Определяется множество, его виды (четкое, нечеткое и мультимножество) и способы их задания. Устанавливается связь между прямым (декартовым) произведением множеств, бинарным и функциональным отношением. Приводятся формы представления бинарного отношения, показывается его связь с графом.
Излагаются алгебры с различным числом операций как конкретизации алгебраической системы. Алгебры логики, множеств и отношений рассматриваются как частные случаи алгебры с тремя операциями. Особое внимание уделено алгебре бинарных отношений. Ее операции иллюстрируются в трех формах — множественной (перечислительной), матричной и графовой, что показывает изоморфизм соответствующих алгебр. Рассматриваются элементарные и неэлементарные свойства бинарных отношений.