through C.4 to generate three ir. reps. which we call Γ1, Γ2, 
and Γ3. A fourth one, Γ4, can be figured out as described below.

The entries in the first three rows of Table C.2 are the first, second, and third diagonal elements, respec-
tively, of the square matrices in Equations C.1 through C.4, for the corresponding operation in the heading of 
the table. The irreducible representations of a group, Γ1 through Γ4 in this example, form an orthonormal set. 
This means that the following relation is obeyed:

 
χ χ δi
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j ijR R h( ) ( )[ ] =∑ ∗

 
(C.11)

In other words, take any two rows from Table C.2 and sum the products of the characters. The result is zero, as 
can be checked. So, based on the form of the first three ir. reps., the characters for the fourth one are deduced.

Table C.2 does not display the ir. reps. in the conventional manner, as is apparent from comparison to 
Table C.1. We have presented it to give the reader some appreciation for the origin of character tables. It is not 
necessary to know how to produce character tables, but it is certainly good to know what meaning they convey.

Table C.1 C2v character table

C2v E C2 v(xz) ′v(yz)

A1 1 1 1 1 z x2, y2, z2

A2 1 1 −1 −1 Rz xy
B1 1 −1 1 −1 x, Ry xz
B2 1 −1 −1 1 y, Rx yz

Table C.2 Irreducible representations of C2v

C2v E C2(z) xz yz

Γ1 −1 1 1 −1

Γ2 1 −1 −1 1

Γ3 1 1 1 1

Γ4 1 1 −1 −1
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As an example, consider the character table for the C3v point group, Table C.3, to which NH3 belongs. There 
are three classes of operations in this point group, and thus three ir. reps. In addition to the identity operation, 
there are two C3 rotations that belong to the same class, and three vertical reflection planes σv that belong to the 
same class. Operations in the same class all have the same character. Think of ammonia molecule as an example. 
There are three reflection planes: each contains one N–H bond and bisects the angle between the other two 
bonds. The threefold rotation axis permits rotation by 120° and 240°, hence two rotations in the class. The order 
of the group is six, so three ir. reps. must have dimensions such that l l l1

2
2
2

3
2+ + = 6. Thus there are two one-

dimensional representations and one two-dimensional representation. Ir. reps. represented by the letter A or B 
are always one dimensional, while the E representation is doubly degenerate.

To see how doubly degenerate representations come about, consider the effect of a Ĉn  operation on a 
point (xyz).
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In the case where n = 3, the matrix representation of the rotation operation is
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 (C.13)

This matrix cannot be diagonalized by a similarity transform. It is, however, in block diagonal form. The 
two-dimensional matrix within the 3 × 3 matrix represents the fact that the x and y coordinates transform as 
a pair under a C3 rotation. This means that the rotated values x′ and y′ are linear combinations of the initial 
values x and y. In molecules having only twofold rotation symmetry, the matrix of Equation C.12 reduces to 
being diagonal (sin(π) is zero), so no two-dimensional representation arises. The dimension of an ir. rep. is 
revealed by the character of the identity operation.

The two right-hand columns of the character table denote functions which transform according to the cor-
responding ir. rep. For example, the z coordinate in C3v, which is coincident with the rotation axis, transforms 
according to the totally symmetric representation. The first ir. rep. listed in any character table is always the totally 
symmetric representation, and each character of this representation is equal to one. The z coordinate is unaf-
fected by any of the operations of the group, so it is totally symmetric. The rotation operation Rz, on the other 
hand, transforms according to the A2 representation. To understand why, imagine an arrow that curls around 
the C3 axis, say, in a clockwise direction. This arrow is unaffected by the identity and rotation operations, but 
any one of the σv reflections changes the sense of the rotation. This corresponds to the signs of the characters for 
each operation in the A2 representation. Note that a number of pairs of functions transform according to the E 
representation.

The functions listed in these right-hand columns are extremely useful in deducing selection rules. We can 
also use the character tables to find the symmetries (that is, the ir. reps.) of a given vibrational mode or molec-
ular orbital. Consider the asymmetric stretch of H2O, depicted in Figure 10.6. To confirm that this vibration 
transforms as B2, imagine performing each of the four operations of C2v and keep track of whether the arrows 
representing the vibration stay the same or are reversed. It is not hard to see that the ˆ( )σ xz  and Ĉ2  operations 

Table C.3 C3v character table

C3v E 2C3 3v

A1 1 1 1 z x2 + y2, z2

A2 1 1 −1 Rz

E 2 −1 0 (x, y) (Rx, Ry) (x2 − y2, xy) (xz, yz)
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reverse the direction of the bond displacements, meaning the character is −1. The other two operations leave 
the bond vectors pointing in the same direction, meaning that the character is 1. This combination of signs 
reveals that the mode belongs to the B2 ir. rep. Note that our conclusions depend on how we set up the coor-
dinate system. By convention, the z direction coincides with the principal axis, and in most of the literature 
the water molecule is considered to lie in the yz plane.

C.3 DIRECT PRODUCTS AND REDUCIBLE REPRESENTATIONS

Perhaps the most powerful tool provided by group theory is the ability to decide whether an integral vanishes. 
Consider a one-dimensional function defined from −∞ ≤ x ≤ ∞. An odd function f(x) is one for which f(−x) = −f(x), 
while an even function obeys g(x) = g(−x). Any integral of an odd function over all x (i.e., from −∞ to +∞) must 
vanish, since the negative and positive contributions to the area cancel. And if we take a product of two functions, 
say f(x)g(x), the integral over all x vanishes unless they are both even or both odd, since in either case the product 
(the integrand) is even.

These simple ideas can be extended to integrals involving functions that transform according to the vari-
ous ir. reps. of a group. Using dτ as a generic integration variable, we say that the integral fdτ∫  vanishes unless 
the function f is totally symmetric. If the integrand consists of a product of two functions, f g dA B τ∫ , then we 
need to know whether the product of the functions fA and gB is totally symmetric, based on the knowledge 
that the two functions transform according to the ΓA and ΓB representations, respectively. Let us call ΓA × B the 
representation to which the function fA × gB belongs. The characters of the ΓA × B representation are

 χ χ χA B A BR R R× =( ) ( ) ( ) (C.14)

We say that ΓA×B is the direct product of the representations ΓA and ΓB. If ΓA and ΓB are both one-dimensional 
representations, then so is ΓA×B. In general, the dimension of ΓA×B is equal to the product of the dimensions of 
ΓA and ΓB. It is often the case that ΓA×B is a reducible representation, in which case it can be decomposed into 
contributions from irreducible representations as described below.

Let us take a simple example from the C3v point group, the direct product of the E representation with 
itself. Since this has to be a four-dimensional representation, it is reducible. The characters of ΓE×E = ΓE × ΓE 
can be entered into the character table as follows:

C3v E 2C3 3v

A1 1 1 1

A2 1 1 −1

E 2 −1 0

ΓE×E 4 1 0

ΓE×E is a linear combination of the A1, A2 and E representations, and the sum of the dimensions of the con-
tributing ir. reps. must be four. In general, a reducible representation Γred may be decomposed into ir. reps. Γi:

 Γ Γred =∑ai

i

i (C.15)

where each character of the reducible representation is given by

 χ χred =∑ai

i

i (C.16)

and the coefficients ai are integers. While the coefficients ai can often be found by inspection, more generally 
we can use the formula
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 a
h

R Ri

R

i= ∑1 χ χred( ) ( ) (C.17)

We now use Equation C.17 to decompose ΓE×E:

 aA1

1

6
1 1 4 2 1 1 3 1 0 1= + +[ ] =( )( )( ) ( )( )( ) ( )( )( )  (C.18)

 aA2

1

6
1 1 4 2 1 1 3 1 0 1= + + −[ ] =( )( )( ) ( )( )( ) ( )( )( )  (C.19)

 aE = + − +[ ] =
1

6
1 2 4 2 1 1 3 0 0 1( )( )( ) ( )( )( ) ( )( )( )  (C.20)

The result is ΓE × E = A1 + A2 + E. Note that Equations C.18 through C.20 take into consideration the number 
of operations in each class (the first number in parentheses in each term). Also, clearly the dimensions sum 
to four as they must. One final point is important and universal: the direct product of any representation 
with itself always equals or contains the totally symmetric representation. The word “equals” applies for 
one-dimensional representations, while the direct product of a degenerate representation with itself always 
contains a contribution from the totally symmetric representation.

The idea of the direct product can be extended to any number of terms in the product. In spectroscopy, we 
are often interested in the triple direct product, in order to see if the matrix element of an operator is zero or 
not. Consider two states whose wavefunctions transform according to the Γi and Γf representations, and an 
operator Ô which transforms according to the ΓO representation. We want to know if the integral ψ ψ τi fO dˆ∫  
exists. Group theory enables us to conclude that this integral vanishes unless the triple direct product Γi × ΓO × Γf 
contains (or equals) the totally symmetric representation. Suppose that we first take the direct product of Γi and Γf 
to get Γi × f. In order for the triple direct product to contain the totally symmetric representation, we require 
that Γi × f and ΓO belong to the same representation. It does not matter in what order we take the direct product. 
We could just as easily require that Γi × ΓO = Γf. If the triple direct product does not contain the totally sym-
metric representation, then we are assured that the integral in question is zero. Many examples of this sort of 
analysis occur in the study of spectroscopy.

C.4 CHARACTER TABLES

The following is a partial list of character tables taken from [1]:

Cs E h

A′ 1 1 x, y, Rz x2, y2, z2, xy
A″ 1 −1 z, Rx, Ry yz, xz

Ci E i

Ag 1 1 Rz, Rx, Ry x2, y2, z2, xy, yz, xz
Au 1 −1 x, y, z

C2 E C2

A 1 1 z, Rz x2, y2, z2, xy
B 1 −1 x, y, Rx, Ry yz, xz
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C3 E C3 C 2
3  = exp(2πi/3)

A 1 1 1 z, Rz x2 + y2, z2

E 1

1





ε

ε ∗

ε

ε

∗ 



(x, y)(Rx, Ry) (x2 − y2, xy)(yz, xz)

C4 E C4 C2 C 3
4

A 1 1 1 1 z, Rz x2 + y2, z2

B 1 −1 1 −1 x2 − y2, xy
E 1

1





i
i−

−

−

1

1

− 



i

i
(x, y)(Rx, Ry) (yz, xz)

D2 E C2(z) C2(y) C2(x)

A1 1 1 1 1 x2, y2, z2

B1 1 1 −1 −1 z, Rz xy
B2 1 −1 1 −1 y, Ry xz
B3 1 −1 −1 1 x, Rx yz

D3 E 2C3 3C2

A1 1 1 1 x2 + y2, z2

A2 1 1 −1 z, Rz

E 2 −1 0 (x, y)(Rx, Ry) (x2 − y2, xy)(xz, yz)

D4 E 2C4 C2 2 2′C 2 2′′C

A1 1 1 1 1 1 x2 + y2, z2

A1 1 1 1 −1 −1 z, Rz

B1 1 −1 1 1 −1 x2 − y2

B2 1 −1 1 −1 1 xy
E 2 0 −2 0 0 (x, y)(Rx, Ry) (xz, yz)

D5 E 2C5 2C2
5 5C2

A1 1 1 1 1 x2 + y2, z2

A2 1 1 1 −1 z, Rz

E1 2 2 cos 72° 2 cos 144° 0 (x, y)(Rx, Ry) (xz, yz)

E2 2 2 cos 144° 2 cos 72° 0 (x2 − y2, xy)

D6 E 2C6 2C3 C2 3 2′C 3 2′′C

A1 1 1 1 1 1 1 x2 + y2, z2

A2 1 1 1 1 −1 −1 z, Rz

B1 1 −1 1 −1 1 −1

B2 1 −1 1 −1 −1 1

E1 2 1 −1 −2 0 0 (x, y)(Rx, Ry) (xz, yz)

E2 2 −1 −1 2 0 0 (x2 − y2, xy)
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C2v E C2 v(xz)  ′v(yz)

A1 1 1 1 1 z x2, y2, z2

A2 1 1 −1 −1 Rz xy
B1 1 −1 1 −1 x, Ry xz
B2 1 −1 −1 1 y, Rx yz

C3v E 2C3 3v

A1 1 1 1 z x2 + y2, z2

A2 1 1 −1 Rz

E 2 −1 0 (x, y) (Rx, Ry) (x2 − y2, xy) (xz, yz)

C4v E 2C4 C2 2v 2d

A1 1 1 1 1 1 z x2 + y2, z2

A2 1 1 1 −1 −1 Rz

B1 1 −1 1 1 −1 x2 − y2

B2 1 −1 1 −1 1 xy
E 2 0 −2 0 0 (x, y)(Rx, Ry) (xz, yz)

C5v E 2C5 2C 2
5 5v

A1 1 1 1 1 z x2 + y2, z2

A2 1 1 1 −1 Rz

E1 2 2 cos 72° 2 cos 144° 0 (x, y)(Rx, Ry) (xz, yz)

E2 2 2 cos 144° 2 cos 72° 0 (x2 − y2, xy)

C6v E 2C6 2C3 C2 3v 3d

A1 1 1 1 1 1 1 z x2 + y2, z2

A2 1 1 1 1 −1 −1 Rz

B1 1 −1 1 −1 1 −1

B2 1 −1 1 −1 −1 1

E1 2 1 −1 −2 0 0 (x, y)(Rx, Ry) (xz, yz)

E2 2 −1 −1 2 0 0 (x2 − y2, xy)

C2h E C2 i h

Ag 1 1 1 1 Rz x2, y2, z2, xy
Bg 1 −1 1 −1 Rx, Ry xz, yz
Au 1 1 −1 −1 z
Bu 1 −1 −1 1 x, y

C3h E C3 C2
3 h S3 S5

3  = exp(2πi/3)

A′ 1 1 1 1 1 1 Rz x2 + y2, z2

E′ 1

1





ε

ε ∗

ε

ε

∗ 1

1

ε

ε ∗

ε

ε

∗ 



(x, y) (x2 − y2, xy)

A″ 1 1 1 −1 −1 −1 z
E″ 1

1





ε

ε ∗

ε

ε

∗ −1

−1

−

−

ε

ε ∗

−

−





ε

ε

∗

(Rx, Ry) (xz, yz)
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C4h E C4 C2 C4
3 i S4

3 h S4

Ag 1 1 1 1 1 1 1 1 Rz x2 + y2, z2

Bg 1 −1 1 −1 1 −1 1 −1 x2 − y2, xy
Eg 1

1





i

i−

−

−

1

1

−i

i

1

1

i

i−

−

−

1

1

− 



i

i
(Rx, Ry) (xy, yz)

Au 1 1 1 1 −1 −1 −1 −1 z
Bu 1 −1 1 −1 −1 1 −1 1

Eu 1

1





i

i−

−

−

1

1

−i

i

−

−

1

1

−i

i

1

1

i

i−





(x, y)

D2h E C2(z) C2(y) C2(x) i (xy) (xz) (yz)

Ag 1 1 1 1 1 1 1 1 x2, y2, z2

B1g 1 1 −1 −1 1 1 −1 −1 Rz xy
B2g 1 −1 1 −1 1 −1 1 −1 Ry xz
B3g 1 −1 −1 1 1 −1 −1 1 Rx yz
Au 1 1 1 1 −1 −1 −1 −1

B1u 1 1 −1 −1 −1 −1 1 1 z
B2u 1 −1 1 −1 −1 1 −1 1 y
B3u 1 −1 −1 1 −1 1 1 −1 x

D3h E 2C3 3C2 h 2S3 3v

A1′ 1 1 1 1 1 1 x2 + y2, z2

A2′ 1 1 −1 1 1 −1 Rz

E′ 2 −1 0 2 −1 0 (x, y) (x2 − y2, xy)

A1″ 1 1 1 −1 −1 −1

A2″ 1 1 −1 −1 −1 1 z
E″ 2 −1 0 −2 1 0 (Rx, Ry) (xz, yz)

D4h E 2C4 C2 2 ′C2 2 2′′C i 2S4 h 2v 2d

A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2, z2

A2g 1 1 1 −1 −1 1 1 1 −1 −1 Rz

B1g 1 −1 1 1 −1 1 −1 1 1 −1 x2 − y2

B2g 1 −1 1 −1 1 1 −1 1 −1 1 xy
Eg 2 0 −2 0 0 2 0 −2 0 0 (Rx, Ry) (xz, yz)

A1u 1 1 1 1 1 −1 −1 −1 −1 −1

A2u 1 1 1 −1 −1 −1 −1 −1 1 1 z
B1u 1 −1 1 1 −1 −1 1 −1 −1 1

B2u 1 −1 1 −1 1 −1 1 −1 1 −1

Eu 2 0 −2 0 0 −2 0 2 0 0 (x, y)
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D5h E 2C5 2C2
5 5C2 h 2S5 2S3

5 5v

′A1 1 1 1 1 1 1 1 1 x2 + y2, z2

′A2 1 1 1 −1 1 1 1 −1 Rz

′E1 2 2 cos 72° 2 cos 144° 0 2 2 cos 72° 2 cos 144° 0 (x, y)

′E2 2 2 cos 144° 2 cos 72° 0 2 2 cos 144° 2 cos 72° 0 (x2 − y2, xy)
′′A1 1 1 1 1 −1 −1 −1 −1

′′A2 1 1 1 −1 −1 −1 −1 1 z
′′E1 2 2 cos 72° 2 cos 144° 0 −2 −2 cos 72° −2 cos 144° 0 (Rx, Ry) (xz, yz)
′′E2 2 2 cos 144° 2 cos 72° 0 −2 −2 cos 144° −2 cos 72° 0

D6h E 2C6 2C3 C2 3C2́ 3C2̋ i 2S3 2S6 h 3d 3v

A1g 1 1 1 1 1 1 1 1 1 1 1 1 x2 + y2, z2

A2g 1 1 1 1 −1 −1 1 1 1 1 −1 −1 Rz

B1g 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

B2g 1 −1 1 −1 −1 1 1 −1 1 −1 −1 1

E1g 2 1 −1 −2 0 0 2 1 −1 −2 0 0 (Rx, Ry) (xz, yz)

E2g 2 −1 −1 2 0 0 2 −1 −1 2 0 0 (x2 − y2, xy)

A1u 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1

A2u 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1 z
B1u 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1

B2u 1 −1 1 −1 −1 1 −1 1 −1 1 1 −1

E1u 2 1 −1 −2 0 0 −2 −1 1 2 0 0 (x, y)

E2u 2 −1 −1 2 0 0 −2 1 1 −2 0 0

D2d E 2S4 C2 2C 2́ 2d

A1 1 1 1 1 1 x2 + y2, z2

A2 1 1 1 −1 −1 Rz

B1 1 −1 1 1 −1 x2 − y2

B2 1 −1 1 −1 1 z xy
E 2 0 −2 0 0 (x, y)(Rx, Ry) (xz, yz)

D3d E 2C3 3C2 i 2S6 3d

A1g 1 1 1 1 1 1 x2 + y2, z2

A2g 1 1 −1 1 1 −1 Rz

Eg 2 −1 0 2 −1 0 (Rx, Ry) (x2 − y2, xy)(xz, yz)

A1u 1 1 1 −1 −1 −1

A2u 1 1 −1 −1 −1 1 z
Eu 2 −1 0 −2 1 0 (x, y)

S4 E S4 C2 S3
4

A 1 1 1 1 Rz x2 + y2, z2

B 1 −1 1 −1 z x2 − y2, xy
E 1

1





i

i−

−

−

1

1

− 



i

i
(x, y)(Rx, Ry) (yz, xz)
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Td E 8C3 3C2 6S4 6d

A1 1 1 1 1 1 x2 + y2 + z2

A2 1 1 1 −1 −1

E 2 −1 2 0 0 (2z2 − x2 − y2, x2 − y2)

T1 3 0 −1 1 −1 (Rx, Ry, Rz)

T2 3 0 −1 −1 1 (x, y, z) (xy, xz, yz)

Oh E 8C3 6C2 6C4 3C2 i 6S4 8S6 3h 6d

A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2 + z2

A2g 1 1 −1 −1 1 1 −1 1 1 −1

Eg 2 −1 0 0 2 2 0 −1 2 0 (2z2 − x2 − y2, x2 − y2)

T1g 3 0 −1 1 −1 3 1 0 −1 −1 (Rx, Ry, Rz)

T2g 3 0 1 −1 −1 3 −1 0 −1 1 (xz, yz, xy)

A1u 1 1 1 1 1 −1 −1 −1 −1 −1

A2u 1 1 −1 −1 1 −1 1 −1 −1 1

Eu 2 −1 0 0 2 −2 0 1 −2 0

T1u 3 0 −1 1 −1 −3 −1 0 1 1 (x, y, z)

T2u 3 0 1 −1 −1 −3 1 0 1 −1

C∞v E 2C() v

Σ+ 1 1 1 z x2 + y2, z2

Σ− 1 1 −1 Rz

Π 2 2 cos ϕ 0 (x, y)(Rx, Ry) (xz, yz)

Δ 2 2 cos 2ϕ 0 (x2 − y2, xy)

Φ 2 2 cos 3ϕ 0

D∞h E 2C() v i 2S () C2

Σg
+ 1 1 1 1 1 1 x2 + y2, z2

Σg
− 1 1 −1 1 1 −1 Rz

Πg 2 2 cos ϕ 0 2 −2 cos ϕ 0 (Rx, Ry) (xz, yz)

Δg 2 2 cos 2ϕ 0 2 2 cos 2ϕ 0 (x2 − y2, xy)

Σu
+ 1 1 1 −1 −1 −1 z

Σu
− 1 1 −1 −1 −1 1

Πu 2 2 cos ϕ 0 −2 2 cos ϕ 0 (x, y)

Δu 2 2 cos 2ϕ 0 −2 −2 cos 2ϕ 0
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 2. I. N. Levine, Quantum Chemistry, 5th ed. (Prentice Hall, Upper Saddle River, NJ, 1999).
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Index

A

Absorption, 133–139, 146;  see also Emission; Scattering
atomic spectra, 140, 152–153
Beer’s law, 66, 136, 138
coefficient, 39, 41, 65, 133–136, 245
coefficient and refractive index, 39, 125
cross-section, 310, 318
electronic absorption and emission spectroscopy, 

137–140, 259–265
far-IR, 123–125
infrared, 208–211, 236–240
light attenuation and amplification, 135
molar absorptivity, 66, 112, 123, 138–139, 245, 

310
molecular electronic spectra, 140–141, 259–262
multiphoton, 362–365
oscillator strength, 139
rate of change in power, 137
and relaxed fluorescence, 141, 263, 279
rotational spectra, 186–189
and stimulated emission, 135
Strickler–Berg equation, 141, 378
transient; see also Pump-probe, 388–398
transition rate, 137

After-effect function, 116
Angular momentum, 7–10, 17–18, 422–424

abstract spin eigenfunctions, 16
coupling, 154–158, 169, 181–183; see also 

Clebsch-Gordan series
electron spin, 16
intrinsic, 75, 163
ladder operators for, 17–18, 152
and magnetic properties, 72–77
of nuclei, 163–164
net angular momentum state of many-electron 

atom, 155
operator, 175, 176, 203
of photon, 35, 161
quantum mechanical addition of angular 

momentum vectors, 425
vectors, 9, 16
vibrational, 241

Anharmonicity, 195–196, 203, 206, 213–218, 236, 
240–242, 336–338, 410–411

constant, 214, 216, 240
electrical, 238
potentials, 203, 205–206, 216

Anomalous dispersion, 39
Atomic lasers, 167–171;  see also Atomic 

spectroscopy
energy levels and He/Ne laser transitions, 169
Gaussian mode, 171
Nd+3 states relevant to Nd–YAG laser, 170

Atomic spectroscopy, 149, 171; see also 
Hydrogen atom

absorption wavelengths of hydrogen atom, 149
E1, M1, and E2 allowed transitions, 161–162
emission spectrum of mercury vapor lamp, 162
effect of external fields, 164–167
gas laser, 168
hyperfine structure, 162–164
lasers, 167–171
partial Grotrian diagram, 162
selection rules for atomic absorption and 

emission, 153, 161
Stark effect, 167
Zeeman effect, 164–166

Autocorrelation function, 110
Azimuthal quantum number, 16

B

Bacteriorhodopsin (BR), 394
Beer’s law, 66, 136
Benzene, 270; see also Polyatomic molecules

electronic absorption spectrum of, 250
fundamentals, 244
molecular orbitals and energy levels, 270
polarized and depolarized Raman spectra of 

liquid, 243
BE statistics, see Bose–Einstein statistics
Biot–Savart law, 73; see also Magnetism
Birefringent materials, 35, 332, 342
Blackbody, 133

spectrum, 45
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Blackbody radiation model, 45; see also Light
average energy of blackbody oscillator, 47
blackbody spectrum, 45
Boltzmann’s law, 46
energy density, 46
equipartition theorem, 45
mode density, 46
Planck’s distribution law, 47
ultraviolet catastrophe, 45

Bloch equations, 78–79, 103, 406
BO, see Born–Oppenheimer
Bohr

frequency, 4, 44, 77, 90, 102
magneton, 15, 76, 165

Bohr correspondence principle, 205
Boltzmann law, Boltzmann distribution, 22, 41, 46, 

134, 168, 236
Boltzmann statistics, 25–26
Born Oppenheimer approximation, 57, 203–205, 

222, 249, 260
Born Oppenheimer breakdown, 265–266, 271–272, 

280, 299
Bose–Einstein statistics (BE statistics), 26
Bosons, 26, 183
BR, see Bacteriorhodopsin
Bulk matter

Debye equation, 69
dielectric permittivity, 62–64
electric properties of, 62–66
frequency dependence of permittivity, 

64–66
Kirkwood model, 71–72
local field, 66, 69
macroscopic and microscopic properties, 66
magnetic properties of, 74–77
nonpolar molecules in condensed phase, 67–68
nonpolar molecules in gas phase, 66–67
Onsager model, 70–71
polar molecules in condensed phases, 68–69
spherical cavities embedded in dielectric 

continuum, 70

C

Capacitance, 63
Carbon nanotubes (CNTs), 311
CARS, see Coherent anti-Stokes Raman scattering
Cavity mode, 48
Centimeter–gram–second system of units, 52, 55, 

60, 73, 92, 139, 427
CG coefficients, see Clebsch–Gordan coefficients

cgs system of units, see Centimeter–gram–second 
system of units

Character tables, 439–444; see also Group theory
information conveyed by, 434–438

Charge-transfer (CT), 384
Chromophores, 283–284; see also Polyatomic 

molecules
Circular polarization, 35
Clausius–Mossotti equation, 67
Clebsch–Gordan coefficients (CG coefficients), 157
Clebsch–Gordan series, 157–158, 425–426; see also 

Hydrogen atom
CNTs, see Carbon nanotubes
Coherence, 101, 306, 327–330

artifacts, 392, 395
length, 341–342

Coherent, 368
Coherent anti-Stokes Raman scattering (CARS), 

328, 366
experiment, 366
experimental phase-matching configuration, 

367
spectrum of N2 at 100 ns and 10 µs, 367

Coherent Raman spectroscopy, 365–368
Coherent Stokes Raman spectroscopy (CSRS), 366
Cole–Cole plot, 121
Condon approximation, 190, 260, 272
Coriolis coupling, 241
Correlation function, 110
Coulomb’s law, 52, 427
Cross-correlation function, 110
Crystal field theory, 273
CSRS, see Coherent Stokes Raman spectroscopy
CT, see Charge-transfer
Cumulant averages, 307
cw (continuous wave), 171

D

Damping rate, 61, 97, 101, 293, 313–317, 320, 336, 
346

DCA, see 9,10-dicyanoanthracene
Debye; see also Time-dependent approach

equation, 69
model, 121
plateau, 121
unit for dipole moment, 55

Del-dot operator, 31; see also Maxwell’s equations
Delta function, 90, 112, 150, 281

Kronecker delta, 5
spectrum, 307

1721
Sticky Note
Marked set by 1721
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Density matrix, 23
calculation of susceptibility, 346–351
time-dependence of, 100–105

Density operator, 23, 101, 346
Dephasing, 78, 80, 101, 306, 317, 346–355

pure dephasing, 80, 146, 307
solvent-induced dephasing, 146, 307, 318, 370, 

377, 386
T1 and T2 processes, 80, 101, 306

Depolarization ratio, 142–144, 301
Depolarized light scattering, 126–127
DFG, see Difference frequency generation
Diatomic molecules, 250; see also Electronic 

spectroscopy
absorption spectra, 259–262
Born–Oppenheimer breakdown in, 265–266
character tables, 250
dissociation and predissociation, 263–265
electronic configurations associated with π2, 255
emission spectra, 262
fluorescence, 262
Franck–Condon progression, 263
ground electronic configuration of CO, 254
LaPorte rule, 257
orbitals and electronic configurations for, 251–254
potential energies of I2 electronic states, 256
selection rules, 257–258
term symbols for, 254–257
vibrational structure in electronic spectra of, 259

Dichroic crystals, 35
9,10-dicyanoanthracene (DCA), 402
Dielectric constants, 64
Dielectric permittivity, 62; see also Bulk matter

absorption coefficient, 65
capacitance, 63
dielectric constants, 64
dipole moments, 64
electric field, 63, 65
electronic and orientational polarization, 63
frequency dependence of permittivity, 64–66
refractive index, 65
relative permittivity, 63

Dielectric relaxation, 120, 122–123; see also Time-
dependent approach

Difference frequency generation, 328, 331–332, 338, 
359

4-(dimethylamino) benzonitrile (DMABN), 385
Dioleoylphosphatidylcholine (DOPC), 397
Dipolar tensor, 431
Dipole moment, 52, 64

operator, 237

Dirac notation, 5, 17, 208
Dispersion, 38, 61, 66, 303
Dispersion forces, 53, 60, 245, 285, 382
DOPC, see Dioleoylphosphatidylcholine
Double-sided Feynman diagrams, 352
DRS, see Depolarized light scattering
Drude model, 319

E

EF, see Enhancement factor
Electrical anharmonicity, 213, 238
Electric dipole; see also Electromagnetic radiation

-allowed transitions, 87
radiation, 35–36

Electric moments, 52–57
dipole moment, 55
in field and field gradient, 58
force and torque expressions, 57
multipole moment, 56
octupole moment, 55
quadrupole moment, 55
spherical tensors, 56

Electromagnetic radiation, 29, 30, 51; see also 
Light—quantum mechanical aspects; 
Light propagation

circular polarization, 35
classical Hamiltonian for single particle, 

42
electric dipole radiation, 35–36
electromagnetic field effect on charged particles, 

42–43
electromagnetic spectrum, 30
Gaussian beams, 37–38
linearly polarized, 31
Maxwell’s equations, 30–34
perturbation due to, 86–89
photons, 35
polarization properties of light, 34–35
principle of superposition, 34
quantized radiation field, 43–44

Electromagnetic spectrum, 30
Electron donor-acceptor complexes, 284
Electronic spectroscopy, 249, 287; see also 

Diatomic molecules; Polyatomic 
molecules

absorption spectrum of benzene, 250
of I2 vapor, and in solution with CHCl3, 250
solvent effects in, 284–287
UV-visible spectroscopy, 249

Electron spin, 75
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Electrostatics, 52, 427; see also Gauss’ law
Coulombic force, 53
Coulomb’s law, 52
electric field, 53, 54
mathematical details, 430–431
pair of point charges, 52
units, 427

Emission, 133, 146; see also Absorption; Scattering
absorption and stimulated emission, 135
atomic spectra, 140
attenuation and amplification of light, 135
Einstein A and B coefficients, 133–135
electronic absorption and emission spectroscopy, 

137–140
molecular electronic spectra, 140–141
relaxed fluorescence, 141
spontaneous emission, 135
stimulated emission, 135
Strickler–Berg equation, 141
total decay rate, 139

Energy density, 46
Enhancement factor (EF), 321
Equipartition theorem, 45; see also Blackbody 

radiation model
Ergodic hypothesis, 21
ESA, see Excited state absorption
Euler angles, 176, 423
Excitation spectrum, 279, 312
Excited state absorption (ESA), 389
Excitons, 409–410
Exponential energy gap law, 280

F

Farad, 427
Far-IR (FIR), 126; see also Time-dependent 

approach
absorption, 123–126

FC progression, see Franck–Condon progression
FD statistics, see Fermi–Dirac statistics
Femtosecond stimulated Raman spectroscopy 

(FSRS), 371
pulse sequence for, 372
spectra of β-carotene, 373
WMEL diagrams, 371, 372

Fermi–Dirac statistics (FD statistics), 26
Fermi resonance, 240, 242, 301, 362
Fermions, 26, 183
Fermi’s golden rule, 89, 92–93
Feynman diagrams, 352, 366

contributing to χ(2) and χ(3), 354

double-sided Feynman diagrams, 352
for linear response, 354
rules for, 355
time-dependent response function calculation, 

352–359
for two-photon absorption, 363

FFCF, see Frequency fluctuation correlation function
FIR, see Far-IR
Fissors, see Femtosecond stimulated Raman 

spectroscopy
Flash photolysis, 377
Fluctuation-dissipation theorem, 51, 131
Fluorescence, 41, 139, 262–263, 279

anisotropy of, 379–381
lifetimes, 97, 139, 283
relaxed fluorescence, 141, 262
resonance fluorescence, 262, 368–371
time-dependent theory, 318
time resolved, 378–385

Force constant, 10, 60, 195, 199, 205–207
cubic and quartic, 214
determination, 222
matrix, 228

Fourier transform of temporal pulse envelope, 385
Four-wave mixing (FWM), 335–336
Franck–Condon progression, 141, 145, 259–263, 

268–270
Franck-Condon factors, 141, 261
Fraunhofer lines, 2
Frequency doubling, 41; see also Second harmonic 

generation
Frequency fluctuation correlation function, 146, 

377, 383, 407
Fresnel, A. J., 2
Fresnel equations, 40; see also Light propagation
FSRS, see Femtosecond stimulated Raman 

spectroscopy
Full width at half maximum (FWHM), 308, 385
FWHM, see Full width at half maximum
FWM, see Four-wave mixing

G

Gas laser, 168
Gaussian beams, 37–38; see also Electromagnetic 

radiation
Gauss’ law, 427

calculation of polarizability, 429
electric field within capacitor, 429
form of, 427
Lorentz model of atom, 428–429
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Gross selection rule, 118
Grotrian diagram, 162
Ground state bleach (GSB), 389
Group frequency, 221, 228
Group theory, 433

character tables, 439–444
direct products and reducible representations, 

438–439
information conveyed by character tables, 

434–438
irreducible representations (ir. reps.), 435–436, 

230–237, 266–268
point groups and symmetry operations, 

433–434
GSB, see Ground state bleach

H

Halobacterium salinarum, 394
Harmonic oscillator (HO) model, 10–12, 203, 

206–207, 222
eigenfunctions and energies, 12
eigenvalues of Hamiltonian, 12
harmonic and anharmonic potential 

curves, 206
harmonic approximation for diatomic 

molecule, 12
harmonic oscillator eigenfunctions, 208
Hermite polynomials, 208
kinetic energy operator, 206
mechanics, 10–11
parabola, 10–11
potential energy, 10
quantum mechanical, 12
raising and lowering operators, 13–14

HBDI (4ʹ-Hydroxybenzylidene-3-
dimethylimidazolinone), 365

Heisenberg equation of motion, 84
Helium–neon laser, 168
Hermite polynomials, 208
Hermitian operator, 5
Herzberg–Teller formulation (HT 

formulation), 294
Highest occupied molecular orbital (HOMO), 253, 

271, 392
HO, see Harmonic oscillator
Hole-burning spectroscopy, 387, 409
HOMO, see Highest occupied molecular orbital
Homogeneous broadening, 144–146, 245, 293, 

308–309, 317–318, 397
Hooke’s law, 10, 12, 60, 221–222

Hot luminescence, 368
HT formulation, see Herzberg–Teller formulation
Hund’s rule of maximum spin multiplicity, 154, 

156, 255
Huygens, C., 1
Hydrodynamic theory, 121
Hydrogen atom, 14–17, 150–153

angular momentum vectors, 16
angular variables, 15
azimuthal quantum number, 16
one-electron energy levels, 15, 150
radial wavefunctions, 16
Rydberg constant, 17
Rydberg formula, 152
wavefunctions, 14, 150

I

Ideal gas of photons, 133
Impulsive stimulated Raman scattering, 393
Induced moments, 58–60, 66, 94–96, 124, 419–420
Infrared (IR), 173, 203, 221; see also Vibrational 

spectroscopy of diatomics
absorption selection rules, 236–238
solvent effects on, 244–246
spectra of benzene and toluene in gas 

phase, 243
spectra of C–H stretch of chloroform, 245
spectra of liquid methanol, 246
spectroscopy, 208–210

Inhomogeneous broadening, 128, 144–146, 245, 
308–309, 317–318, 387

Intensity, 34, 41, 112–113
Interference phenomena, 29, 171, 401
Internal conversion, 279–280
Internal rotation, 197–199
Intersystem crossing (ISC), 279
Intramolecular vibrational redistribution 

(IVR), 277–278, 381–382
Ionization energy, 30
IR, see Infrared
Irradiance, see Intensity
Irreducible representations (ir. reps), 435–436, 

230–237, 266–268
ISC, see Intersystem crossing
IVR, see Intramolecular vibrational 

redistribution

J

Jahn–Teller effect, 170, 276–277
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K

Kasha’s rule, 279, 280
KHD, see Kramers–Heisenberg–Dirac
Kirkwood model, 71–72; see also Bulk matter
Klystron, 186
Kramers-Heisenberg-Dirac (KHD) equation, 93–96, 

190, 292, 309, 348
Kramers–Kronig relations, 61–62, 65–66, 120, 291, 

310
Kronecker delta function, 5
Kubo model, 146, 308, 411

L

Lambda-type doubling, 182, 210
Lande g-factor, 165
LaPorte rule, 257, 276, 277
Laser emission, 167; see also Atomic spectroscopy

helium–neon laser, 168
pumping, 168

LCAO-MO (linear combination of atomic orbitals 
to get molecular orbitals), 251

method, 19
LE, see Locally excited
Ligand orbitals, 273
Light, 51

attenuation and amplification of, 135
photoelectric effect and photon discovery, 47
photons, 47
Planck distribution law, 47
polarization, 34–35
quantum mechanical aspects, 43
radiation field quantization, 43
scattering, 94
sources, 34
speed in matter, 38
superposition principle, 43

Light propagation, 38; see also Electromagnetic 
radiation

absorption and light emission, 41
anomalous dispersion, 39
attenuation, 41
Fresnel equations, 40
intensity of light in medium, 41
normal dispersion, 38
ratio of transmitted to incident light intensity, 40
reflection of s-and p-polarized light, 40
refraction and reflection, 38–41
refractive index, 38, 39
relative permittivity, 38

Snell’s law, 39
speed of light in matter, 38
total internal reflection, 40

Linear response theory, 116–117
Linear spectroscopy, 2, 41–42, 44, 327
Linear variation methods, 19, 251
Local field, 66; see also Bulk matter

effect, 52
Kirkwood model, 71–72
Lorentz, 69
Onsager model, 70–71
spherical cavities embedded in dielectric 

continuum, 70
Locally excited (LE), 384
Local oscillator, 329, 409
Lorentz

law, 42, 73
local field, 67–70
model of matter, 60, 319, 336–339, 428

Lorenz–Lorentz expression, 67, 245
Lowest unoccupied molecular orbital 

(LUMO), 253
LUMO, see Lowest unoccupied molecular orbital

M

Magnetic behavior, 75–77
Magnetic field, 31, 74, 152, 159, 166, 405
Magnetic moments, 74–76, 164–166
Magnetic properties 74–77

Bloch equations, 78
Bohr magneton, 15, 76, 165
electron spin, 75
intrinsic angular momenta, 75–77
magnetic moments, 74–76, 164–166
magnetic resonance phenomena, 

77–80
magnetogyric ratio, 75
nuclear magneton, 76
π/2 pulse, 79
rotating coordinate system for magnetic 

resonance, 78
spin echo, 79
torque, 78

Magnetic resonance phenomena, 77–80
Magnetic susceptibility, 76
Magnetism, 73

Biot–Savart law, 73
force on charged particle, 73

Magnetogyric ratio, 75
Manley–Rowe equations, 342
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Many-electron atoms, 153–156
degeneracy of energy level, 155
Hund’s rule of maximum spin 

multiplicity, 156
Pauli exclusion principle, 154
Russell–Saunders coupling, 155
selection rules for transitions, 161
self-consistent field approach, 153
Slater determinant, 153–154
triangle rule, 154

Math review, 415
Clebsch–Gordan series and 3j symbols, 

425–426
matrices, 417–419
operations with Cartesian and spherical tensors, 

419–421
spherical harmonics, 421–422
vectors and tensors in three dimensions, 

415–416
Wigner rotation functions and spherical tensors, 

422–425
Matrices, 417–419
Maxwell’s equations, 30; see also Electromagnetic 

radiation
del-dot operator, 31
electric field, 33
in free space, 31
intensity, 34
magnetic field, 31
magnetic permeability of free space, 31
Poynting vector, 34
total average energy density, 33
vector potential, 32
wave vector, 32

Microwave spectroscopy, 186–189
Miller’s delta, 338
MKS, 30, 52, 53, 55, 60, 73, 139, 292, 427
MO, see Molecular orbital
Mode density, 46
Molar absorptivity, 123, 138; see also Absorption
Molecular orbital (MO), 251–253, 266

for benzene, 270
for H2O, 267

Morse function, 216
Morse oscillator, 216–218; see also Vibrational 

spectroscopy of diatomics
Motional narrowing, 128, 146, 411
Mulliken symbol, 266
Multipole moments, 56–57

quantum mechanical calculation of multipole 
moments, 56–57

N

Newton, I., 1
Niels Bohr’s theory of spectrum, 1
NMR, see Nuclear magnetic resonance
Noncentrosymmetric crystals, 339
Non-Condon coefficient, 311
Normal dispersion, 38
Normal mode, 221

equations of motion, 223–225
of linear triatomic, 225–227
of vibration, 222–223

Nuclear Hamiltonian, 205
Nuclear magnetic resonance (NMR), 72, 328
Nuclear magneton, 76

O

Onsager model, 70–71; see also Bulk matter
Optical parametric amplified (OPA), 331, 332
Optical Kerr effect (OKE), 364, 412
ORTEP (Oak Ridge thermal ellipsoid plot), 221

plot of molecular structure, 222
Orthonormality, 150
Oscillating charge distributions, 51
Oscillator strength, 61, 62, 98, 139
Output coupler, 168

P

Particle in box model, 5–7; see also Quantum 
mechanics

Partition function, 22–23
Pauli exclusion principle, 183, 154
p-DMABN (p-dimethylaminobenzonitrile), 

284
2PE, see Two-pulse photon echo
3PEPS, see Three-pulse photon-echo peak shift
Perturbation theory, 19–21, 195, 240

of vibration–rotation energy, 213–215
PE spectroscopy, see Photon echo spectroscopy
Phase matching, 331, 332, 341–342, 366, 390
Phospholipids, 397
Phosphorescence lifetimes, 97, 280
Photochemical processes, 377, 394, 397
Photoluminescence excitation spectra 

(PLE), 312
Photon density of states, 91–92
Photon echo spectroscopy (PE spectroscopy), 399; 

see also Time-resolved spectroscopy
Feynman diagrams relevant to, 400
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Photon echo spectroscopy (Continued)
integrated intensity of echo, 404
phase-matching condition for photon echo 

signal, 403
polarization in two-pulse photon echo 

experiment, 405
pulse sequence and phase-matching directions 

for, 400
3PEPS experiment, 406
three-pulse photon echo signal of nanocrystals, 407
three-pulse stimulated echo experiment, 406

Photons, 35, 47; see also Light
Phrenology, 109
π∗ scale, 284
π/2 pulse, 79
PLE, see Photoluminescence excitation spectra
Point groups, 433–434; see also Group theory
Polarizability, 58; see also Time-dependent 

perturbation theory
of atom or molecule, 59
calculation, 93
collective, 126
derived, 292
dispersion forces, 60
finite state lifetimes and imaginary component 

of, 97
frequency dependence of, 60–62
ground-state, 96
and induced moments, 58–60
Kramers–Kronig relations, 61–62
Lorentz model of matter, 60
operator, 237
quantum mechanical expression for, 62
tensor, 59, 62, 118, 143, 190, 292

Polarization, 1
electronic and orientational, 63
as expansion in powers of incident field, 329–330
in fluorescence, 379–381
induced polarization, 63
of light, 34–35
in light scattering, 299–303
nonlinear, 329–330

Polar molecules in condensed phases, 68–72
Polyatomic molecules, 266; see also Electronic 

spectroscopy; Transition metal complexes
absorption spectrum and fluorescence 

spectrum, 279
benzene, 270–272
chromophores, 283–284
electronic states and selection rules, 266
emission spectroscopy of, 277–280

excitation spectrum, 279
exponential energy gap law, 280
fluorescence spectrum, 279
Franck–Condon progressions, 268–270
ground-and excited-state potentials, 

269, 270
internal conversion, 279
IVR, 277
Kasha’s rule, 279
molecular orbitals and electronic states of H2O, 

267–268
Mulliken symbol, 266
nonradiative relaxation of, 280–283
radiative transitions and nonradiative 

transitions, 280
Rydberg transition, 268
solvent reorganization in response to electronic 

transition, 278
Stokes shift, 279
vibronic coupling, 270

Polyatomic vibrations, 229–230
Poynting vector, 34; see also Maxwell’s equations
Pump-probe spectroscopy, 388; see also Time-

resolved four-wave mixing
electron transfer, 392
impulsive stimulated Raman scattering, 393
quantum beats, 391, 394
spectrum of bacteriorhodopsin, 395
time-resolved vibrational spectroscopy, 

396–399
transient absorption spectra of excited electronic 

states, 392–396
transient IR spectrum of water in reverse 

micelles, 397
transient Raman spectra of zeaxanthin, 399
UV-pump mid-IR probe spectra of spiropyran 

ring opening, 398
wavepacket motion and oscillations from 

quantum beats, 391
Pure dephasing, 80, 146, 307

Q

QED, see Quantum electrodynamics
Quantum beats, 391
Quantum electrodynamics (QED), 29
Quantum mechanics, 3, 26

angular momentum in, 17–18
Hermitian operator, 5
hydrogen atom, 14–17
Kronecker delta function, 5
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momentum operator, 4
particle in box model, 5–7
of polyatomic vibrations, 229–230
rigid rotor model, 7–10
time dependence in, 83–84
wavefunction, 3–4

R

Rabi frequency, 90, 102, 352, 406
Rabi oscillations, 104
Raman amplitude, 313
Raman excitation profile (REP), 291, 309–319
Raman scattering, Raman spectroscopy, 211–212, 

291
analysis of Raman excitation profiles, 309–319
anomalous polarization, 304
CARS experiment, 366
coherent Raman spectroscopy, 365–368
correlation function, 305–306
cumulant averages, 307
damping rate, 292–293, 313, 316
depolarization ratio, 142–143, 244, 299–303
derived polarizability, 292
dispersion in depolarization ratio, 303
femtosecond stimulated, 371–373
of I2 in cyclohexane, 297
lineshape of isotropic, 305–308
of neat CCl4, 302
off-resonance, 294–296
polarization in, 299–303
polarization in off-resonance, 300–302
polarization in resonance, 302–304
Q branch lines of H2 Raman spectrum, 212
Raman spectra of liquid benzene and 

toluene, 243
resonance, 296–299
resonance Raman spectrum of CH3I, 298
rotational and vibrational dynamics in, 

304–309
selection rules, 236–238, 292–294
surface-enhanced, 319–323
time-dependent theory, 312–319
transform theory, 291, 310–312
vibration–rotation Raman spectrum of O2, 212
wave packet theory, 291

Refractive index, 38, 65; see also Light propagation
real and imaginary parts of, 39

Reflection, refraction, 38–41
Relative permittivity, 38, 63–65
Relaxed fluorescence, 141, 263, 279

Reorganization energy, 262, 278, 318, 382–383
REP, see Raman excitation profile
Resonance fluorescence, 262, 368–371
Rigid rotor-harmonic oscillator model (RR-HO 

model), 206–208
Rigid rotor model, 7; see also Quantum mechanics

angular momentum, 7
angular momentum vectors, 9
permissible angles, 9
quantized angular momenta, 10
spherical polar coordinates, 8
wavefunctions, 10

Rigid rotors, 173; see also Rotational spectroscopy
asymmetric tops, 180
diatomics, 173–175
inertial ellipsoid, 178
kinetic energy of rotation, 178
kinetic energy operator, 173
linear molecules, 180
oblate symmetric tops, 180
polyatomic rotations, 175–178
prolate symmetric tops, 179
spherical tops, 179
Wigner rotation functions, 177

RKR procedure, see Rydberg–Klein–Rees 
procedure

Rotating wave approximation (RWA), 95, 103, 344
Rotational absorption and emission spectroscopy, 

186–189; see also Rotational spectroscopy
Rotational Raman spectroscopy, 190–194

correlation function, 193–194
depolarized spectrum, 194
formulas for tensor components of 

polarizability, 192
isotropic scattering, 194
of N2, 191
polarizability, 190

Rotational spectroscopy, 173, 200
absorption and emission spectroscopy, 186–189
angular momentum coupling, 181–183
of CO, 186
corrections to rigid-rotor approximation, 

195–197
Hund’s cases, 181, 182
internal rotation, 197–198
inversion potential of ammonia, 200
klystron, 186
Lambda-type doubling, 182
nuclear statistics and J states of homonuclear 

diatomics, 183–185
P12�  operation, 184
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Rotational spectroscopy (Continued)
Raman spectrum of H2, 185
rotational energies, 182, 196
rotational Raman spectroscopy, 190–195
symmetry of ortho-and para-H2 

wavefunctions, 185
Van der Waals complexes, 186

RR-HO model, see Rigid rotor-harmonic 
oscillator model

Russell–Saunders coupling, 155
Rydberg

constant, 17
formula, 152
states, 183, 268

Rydberg–Klein–Rees procedure (RKR 
procedure), 216

S

SALCs, see Symmetry-adapted linear combinations
Scattering, 133, 146; see also Absorption; Emission

depolarization ratio, 142
light scattering spectra, 142
measurement of light scattering, 142–144
polarizability tensor, 143
scattering geometry, 142, 143

Schrödinger equation, 4, 18, 83, 85
correct zero-order wavefunctions, 21
first-order solution to time-dependent, 85–88
linear variation methods, 19
perturbation theory, 19–21
time-independent, 4, 83
variation method, 18–19

Second harmonic generation (SHG), 328, 331
Selection rules, 4, 35, 105, 118, 235

diatomic molecules, 208–209, 257–258
for IR absorption and Raman scattering, 

236–238
in many-electron atoms, 161
in one-electron atoms, 150–153
in Raman scattering, 292–299
in rotational spectroscopy, 187–191

Self-consistent field approach, 153
SERS, see Surface-enhanced Raman spectroscopy
SFG, see Sum-frequency generation
SHG, see Second harmonic generation
Single-molecule surface-enhanced Raman 

spectroscopy (SMSERS), 322
Singlet fission, 398
Singlet state, 137
SLE, see Spontaneous light emission

SMSERS, see Single-molecule surface-enhanced 
Raman spectroscopy

Snell’s law, 39
Solvent effect theory, 284–287

absorption maximum of betaine-30, 287
cavity radius, 285–286
induction contribution to solvent shift, 285
π∗ scale, 284
quantum mechanical calculations of solvent 

effects, 286
Spectral diffusion, 377, 387, 406
Spectral intensity, 113
Spectral lineshapes, 114–115, 128, 136, 144–146, 

308–309
full-width at half-maximum, 144
Gaussian, 115, 125, 145–146, 308, 387, 404
homogeneous broadening, 144
inhomogeneous broadening, 145
Lorentzian, 115, 127, 144–146, 308, 315, 357, 364
Voigt profile, 145

Spectrum of sun, 1
Spherical harmonics, 9, 15, 151, 421–422

Legendre polynomials, 421
Spherical tensors, 56, 422–425
Spin

echo, 79, 405
–orbit coupling, 158–160, 256–257
quantum number, 17, 35, 76, 153, 167

Spontaneous emission, 135; see also Emission
Spontaneous light emission (SLE), 368
SPR, see Surface plasmon resonance
SRG, see Stimulated Raman gain
SRL, see Stimulated Raman loss
Stark effect, 167; see also Atomic spectroscopy
Statistical mechanics, 21

Boltzmann distribution, 22
bosons, 26
density operator, 23, 101, 346
ergodic hypothesis, 21
exponential operator, 23
molecular partition function, 26
occupation number, 21
partition function, 22–23, 24
total partition function, 25
vibrational partition function, 24

Stimulated emission, 135; see also Emission
Stimulated Raman gain (SRG), 366
Stimulated Raman loss (SRL), 366
Stimulated Raman Spectroscopy, 366
Stokes shift, 263, 279, 288, 381
Strickler–Berg equation, 141
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Sum-frequency generation (SFG), 328
Superposition principle, 34, 43
Surface-enhanced Raman spectroscopy (SERS), 291, 

319–323
Drude model, 319
electromagnetic theory, 320, 321
hot spots, 321
SERS spectrum of rhodamine, 322, 323
surface plasmon resonance, 319

Surface plasmon resonance (SPR), 319
Symmetry-adapted linear combinations (SALCs), 

267
Symmetry operations, 433–434; see also Group 

theory
System of units, 427

T

Tanabe–Sugano diagram, 275
TDFSS, see Time-dependent fluorescence Stokes 

shift spectroscopy
TD-FWM, see Time-resolved four-wave mixing
Tensors, 415–416
TG spectroscopy, see Transient grating spectroscopy
THG, see Third harmonic generation
Third harmonic generation (THG), 338
Thomas–Reiche–Kuhn sum rule, 98; see also Time-

dependent perturbation theory
3j symbols, 425–426
3PSE, see Three-pulse stimulated photon echo
Three-pulse photon-echo peak shift (3PEPS), 403, 

406
Three-pulse stimulated photon echo (3PSE), 403
Three-wave mixing (TWM), 330–335
TICT state, see Twisted intramolecular charge 

transfer state
Time-correlation functions (TCFs), 109, 304
Time-dependent approach, 109, 131

after-effect function, 116
Cole–Cole plot, 121
correlation functions for absorption and light 

scattering, 118
depolarized Rayleigh scattering, 126–128
dielectric relaxation, 120–123
dynamic variable, 111
far-infrared absorption, 123–126
fluctuation–dissipation theorem, 116
free–rotor correlation function and spectrum, 

119–120
intensity, 112, 113
linear response theory, 117

loss angle of benzophenone, 121
molar absorptivity, 123
relative alignment of dipoles in polar 

liquid, 122
reorientational spectroscopy of liquids, 120
rotational correlation functions and pure 

rotational spectra, 117
spectral intensity, 113
spectral moments, 130–131
time-correlation functions and spectra, 

110–115
vibration-rotation spectra, 128–129

Time-dependent fluorescence Stokes shift 
spectroscopy (TDFSS), 382

Time-dependent perturbation theory, 83, 105, 327; 
see also Polarizability

Bloch equations, 103
Bohr frequency, 102
density matrix formalism, 101
density operator, 101
Fermi’s golden rule, 89, 92–93
finite state lifetimes and polarizability, 97
first-order solution to time-dependent 

Schrödinger equation, 85–86
Heisenberg equation of motion, 84
intermediate times and time–energy uncertainty 

principle, 90–91
Kramers–Heisenberg–Dirac equation derivation, 

93–96
perturbation due to electromagnetic radiation, 

86–89
polarizability calculation, 93
quantum mechanical expression for emission 

rate, 98–100
Rabi frequency, 90
Rabi oscillations, 104
rate expression for emission, 91
relaxation times, 101
rotating wave approximation, 95
Thomas–Reiche–Kuhn sum rule, 98
time dependence in quantum mechanics, 83–84
time dependence of density matrix, 100–105
time-dependent operator, 86
time–energy uncertainty principle, 89, 91
time-independent Schrodinger equation, 4, 83
transition polarizability, 96

Time-dependent response function, 352–359
Time-dependent theory, 312; see also Raman 

scattering, Raman spectroscopy
absorption cross-section, 315
absorption spectrum, 315
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Time-dependent theory (Continued)
expressions for absorption and Raman cross-

sections, 318
fluorescence intensity, 318–319
time-dependent overlaps, 317
wave packet, 313, 314

Time–energy uncertainty principle, 89, 90–91
Time-independent Schrödinger equation, 4, 83
Time-resolved experimental techniques, 131, 377, 

412
Time-resolved fluorescence spectroscopy, 378; 

see also Time-resolved spectroscopy
absorption orientation and emission transition 

dipoles, 379
anisotropy decay, 381
assumptions of linear solvent response, 382
coumarin spectrum, 383
fluorescence anisotropy, 379
polarization in time-resolved fluorescence 

spectroscopy, 379–381
solvent relaxation times and amplitudes, 384
Stokes shift, 381–385

Time-resolved four-wave mixing (TD-FWM), 385; 
see also Pump-probe spectroscopy; Time-
resolved spectroscopy

Time-resolved resonance Raman spectroscopy (TR3 
spectroscopy), 398

Time-resolved spectroscopy, 377, 412; see also 
Photon echo spectroscopy; Time-resolved 
fluorescence spectroscopy; Time-
resolved four-wave mixing; Transient 
grating spectroscopy; Two-dimensional 
spectroscopy

Torque, 78, 125
Total internal reflection, 40; see also Light 

propagation
TPA, see Two-photon absorption
TR3 spectroscopy, see Time-resolved resonance 

Raman spectroscopy
Transform theory, 291, 310; see also Raman 

scattering, Raman spectroscopy
advantage of, 311
application to resonance Raman excitation 

profile, 312
non-Condon coefficient, 311
Raman cross-section, 310

Transient grating spectroscopy (TG 
spectroscopy), 399; see also 
Time- resolved spectroscopy

Feynman diagrams relevant to, 400
formation of transient grating, 401

phase and amplitude gratings, 402
phase-matching constraint for, 402
population grating, 401
pulse sequence and phase-matching directions 

for, 400
spectra of exciplex, 403

Transient Raman spectra of zeaxanthin, 399
Transition metal complexes, 273, 277;  see also 

Polyatomic molecules
correlation of free ion terms with symmetry 

species, 275
crystal field theory, 273
d Orbitals and symmetries in octahedral 

complex, 273
Jahn–Teller effect, 277
Jahn–Teller theorem, 276
orbital energy levels in octahedral, 274
σ AOs, 273
splitting of degenerate electronic state, 276
splitting of d orbitals, 276
symmetry-adapted linear combinations of ligand 

orbitals, 274
Tanabe–Sugano diagram for d2, 275

Triangle rule, 154
Triply degenerate vibration, 235
Twisted intramolecular charge transfer state 

(TICT state), 284
TWM, see Three-wave mixing
Two-dimensional NMR spectroscopy, 408
Two-dimensional spectroscopy (2D spectroscopy), 

408; see also Time-resolved spectroscopy
2D IR spectrum of Rh(CO) 2C5H7O2, 411
2D NMR spectroscopy, 408

2D spectroscopy, see Two-dimensional 
spectroscopy

Two-photon absorption (TPA), 328, 362–365
Two-pulse photon echo (2PE), 403

U

Ultraviolet
catastrophe, 45
-visible spectroscopy, 249

V

Van der Waals complexes, 186
Variation theorem, 18, 153, 251
Vectors, 415–416
VET, see Vibrational energy transfer
Vibrational angular momentum, 241
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Vibrational dynamics, 128; see also Time-dependent 
approach

isotropic Raman spectrum, 128
motional narrowing, 128
time-correlation functions, 129
Vibrational energy transfer (VET), 278

Vibrational partition function, 24
Vibrational spectroscopy of diatomics, 203, 218

Born–Oppenheimer approximation, 203–205
corrections to rigid-rotor harmonic oscillator 

approximation, 213–215
electrical anharmonicity, 213
harmonic oscillator model, 206–208
infrared spectroscopy, 208–210
Lambda-type doubling, 210
Morse oscillator and anharmonic potentials, 

216–218
perturbation theory of vibration–rotation 

energy, 213–215
Raman scattering, 211–212
selection rules for vibrational transitions, 208
vibration–rotation spectrum of CO, 210

Vibrational spectroscopy of polyatomic molecules, 
221, 246

anharmonicity, 240–242
benzene fundamentals, 244
Coriolis coupling, 241
dipole moment operator, 236
equations of motion, 223–225
Fermi resonance, 242, 301, 362
group frequency, 221, 228–229
group theoretical treatment of vibrations, 

230–234
harmonic oscillator model, 222
Hooke’s law, 221
IR spectra of benzene and toluene in gas 

phase, 243
IR spectra of C–H stretch of chloroform, 245
IR spectra of liquid methanol, 246
kinetic energy, 223
mass-weighted Cartesian coordinates, 223
normal modes of linear triatomic, 225–227
normal modes of vibration, 221–223
ORTEP representation, 221, 222
polarizability operator, 237
quantum mechanics of polyatomic vibrations, 

229–230
Raman spectra of liquid benzene and toluene, 243
rotational structure, 238–240

selection rules, 235, 236–238, 243–244
solvent effects on IR spectra, 244–246
symmetries of normal modes, 230–234
symmetries of vibrational wavefunctions, 

234–236
triply degenerate vibration, 235
vibrational angular momentum, 241
vibrational constants for water, 240
Wilson F and G matrices, 227–228

Vibrational sum-frequency spectroscopy (VSF 
spectroscopy), 359–362

Vibrational wavefunction, 205
Vibronic coupling, 270–272
Visible light, 29
Voigt profile, 145
VSF spectroscopy, see Vibrational sum-frequency 

spectroscopy

W

Wavefunction, 3–4; see also Quantum mechanics
Wave-mixing energy level diagrams (WMEL 

diagrams), 355, 371, 372
Wave packet, 313

theory, 291
Wave theory, 1, 2

of light, 45
Wave vector, 32, 65, 110
Wigner rotation functions, 177, 193, 380, 422–425
WMEL diagrams, see Wave-mixing energy level 

diagrams
Work function, 47

Y

YAG, see Yttrium aluminum garnet
Yellow emission doublet of sodium atom, 159
Young, T., 1
Yttrium aluminum garnet (YAG), 169

Z

Zeeman effect, 164–166; see also Atomic 
spectroscopy

anomalous, 166
Lande g-factor, 165
normal, 166
operator for total electronic magnetic 

moment, 165
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